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ABSTRACT
We consider the phylogenetic tree reconstruction problem with

insertions and deletions (indels). Phylogenetic algorithms proceed

under a model where sequences evolve down the model tree, and

given sequences at the leaves, the problem is to reconstruct the

model tree with high probability. Traditionally, sequences mutate

by substitution-only processes, although some recent work consid-

ers evolutionary processes with insertions and deletions. In this

paper, we improve on previous work by giving a reconstruction al-

gorithm that simultaneously hasO(poly logn) sequence length and

tolerates constant indel probabilities on each edge. Our recursively-

reconstructed distance-based technique provably outputs the model

tree when the model tree hasO(poly logn) diameter and discretized

branch lengths, allowing for the probability of insertion and dele-

tion to be non-uniform and asymmetric on each edge. Our poly-

logarithmic sequence length bounds improve significantly over

previous polynomial sequence length bounds and match sequence

length bounds in the substitution-only models of phylogenetic

evolution, thereby challenging the idea that many global misalign-

ments caused by insertions and deletions when pindel is large are
a fundamental obstruction to reconstruction with short sequences.

We build upon a signature scheme for sequences, introduced

by Daskalakis and Roch, that is robust to insertions and deletions.

Our main contribution is to show that an averaging procedure

gives an accurate reconstruction of signatures for ancestors, even

while the explicit ancestral sequences cannot be reconstructed due

to misalignments. Because these signatures are not as sensitive

to indels, we can bound the noise that arise from indel-induced

shifts and provide a novel analysis that provably reconstructs the

model tree with O(poly logn) sequence length as long as the rate

of mutation is less than the well known Kesten-Stigum threshold.

The upper bound on the rate of mutation is optimal as beyond

this threshold, an information-theoretic lower bound of Ω(poly(n))
sequence length requirement exists.
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1 INTRODUCTION
The phylogenetic tree reconstruction problem is a fundamental

problem in the intersection of biology and computer science. Given

a sample of DNA sequence data, we attempt to infer the phyloge-

netic tree that produced such samples, thereby learning the struc-

ture of the hidden evolutionary process that underlies DNA muta-

tion. The inference of phylogenies from molecular sequence data is

generally approached as a statistical estimation problem, in which

a model tree, equipped with a model of sequence evolution, is as-

sumed to have generated the observed data, and the properties of

the statistical model are then used to infer the tree. Various ap-

proaches can be applied for this estimation, including maximum

likelihood, Bayesian techniques, and distance-based methods [25].

Many stochastic evolution models start with a random sequence

at the root of the tree and each child inherits a mutated version of

the parent sequence, where the mutations occur i.i.d. in each site

of sequence. The most basic model is the Cavender-Farris-Neyman

(CFN) [6, 20] symmetric two-state model, where each sequence is a

bitstring of 0/1 and mutations are random i.i.d. substitutions with

probability psub (e) for each edge e . More complicated molecular

sequence evolution models (with four states for DNA, 20 states for

amino acids, and 64 states for codon sequences) exist but typically,

the theory that can be established under the CFN model can also

be established for the more complex molecular sequence evolution

models used in phylogeny estimation [12]. For simplicity, we will

work with sequences that are bitstrings of 0/1 only.

In addition to computational efficiency, a reconstruction algo-

rithm should also have a small sequence length requirement, the

minimum sequence length required to provably reconstruct the

model tree with high probability. Many methods are known to be

statistically consistent, meaning that they will provably converge
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to the true tree as the sequence lengths increase to infinity, includ-

ing maximum likelihood [24] and many distance-based methods

[3, 25]. Methods that require only O(poly(n)) sequence length are

known as fast converging and recently, most methods have been

shown to be fast converging under the CFN model, including maxi-

mum likelihood [24] (if solved exactly) and various distance-based

methods [4, 11, 12, 17, 19, 23, 26]. More impressively, some algo-

rithms achieve O(poly log(n)) sequence length requirement but

require more assumptions on the model tree and they always need

a tighter upper bound on д, the maximum edge length (in the CFN

model, the length of an edge is defined as λ(e) = − ln(1− 2psub (e)))
[4, 7, 17, 18, 22, 23]. Specifically, these methods are based on recon-

struction of ancestral sequences and can provably reconstruct when

д is smaller than what is known as the Kesten-Stigum threshold,

which is ln(
√
2) [18] for the CFN model. Intuitively, when д is small,

the edges have a small enough rate of mutation that allows for a

concentration effect on estimators of ancestral sequences; however,

when д is past a certain threshold, a phase transition occurs and

reconstruction becomes significantly harder. Essentially matching

information-theoretic lower bounds show that Ω(log(n)) sequence
lengths are needed to reconstruct whenд is smaller than the Kesten-

