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ABSTRACT
We show that any language solvable in nondeterministic time

exp(exp(· · · exp(n))), where the number of iterated exponentials

is an arbitrary function R(n), can be decided by a multiprover inter-

active proof system with a classical polynomial-time verifier and a

constant number of quantum entangled provers, with completeness

1 and soundness 1 − exp(−C exp(· · · exp(n))), where the number of

iterated exponentials is R(n) − 1 and C > 0 is a universal constant.

The result was previously known for R = 1 and R = 2; we obtain it

for any time-constructible function R.
The result is based on a compression technique for interactive

proof systems with entangled provers that significantly simplifies

and strengthens a protocol compression result of Ji (STOC’17). As a

separate consequence of this technique we obtain a different proof

of Slofstra’s recent result on the uncomputability of the entangled

value of multiprover games (Forum of Mathematics, Pi 2019).

Finally, we show that even minor improvements to our compres-

sion result would yield remarkable consequences in computational

complexity theory and the foundations of quantum mechanics:

first, it would imply that the class MIP
∗
contains all computable

languages; second, it would provide a negative resolution to a mul-

tipartite version of Tsirelson’s problem on the relation between

the commuting operator and tensor product models for quantum

correlations.

CCS CONCEPTS
• Theory of computation→ Quantum complexity theory.

KEYWORDS
Quantum multiprover interactive proofs, quantum entanglement,

quantum correlations, self-testing
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1 INTRODUCTION
The combined study of interactive proof systems and quantum

entanglement has led to multiple discoveries at the intersection

of theoretical computer science and quantum physics. On the one

hand, the study has revealed that quantum entanglement, a fun-

damental physical phenomenon, can be harnessed in interactive

protocols to accomplish an array of novel computing and cryp-

tographic tasks, ranging from the certified generation of random

numbers to improved protocols for multi-party cryptography and

classically-verifiable quantum computation. On the other hand, in-

teractive proof systems, a cornerstone of modern complexity theory

and cryptography, have provided a powerful lens through which to

examine the counter-intuitive properties of quantum entanglement.

This lens has enabled researchers to develop sophisticated ways

of exploring phenomena such as the monogamy of entanglement,

embezzlement of quantum states, and more.

We investigate a central question in this area: what is the com-
putational complexity of interactive proof systems with multiple

quantum entangled provers? The starting point for this question

dates back to the seminal result of Babai, Fortnow and Lund, who

showed that the set of languages that can be decided by a (classi-

cal) multiprover interactive proof system, denoted by MIP, equals

the set of languages that can be decided in nondeterministic ex-

ponential time (denoted by NEXP) [3]. It is not difficult to show

that MIP ⊆ NEXP, but the reverse containment is nontrivial and

the work of [3] was an influential stepping stone towards the PCP

Theorem [1, 2].

A long line of work, starting with that of Cleve et al. [6], has

explored the setting of interactive proof systems where a classical

polynomial-time verifier interacts with provers that are quantum
and may share entanglement. This gives rise to the complexity

class MIP
∗
, which is the set of all languages decidable by such

proof systems.
1
Quantum entanglement is a resource that allows

isolated parties to generate correlations that cannot be reproduced

by (classical) shared randomness alone; however, entanglement

does not allow for instantaneous communication. A central question

1
The

∗
in MIP

∗
refers to the entanglement.
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raised by [6] is whether MIP
∗ = MIP, or equivalently, whether

MIP
∗ = NEXP.

A richer set of correlations gives additional power to provers in

an interactive proof system, making the relationship between MIP
∗

and MIP non-obvious. On the one hand, a multiprover interactive

proof system that is sound against “cheating” classical provers

may no longer be sound against “cheating” entangled provers; this

prevents one from automatically concluding that MIP ⊆ MIP
∗
. On

the other hand, a proof system may require “honest provers” to

use quantum entanglement in order to satisfy the completeness

property. Entanglement thus allows one to consider a broader set

of protocols, putting in question the inclusion MIP
∗ ⊆ MIP.

The quest to pin down the computational power of proof systems

with entangled provers has led to a number of surprising discoveries.

The best lower bound that is currently known is that NEXP =

MIP ⊆ MIP
∗
, a nontrivial result that follows from a more general

technique of “immunization” of classical proof systems against

malicious entangled provers [14, 24]. There is strong evidence that

this lower bound can be improved; a recent result [23] shows that

languages in QMAEXP – the exponential time version of QMA –

have entangled proof systems under randomized Karp reductions.