Stigum threshold and Ω(poly(n)) lengths are needed beyond this

threshold [24].

One of the biggest drawbacks of the CFNmodel is that it assumes

that mutations only occur as a substitution and that bitstrings re-

main aligned throughout the evolutionary process down the tree.

This allows for an relatively easy statistical estimation problem

since each site can be treated as an i.i.d. evolution of a bit down the

model tree. In practice, global misalignments from insertions and

deletions (indels) breaks this site-independent assumption. There-

fore, most phylogenetic tree reconstruction algorithms must first

apply a multiple sequence alignment algorithm before attempting

to reconstruct the sequence under a purely substitution-induced

CFN model, with examples being CLUSTAL[13], MAFFT[15], and

MUSCLE[9]. However, the alignment process is based on heuris-

tics and lacks a provable guarantee. Even with a well-constructed

pairwise similarity function, the alignment problem is known to be

NP-hard [10]. Furthermore, it has been argued that such procedures

create systematic biases [16, 27].

Incorporating indels directly into the evolutionary model and

reconstruction algorithm is the natural next step but the lack of

site-wise independence presents a major difficulty. However, in a

breakthrough result by [8], the authors show that indels can be

handled with O(poly(n))-length sequences, using an alignment-

free distance-based method. Also, in [1], the authors provide an

O(poly log(n))-length sequence length requirement for tree recon-

struction but can only handle indel probabilities of pindel =
O(1/log2(n)), which is quite small since a string of lengthO(log(n))
will only experience O(1) indels as it moves O(log(n)) levels down
the tree. Similarly, [2] provides a method for reconstruction given

k-length sequences as long as pindel = O(k−2/3(logn)−1) for k
sufficiently large.

In this paper, we almost close the gap by showing that provable

reconstruction can be done in polynomial time withO(poly log(n))
sequence length rather thanO(poly(n)) sequence length, evenwhen

the probability of insertion and deletion are non-uniform, asym-

metric, and pins ,pdel are bounded by a constant. We do this by

first constructing signature estimators that exhibit 1) robustness

to indel-induced noise in expectation and 2) low variance when

our mutation rate is below the Kesten-Stigum threshold. Then,

these reconstructed signatures are the key components of a dis-

tance estimator, inspired by estimators introduced in [22], that uses

O(log(n)) conditionally independent reconstructed signatures to

derive a concentration result for accurately estimating the distance

between any nodes a,b. Our bounds on the rates of substitution,

insertion and deletion are essentially optimal since we show that

as long as our overall mutation rate is less than the Kesten-Stigum

threshold, we can reconstruct with a sequence length requirement

of O(poly log(n)), matching lower bounds up to a constant in the

exponent. Our result implies that the noise introduced by inser-

tions and deletions can be controlled in a similar fashion as the

noise introduced by substitutions, breaking the standard intuition

that misalignments caused by indels would inherently lead to a

significantly higher sequence length requirement.

In Section 2, we provide a general overview of our model and

methods. In Section 3, we demonstrate that tree reconstruction with

poly-logarithmic sequence length requirement for the symmetric

case when the insertion and deletion probabilities are the same. In

Section 4, we extend our results to the asymmetric case and then

we conclude with future directions.

2 PRELIMINARIES
2.1 Model and Methods
For simplicity, we’ll consider the following model of phylogenetic

evolution, which we call CFN-Indel, as seen in [1, 8]. We note

that our analysis can be extended to the more general sequence

models, such as GTR, with standard techniques. We start with a

treeT with n leaves, also known as the model tree. There is a length

k bitstring at the root chosen uniformly at random from all length

k bitstrings. Each other node in T inherits its parent’s bitstring,

except the following perturbations are made simultaneously and

independently for each edge e in the tree,

◦ Each bit is flipped with probability psub (e).
◦ Each bit is deleted with probability pdel (e).
◦ Each bit inserts a random bit to its right with probability

pins (e).