If the same were true under deterministic reductions, this would

imply that QMAEXP ⊆ MIP
∗
. Assuming that the exponential time

versions of NP and QMA are different, this would unconditionally

separate MIP from MIP
∗
.

Surprisingly, there are no meaningful upper bounds known for

MIP
∗
. In a striking result, Slofstra gave evidence that the complexity

of MIP
∗
might be very different from its classical counterpart: he

proved that it is undecidable to determine whether an interactive

proof system with two provers has an entangled strategy that is

accepted with probability 1 (in other words, whether there is a

perfect entangled strategy) [27, 28]. In contrast, the complexity of

determining whether such a proof system has a perfect classical
strategy is exactly equal to NEXP. Another recent result of Ji [17]

points in the same direction: Ji showed that any language in non-

deterministic doubly-exponential time can be decided by a classical

polynomial-time verifier interacting with k = 11 provers, with

completeness 1 and soundness that is exponentially close to 1.
2

In this work we explore the expanse of complexity-space that

entangled-prover interactive proof systems can reach. We focus on

the “small gap” regime: we consider the problem of distinguishing

between the cases when a multiprover proof system has a perfect

entangled strategy, or when all entangled provers are rejected with

probability at least ε , where ε is a quantity that may go to 0 quickly

with the size of the verifier in the proof system. Our results smoothly

interpolate between the hardness result of [14, 17, 24] and Slofstra’s

undecidability result. For clarity we restrict our attention to hyper-
exponential time functions, i.e. time-constructible functions of the

form t(n) = ΛR (n), where Λ0(n) = n and for any integer-valued

function R = R(n) ≥ 0, ΛR+1(n) = 2
ΛR (n)

. For a multiprover game

G, the entangled value ω∗(G) is the maximum success probability

of quantum provers sharing entanglement in the game.

2
Due to the vanishing gaps neither Slofstra’s nor Ji’s result directly separatesMIP

∗
from

MIP, though they do separate the zero-error and exponentially-small error variants

respectively: MIP = NEXP for all gaps. Furthermore, since the provers in an MIP

protocol are assumed to be deterministic, the error cannot be smaller than inverse

exponential.

Theorem 1.1. Let k ≥ 15 be an integer. Let t : N→ N be a hyper-
exponential function. There are universal constantsC, c > 0 such that
given the description of polynomial-size circuits for the verifier in a
k-prover game G, the problem of distinguishing between

ω∗(G) = 1 or ω∗(G) ≤ 1 −
C

(t(n))c

is hard for nondeterministic 2t (n) time.

The “base case” for Theorem 1.1, corresponding to R = 0 and

t(n) = n, is the result that NEXP ⊆ MIP
∗
[14, 24], where MIP

∗
is the

class of languages that can be decided using an entangled-prover in-

teractive proof system, with completeness
2

3
and soundness

1

3
(the

completeness-soundness gap can be amplified from inverse poly-

nomial to constant using hardness amplification techniques [4]).

The first step, R = 1 and t(n) = 2
n
, follows from Ji’s result [17]

mentioned earlier, albeit using a game with k = 11 provers.

A corollary of both our and Ji’s earlier result is that the “honest

strategy” for the provers (i.e. those satisfying the completeness

property) in the games constructed through the reduction from

Theorem 1.1 provably require the provers to share entanglement.

Moreover, it is often possible to obtain lower bounds on the dimen-

sion of entanglement required to achieve close to optimal success

probability; this is the case for our result, as described below.

The proof of Theorem 1.1 is based on a compression technique

that significantly simplifies and extends the approach pioneered

in [17]. Our generalized compression result can be recursively com-

posed with itself in order to obtain the statement of Theorem 1.1

for any integer-valued R(n) ≥ 1.

The starting point of the compression approach of [17] is to

extend the notion of a history state. The concept of a history state

was first introduced by Kitaev in order to efficiently encode any

polynomial-time quantum computation as the ground state of a

local Hamiltonian, in a way that is also efficiently verifiable [22].

The compression result of [17] as well as the one in this paper con-

structs a game to verify history states that encode the execution of

a (different) multiprover game, including the actions of the provers

(which in general are not efficiently computable). The verification

is performed by executing a “games” version of the traditional ver-

ification procedure for history states, that consists in randomly

sampling a local Hamiltonian term and measuring its energy.

There are two key ideas behind our generalized compression

technique. The first is to ensure that the game G that verifies the

history state of a multiprover game G′
can be executed using a

circuit that is logarithmic in the size of G′
, provided that G′

is

specified in a sufficiently uniform and succinct manner. The second

idea is to compose the first idea with itself, i.e. consider the history

state for the computation performed by the history state verifica-

tion procedure. At this point there are a number of delicate issues

to consider, including identifying the right model for specifying

verifiers, verifiers of verifiers, etc.; we give more details in Section 2.

On a more informal note, we observe that the kind of compres-

sion achieved here may be thought of as a “bootstrapping” of Ki-

taev’s history state technique, in a similar sense to the composition

technique from the PCP literature that “bootstraps” an efficient
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PCP into a super-efficient one.
3
The fact that history states are

ground states of local Hamiltonians is a statement about the local

verifiability of arbitrary quantum computation. Our result goes

further by making the following observations. First, not only is

the verification procedure local, it is also exceedingly efficient —

it can be executed in time logarithmic in the size of the original

computation. Second, it is possible to consider a history state for

the verification procedure itself. Third, and most strikingly, the

latter history state can be verified with the same complexity as the

verification procedure, without reference to the size of the original

computation. This last step crucially relies on rigidity properties

of entanglement which acts as a “leash” on quantum systems. It

is sufficient to only control the leash-holder: if the leash-holder

manages to hold the dog tightly enough, then there is no longer

any reason to worry about the (hyper-exponential-size) dog itself.

It is worth noting that such “PCP composition on steroids” has

no classical analogue. A classical PCP verifier runs in polynomial

time and uses polynomially many random bits to verify an expo-

nentially long proof. Encoding the computation performed by such

a verifier in a way that can be verified using, say, a classical multi-

prover interactive proof system, again requires a polynomial-sized

verifier flipping polynomially many bits. This is because the only

way to “verify the verification procedure” is to, at least with some

probability, access some of the original proof bits. In the quantum

case, it is possible to leverage entanglement between provers to

avoid the need for the “inner” verifier (to borrow some terminology

from the PCP literature) to make any query at all to the original

proof qubits.

Before proceeding we formulate another consequence of com-

pression that highlights the versatility of our approach. As already

mentioned, it was recently shown by Slofstra that the problem

of determining whether a given multiprover game has a perfect

entangled strategy is undecidable. Slofstra’s result proceeds by an

ingenious (and intricate) reduction to the word problem in finitely

presented groups, which is known to be undecidable. The proof of

the latter itself involves a sophisticated embedding of the compu-

tation of an arbitrary Turing Machine (in fact, a Minsky machine)

in an instance of the word problem in a suitable finitely presented

group [5, 21, 25].

We give a different proof of Slofstra’s undecidability result, by

directly constructing an interactive proof system from a Turing

machine. Arguably, our result provides an intuitive reason for why
the problem is undecidable, showing in a precise sense how smaller

and smaller gaps can be leveraged to verify that the provers are

performing an increasingly complex computation. More precisely,

the main idea for our proof is to design a family of games {Gn }n≥1
such that for any n ≥ 1 the verifier in the game Gn verifies if a

Turing machine provided as input halts within n steps, and if it

does not, executes a game with the provers that verifies that, either

the provers hold a quantum proof that the Turing machine halts

within 2
n
steps, or they hold a history state for the verification of

a quantum proof that either the Turing machine halts within 2
2
n

3
The analogy only goes so far: composition in PCPs reduces the answer size; here, we

reduce the query size.

steps, or... Somewhat more formally, we obtain the following (see

the full version of the paper in [10] for a more complete statement):

Theorem 1.2. For all deterministic TuringmachinesM , there exists
a multiprover game GM (that can be computed from the description of
M) such that ifM halts in finite time then ω∗(GM ) < 1, whereas ifM
does not halt then ω∗(GM ) = 1. Furthermore, there exists a universal
constant η > 0 such that for any non-haltingM , any strategy for the
provers that succeeds with probability at least 1 − ε in GM , for some
ε ≥ 0, requires the use of an entangled state of local dimension at
least 2Ω(ε

−η ).

The game GM in Theorem 1.2 is a game with 15 provers that can

be efficiently computed fromM ; the undecidability result follows

immediately. In addition, as stated in the theorem our game can be

used as a form of dimension test for the strategies of the provers.

Up to the value of the constant η the bound 2
Ω(ε−η )

matches the

best bound known, for a three-prover game considered in [18].

2 PROOF OVERVIEW
We provide a detailed overview for the proof of Theorem 1.1. In

Section 2.1 we sketch our main “compression” result and expand

on the compression technique from [17]. The following sections

sketch the proof of the compression theorem. We start by describ-

ing a method to succinctly describe the actions of a verifier in a

multiprover game in Section 2.2. In Section 2.3 we describe the

main steps of the proof: (1) design a history state associated with

the execution of a multiprover game, (2) design a game that veri-

fies the history state with the help of an additional trusted prover,

and finally (3) design a game in which the honest prover has been

merged into existing provers. This last step, prover merging, is

described in more detail in Section 2.4. In Section 2.5 we sketch

how the compression theorem can be applied recursively to show

Theorem 1.1 and Theorem 1.2.

2.1 Protocol Compression
The main workhorse of this paper is a compression theorem for

quantummultiprover interactive protocols that simplifies and strength-

ens the compression result of [17]. To state the result, we first re-

view the notion of k-prover “extended nonlocal (ENL) game”, which

is a type of quantum multiprover game introduced in [19]. A k-
prover ENL game is a three-turn interaction between a quantum

verifier and k quantum provers sharing entanglement. The game

(or “protocol”) proceeds in three stages. First, the provers send a

quantum register C to the verifier. Second, the verifier measures

the register C to obtain an outcome t . 4 The verifier then computes

a classical query Q = (q1, . . . ,qk ) that it distributes to the provers.

Third, the provers respond with classical answers a = (a1, . . . ,ak )
to their respective questions. In general, each prover’s answer is

determined by performing a measurement on the prover’s share of

a quantum state that may be entangled with C. Finally, the verifier
makes an accept/reject decision based on the outcome t , its internal
randomness, and the provers’ answers. The maximum acceptance

probability of an ENL game G is denoted ω∗(G), and is also called

the (entangled) value of G.

4
Our definition of ENL game is slightly more general than that in [19], where the

sampling of questions is classical and does not depend on C.
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The whole interaction between verifier and provers in an ENL

game can be represented as a quantum circuit of a special form that

we call a protocol circuit, as depicted in Figure 1. A protocol circuit

starts with the application of a quantum circuit CQ on registers C
(which holds the provers’ first message), V (the verifier’s private

workspace), and M (which holds the messages exchanged between

the verifier and provers). The circuit CQ implements the verifier’s

measurement on register C, and the verifier’s choice of questions

to the provers. The circuit CQ is followed by an arbitrary unitary

transformation for each prover i , applied on the component Mi
of the message register that the prover has access to, as well as

its private workspace Pi (that contains the prover’s part of shared
entangled state). Finally, the last step in the protocol circuit is the

application of a circuit CA that acts on C, V andM and computes

the verifier’s decision in the game, that is written on a specially

designated “output qubit”.

C

V

M

P

CQ

P

CA

Figure 1: The protocol circuit of an extended nonlocal game.

The compression theorem applies to families of ENL games {GN }

that have succinct descriptions. By this we mean, not only that the

protocol circuit associated with GN has size polynomial in N , but

moreover there exists a deterministic Turing machine G (called a

Gate Turing Machine (GTM)) that on input (N , t), where N and t are
two integers written in binary, runs in polynomial time and returns

the description of the t-th gate of the protocol circuit associated

with GN (and a special symbol if t is larger than the circuit size). If

the t-th gate is an action of the prover, the GTM returns another

special symbol.

Theorem 2.1 (Compression Theorem). Let k ≥ 7 be an integer
and let {GN } be a succinctly described family of k-prover ENL games
with GTMG . Then there exists a family of k-prover ENL games {G♯

n }

such that for all integer n ≥ 1 and N = 2
n , it holds that

ω∗(G
♯
n ) ≤ 1 −

(1 − ω∗(GN ))α

poly(N )
, (1)

where α ≥ 1 is a universal constant, and if ω∗(GN ) = 1 then we
have ω∗(G

♯
n ) = 1. Moreover, there exists a Turing machine A♯ that

on input (1n ,G) returns the description of G♯
n in polynomial time.

The strength of the theorem lies in the exponential reduction

in the size of the verifiers of the ENL game, from poly(N ) (the size

of GN ) to poly(n) = poly(logN ) (the size of G
♯
n ). The cost of this

exponential compression of game size is that the value of the game

gets “compressed” towards 1; nevertheless, games with value 1 (resp.

< 1) are compressed to games with value 1 (resp. < 1). Theorem 2.1

differs from the results of [17] in two significant ways. First, the

compression result in [17] does not yield a family {G
♯
n } that is as

efficiently described as the games returned by our reduction.
5
The

recourse to succinct descriptions via Gate Turing Machines is an

essential ingredient for the recursive application of Theorem 2.1.

Second, the compression result in [17] increases the number of

provers, from k to k + 8. Our result does not require the use of

additional provers; this is again essential in allowing a large (or

even infinite) number of recursive applications of the theorem.

In the following subsections we sketch the proof of Theorem 2.1.

The first step is to make the notion of “succinctly described” more

concrete.

2.2 Succinct Descriptions of Verifiers
In the study of quantum interactive proof systems, families of games

{GN } are usually presented as a uniformly generated family of

circuits for the verifier: there exists a polynomial-time deterministic

Turing machine A that on input 1
N

returns a circuit description of

the verifier in GN . However, such uniform descriptions of verifier

circuits are insufficient for our compression result: from a game

GN we aim to design a “compressed game” G
♯
n that has size poly(n),

exponentially smaller than the size of GN . In particular, G
♯
n does

not have nearly enough time to run A to get a circuit description

of the verifier of GN . What we need is that the verifier of G
♯
n be

granted some form of implicit description of the verifier of GN .

We achieve this via the notion of a Gate Turing Machine (GTM)

for a family of ENL games {GN }. As mentioned before, it is a

Turing machine G that on input (N , t) outputs in poly log(N ) time

the description of the t-th gate of the protocol circuit of GN (which

has size poly(N )).

Thus, our notion of “succinct description” for a family of ENL

games {GN } is that there is a GTM G for the family. With this

notion in place, it remains to show the compression theorem: any

succinctly described family of games {GN } can be “compressed” to

another family of ENL games {G
♯
n } with the properties described

in Theorem 2.1. We sketch how this is done in the next sections.

2.3 Testing History States of Protocol Circuits
With the appropriate notion of succinct description in place, we

describe the three main steps that go into the proof of Theorem 2.1.

The first step consists in considering the history state |ΨG(N )⟩

of the protocol circuit (Figure 1) associated with an execution of

G = GN , where N = 2
n
. This state is defined on the registers

CVMP, and may be extremely large, depending on the size of the

provers’ registers. In addition, the state has a component on a

clock register Couter of the same dimension as the total number of

gates τN in the protocol circuit, which is polynomial in N ; thus the

register Couter is over O(n) qubits. Concretely, the state |ΨG(N )⟩

5
Although the question lengths of the “compressed” game in [17] are O (logN ), the

verifier itself has size poly(N ). The verifier for the game G
♯
n , in contrast, has size

poly(logN ).
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has the form

|ΨG(N )⟩ =
1

√
τN + 1

τN∑
t=0

|t ⟩Couter ⊗ Ut · · ·U1 |ψG(0)⟩CVMP . (2)

Here |ψG(0)⟩ is the initial state of the verifier and the provers’

registers inG , with C denoting the initial register received from the

provers, V the private workspace for the verifier, M = M1, . . . ,Mk
the message registers, and P = P1, . . . ,Pk the private spaces for

the provers.

Note that in (2), almost all unitaries are gates applied by the

verifier, exceptk of them, one for each prover, that can be considered

“wild cards”. The important property is that, if ω∗(G) = 1 then

there exists a state of the form (2), for some choice of |ψG(0)⟩,

and some choice of unitaries to apply in the “wildcard” locations,

that is a ground state (energy 0) of the local Hamiltonian HG(N )

that verifies the history state (this is entirely analogous to Kitaev’s

circuit-to-Hamiltonian construction, but for the use of the prover

gates whichmay induce large non-local Hamiltonian terms to verify

their propagation). Conversely, if ω∗(GN ) , 1 then no such state

exists, irrespective of the choice of the “wildcard” unitaries.

The next step is to design an intermediate ENL game GH that

has one additional prover, called the “Pauli Prover” PV . We call the

verifier in GH the outer verifier. The goal of the outer verifier is
to verify that the provers share the state |ΨG(N )⟩, where registers

associated with the verifier in G (that we call the inner verifier), i.e.
C, V and M, are given to PV , while the clock register Couter is the

prover’s first message in the ENL game G. As already mentioned,

this initial message has length O(n) qubits.
Informally, to achieve this verification task the outer verifier and

the Pauli Prover collaborate to implement a family of tests that are

game-like versions of the tests implemented by the local Hamil-

tonian HG(N ). This includes an “input check” (the state |ψG(0)⟩ is

well-formatted), a “gate check” (each time step corresponds to the

application of a unitary, and unitaries associated with the inner ver-

ifier are the right ones, as specified in the circuits CQ and CA), and
an “output check” (the final decision made by the inner verifier is to

accept). Each of these checks involves not only the verifier and PV ,

but also the other provers, that are required to apply their prover

gate when the corresponding propagation check is performed.

In designing GH , we take advantage of the fact that the Pauli

Prover is considered “honest”: it always implements the observable

that it is asked by the outer verifier. However, for reasons that will

soon become clear the Pauli Prover can only be asked to implement

single- or two-qubit Pauli observables.
6
This means that all tests

performed by the outer verifier can only require such observables

on the registers CVM.

The crucial point here is that the complexity of the verifier in

the game GH is exponentially smaller than the complexity of the

verifier in G. The reason this is possible is that in order for the

verifier in GH to check that the entangled state shared by the

provers is a valid history state for the protocol circuit associated

with G it is enough to select a random time step in that circuit, and

implement the associated check. Both of these can be performed

in time poly log(N ); the first trivially so, and the second thanks to

6
In fact, triples of commuting two-qubit observables; we gloss over this for purposes

of this overview.

our assumption that G is specified through a “succinct description”,

provided by the verifierV and GTM G associated with {GN }, as

described in Section 2.2.

In the last step we convert the Single Pauli Prover game GH into

a new ENL game G♯ = G
♯
n , with the same number of provers as in

the original ENL G, but with drastically reduced question length —

it is now O(n), when questions in G might have been poly(N ) bits

long. For this we need to remove the “honest” assumption on PV ,
and moreover we need to “merge” PV with existing provers. This

step of prover merging is explained in the next subsection.

2.4 Prover Merging
Prover merging is performed in two steps. The first step uses some-

what standard techniques, similar to those employed in [17], that

originate in the self-testing literature. The main idea is to require

the honest Pauli prover PV in P to implement the observable it

is asked to measure transversally, on an error-encoded version of

his share of the state (this is the main motivation for restricting

the prover to Pauli observables), and then to split PV into as many

provers as the error-correcting code requires. It is then possible, us-

ing self-testing technique, to test the “split” PV so as to ensure that

any deviation from the honest actions is detected by the verifier.

The second step is the actual merging step. This step is somewhat

delicate: we take the split provers, and merge them into existing

provers from G. Since each prover P now simultaneously receives

two questions — its question in G, as well as the share of the

question to PV that would have been sent to the split prover that

got merged into P — soundness is non-obvious.

To show that this step does not compromise soundness, we lever-

age the fact that, by construction, the prover that is to be merged

only has to perform very simple operations: Pauli σX and σZ ob-

servables, on a constant number of qubits at a time. These kinds

of operations can be tested, indeed “commanded”, in a very rigid

way by using self-testing results. Therefore, we can embed these

actions into any prover. It is then straightforward to enforce that a

prover performs the right action on a Pauli observable. However,

its action on the real question may depend on the Pauli question.

To get around this we once again leverage the structure of the Pauli

Prover game as well as the quantum error-correcting code. More

details on this part are given in the full version of the paper in [10].

2.5 Recursive Compression
Ultimately, we use our compression theorem (Theorem 2.1) in a

recursive fashion to prove Theorem 1.1. To illustrate the essential

idea behind the recursive compression approach, we give an in-

formal overview of the proof of the statement that any language

computable in deterministic time t(n) has a quantum interactive

proof system with completeness-soundness gap that scales as an

inverse polynomial in t(n).
Let L be such a language. Then there exists a deterministic Turing

machine M that on input x ∈ {0, 1}n decides whether x ∈ L in

time t(n). For every x ∈ {0, 1}n and integer N ≥ n, we construct a
verifierVx,N for a 7-prover ENL gameGx,N that does the following.

The verifier first runs M for N steps on input x . If M accepts in

this time, thenVx,N accepts. IfM rejects in this time, thenVx,N
rejects. Otherwise,M has not halted. In this case Vx,N executes a
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compressed version of the protocol corresponding to Vx,2N , which

is an exponentially larger version of itself. This compressed protocol

is provided by Theorem 2.1. The recursion continues until at some

point,M is run for a large enough “tower of exponential” number

of steps that exceeds t(n), in which caseM either accepts or rejects

input x . The following can then be shown by induction on R such

that t(n) ≤ ΛR (n). If x ∈ L then the value of the game Gx,t (n) is 1,

and therefore for all N ≤ t(n) the value of Gx,N is 1, which implies

that Gx,n has value 1. Otherwise, if x < L, then using Theorem 2.1

we obtain that the value of Gx,n is at most 1 − Ω (1/poly(t(n))).
This nearly shows the desired conclusion, except that Theo-

rem 2.1 requires that the family of games to be compressed have

a succinct description in the manner described in Section 2.2. We

thus need to argue that the family of games

{
Gx,n

}
has a GTM

G associated with it. A priori it is unclear whether the verifiers{
Vx,n

}
are structured enough so that any particular gate of the

verifier circuits can be specified in polylogarithmic time. However,

we show that as long as the verifiers

{
Vx,n

}
are uniformly gener-

ated (meaning that there is some polynomial time Turing machine

A that on input (1n ,x) returns the description of the verifier circuits
of Vx,n ), there is an equivalent family of verifiers

{
V ′
x,n

}
that has

a succinct description. We prove this fact in the full version of the

paper [10]; the proof relies on a concept from classical complexity

theory known as oblivious simulation of Turing machines. Since the

family of verifiers

{
Vx,N

}
is uniformly generated, we obtain that

the verifiers have a succinct description via a GTM, which in turn

allows us to apply the compression theorem as outlined above.

Finally, we address the issue that the games Gx,N described thus

far are technically ENL games, meaning that the verifiers have some

quantum capability, whereas the statement of Theorem 2.1 refers to

standard nonlocal games, where the verifier is entirely classical. We

can transform the ENL game Gx,N into a nonlocal game G′
x,N by

delegating the measurements of the verifier Vx,N to an additional

set of provers, by observing that the verifier’s measurements are

also simple Pauli measurements, and thus can be commanded by

using the same self-testing techniques as used in the prover merging

section.

Adapting this sketch to handle languages that are decided by

nondeterministic Turing machines (as needed in Theorem 1.1), as

well as reproving Slofstra’s undecidability result (Theorem 1.2),

requires additional care.We give additional details in the full version

of the paper [10].

3 IMPROVING THE COMPRESSION
THEOREM?

Theorem 2.1 offers the following tradeoff between “compression

in size” and “compression of the gap”: the former is scaled by an

exponential factor, from polynomial in N = 2
n
to polynomial in n,

while the latter is divided by a quantity that is polynomial in N , or

equivalently, exponential in n.
Surprisingly, we show that any better tradeoff, i.e. one in which

the gap gets reduced by a subexponential factor inn, would have far-
reaching consequences in complexity theory and mathematics. The

result provides a possible explanation for the absence of meaningful

upper bounds on MIP
∗
(provided an improved compression result

does hold): not only would every computable language be decided

by an MIP
∗
proof system, it would show a negative resolution to a

long standing open question in quantum information theory con-

cerning the relationship between the commuting operator model

and tensor product model of quantum correlations.

Theorem 3.1 (Conseqences of an improved compression

theorem). Suppose an analogue of Theorem 2.1 holds, such that the
factor poly(N ) in the denominator on the right-hand side of (1) is
replaced by a subexponential function of n = logN . Then

(1) MIP
∗ with constant gap contains all computable languages.

(2) The commuting operator model of multipartite correlations is
strictly more powerful than the tensor product model.

The idea behind the proof of Theorem 3.1 is that the tradeoff

between a subexponential compression in gap and an exponential

reduction in size can be “boosted” to a tradeoff where the gap does

not get compressed at all, but the game size still gets compressed by

a nontrivial amount. This uses hardness amplification techniques

for multiprover entangled games [4], which employs a variant of

parallel repetition to achieve this boosting. We give more details in

the full version of the paper in [10].

We briefly explain what we mean by the second item in Theo-

rem 3.1. In this paper, we define the entangled value of a nonlocal

game as the supremum of the success probabilities over all “ten-

sor product” strategies for the provers, which consist of a finite-

dimensional Hilbert space for each prover, an entangled state in

the tensor product of those Hilbert spaces, and a collection of mea-

surement operators on each prover’s space.

There is an alternate definition of the entangled value, which con-

siders the supremum over so-called “commuting operator” strate-

gies, for which there is a single (possibly infinite-dimensional)

Hilbert space shared by all players, and the only restriction is that

measurement operators applied by distinct provers commute with

each other. Since tensor product strategies are also commuting op-

erator strategies, the entangled value in the tensor product model

is at most the entangled value in the commuting operator model.

It is known that in the finite dimensional case, the two models

are equivalent. Whether they coincide in general is a famous prob-

lem in quantum information known as “Tsirelson’s problem” (see

e.g. [12]).

A positive resolution to Tsirelson’s problem implies the existence

of an algorithm to approximate the value of any nonlocal game.

However, the first item of Theorem 3.1 shows that an improved

compression theorem would refute the existence of such an algo-

rithm, and thus would give a negative answer to (the multipartite

version of) Tsirelson’s problem.

It is known that Tsirelson’s problem for two-prover games is

essentially equivalent to Connes’ Embedding Conjecture [7], a

longstanding open problem in functional analysis (see [12, 20, 26]).

In particular, a separation between the definitions of entangled

value for games with two provers would refute Connes’ Embedding

Conjecture. We do not know if a separation for games with more

than two provers (e.g., 15) would still refute Connes’ Embedding

Conjecture.

4 RELATEDWORK
We were informed of a forthcoming paper [8] by Coudron and Slof-

stra that establishes a result similar (though strictly incomparable)
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to Theorem 1.1, using completely different techniques. In particular,

the authors show that distinguishing between entangled value 1

or 1 − 1/poly(t(n)) for games with two provers in the commuting

operator model is hard for nondeterministic t(n) time (whereas our

result shows hardness for nondeterministic 2
t (n)

time for games

with 15 provers in the tensor product model). This result relies on

the group-theoretic framework that was pioneered in [27, 28].

5 OUTLOOK
The most important structural properties of classical multiprover

interactive proof systems have been established since the 90s. It

is known that any multiprover interactive proof system can be

parallelized to a single round of interaction, with two provers only;

that completeness 1 can be achieved without loss of generality; that

soundness can be amplified in parallel; finally, andmost importantly,

that the class MIP of languages that can be recognized by any

multiprover interactive proof system, for any nontrivial choice of

completeness and soundness parameters, is exactly NEXP. Here, by

nontrivial we mean any (c, s) such that exp(− poly(n)) ≤ s < c ≤ 1,

where c − s is at least exp(− poly(n)). We use MIPc,s (k, r ) to denote
the class of languages that can be decided by a polynomial-time

verifier interacting with k provers through an r -round interaction,

with completeness c and soundness s . Thus, MIPc,s (2, 1) = NEXP

for all nontrivial values of (c, s). When we write MIP we mean the

union of all MIPc,s (k, r ) for polynomially bounded functions k, r ,
and c, s such that 0 < s < c ≤ 1 and (c − s)−1 is polynomially

bounded.

In contrast, complexity-theoretic aspects of entangled-prover

interactive proof systems remain, to put it mildly, an untamed

wilderness. Prior to our work it was known that NEXP ⊆ MIP
∗
[14,

24, 29] with completeness 1 and soundness
1

2
, and that if one allows

the completeness-soundness gap to close exponentially fast with

n, then the inclusion can be strengthened to NEEXP, or, in our

notation, NTIME(Λ2(n)) [17]. Interestingly, a similar phenomenon

had previously been observed for single-prover interactive proof

systems, for which it is known that QIP = PSPACE with constant

gap [15], but QIP contains EXP if one allows a doubly exponentially

small gap [13]. Unlike MIP
∗
, however, the power of QIP does not

grow arbitrarily when the gap goes to zero; for any positive gap

the class is contained in EXPSPACE [13].

For the case of multiprover interactive proof systems with en-

tangled provers, there is no compelling reason that a shrinking gap

would be necessary for the verification of languages beyond NEXP.

Indeed, no upper bounds are known onMIP
∗
with constant gap — it

is not even known to be contained in the set of decidable languages.

In fact, recent works provide indication that the class may be larger

than NEXP: it is known that QMA
EXP

, the “exponential-size proof”

analogue of QMA, is such that QMA
EXP

⊆ MIP
∗
1,1−2−n (5, 1) [11, 16],

and inclusion with a constant gap holds under randomized reduc-

tions [23]. It is therefore an interesting question to determine to

what extent the exponentially small completeness-soundness gap

that our technique requires is necessary. As mentioned earlier, sig-

nificant consequences in complexity theory andmathematics would

follow from even a small improvement in our compression theorem,

Theorem 2.1.

Another major open question on entangled-prover interactive

proof systems is the role of the number of provers. Currently, it

is not known if e.g. 3 provers allow to determine more languages

than 2 (for any setting of the completeness-soundness gap). Our

proof of the compression theorem involves a “prover merging” step

that reduces the number of provers, albeit for a very restricted

type of interactive proof systems. We also note that our techniques

restrict us to games with at least 7 provers. This could potentially be

decreased to 5, or even 3, by replacing the use of the 7-qubit Steane

code with, say, a qutrit error-detecting code. Achieving a result

with two provers seems more challenging. Yet, the undecidability

results in [28] apply to two-prover games; it would be interesting to

investigate whether some improvements on our techniques could

take us all the way to hardness results for two-prover games as

well.

A number of problems in quantum information theory are known

to be undecidable. One that bears superficial similarity with the

problem considered in this paper, in the statement as well as in the

techniques, is the undecidability of the spectral gap of an infinite

translation-invariant Hamiltonian, shown in [9]. It would be inter-

esting to determine whether there could be a direct reduction from

a multiprover game to that problem.
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