Definition 1. For an edge e , we denote that length or rate of
mutation of that edge as

λ(e) = −[ln(1−2psub (e))+ln(1−pdel (e))−
1

2

ln(1+pins (e)−pdel (e))]

Note that higher pins (e),pdel (e),psub (e) leads to a higher edge

length and that this λ(e) is nonnegative: the only possibly nega-

tive term is the term
1

2
ln(1 + pins (e) − pdel (e)), and if this term is

negative, its absolute value is less than the term − ln(1 − pdel (e)).
We provide some intuition for this definition: to estimate distances

between nodes, our algorithm will look at the correlation between

their bitstrings. We can show the correlation between two bitstrings

decays by roughly (1 − 2psub (e))(1 − pdel (e)) for each edge e on
the path between the corresponding nodes, justifying the first two
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terms in the above definition. The term
1

2
ln(1 + pins (e) − pdel (e))

is included to match a normalization term in our definition of cor-

relation, which is needed to account for differing bitstring lengths

throughout the tree. Thus, λ(e) represents the rate of change that an
edge produces in the sequence evolution process and therefore cap-

tures a notion of the length of an edge. For two nodes, a,b, let Pa,b
denote the unique path between them and letd(a,b) =

∑
e ∈Pa,b λ(e)

be our true distance measure between a,b. Note that d is a tree

metric or an additive distance matrix.

As with all phylogenetic reconstruction guarantees, we assume

upper and lower bounds 0 < λmin ≤ λ(e) < λmax (in literature,

λmin is often denoted with f and λmax with д). Similar to [22], we

work in the ∆-branch model, where for all edges e , we have λ(e) =
τeλmin for some positive integer τe . The phylogenetic reconstruction
problem in the CFN-Indel model is to reconstruct the underlying

model treeT with high probability given the bitstrings at the leaves.

In this paper, we establish the claim that reconstruction can be

done with k = O(logκ n) bits given that λmax is the well known

Kesten-Stigum threshold and λmin = Ω(1/poly log(n)). Note that
this allows psub ,pdel ,pins to be constant and that the upper bound
λmax is information-theoretically optimal. We will first state the

main theorem when pins (e) = pdel (e) for all edges e and our model

tree T is balanced, which we call the symmetric case.

Theorem 2.1. Assume that λmax ≤ ln(
√
2) is less than the Kesten-

Stigum threshold and λmin = Ω(1/poly log(n)). Furthermore, assume

that we are in the symmetric case where pins (e) = pdel (e) for all
edges e . Then for a sufficiently largeκ, withO(logκ n) sequence length,
there is an algorithm TreeReconstruct that can reconstruct the

phylogenetic tree with high probability under the CFN-Indel model.

Our high level idea is to estimate the additive distance matrix

d(a,b) =
∑
e ∈Pa,b λ(e) and use standard distance-based methods in

phylogeny to reconstruct the tree. As in [8], our estimator of the

distance relies on correlation calculations using blocks of consecu-

tive sequence sites of length l = ⌊k1/2+ζ ⌋ for some small constant

0 < ζ < 1/21. Therefore, we have approximately L = ⌊ kl ⌋ total
disjoint blocks. For the bitstring at node a and 1 ≤ i ≤ L let ∆a,i be
the signed difference between the number of zeroes in bits (i−1)l+1
to il of the bitstring at node a (for convenience, we call this block i

of node a) and the expected number of zeroes,
l
2
.

Definition 2. For a node a, we define the signature of the corre-

sponding sequence, sa , as a vector with the i-th coordinate as

sa,i = ∆a,i/
√
l

We will use the signature of a sequence as the only information

used in distance computations. Specifically, we note that signatures

of two nodes far apart in the tree should have a low correlation,

whereas the signatures of two nodes close together should have a

high correlation. To realize this intuition, we prove concentration

of signature correlations even under indel-induced noise and show

that this concentration property can be applied recursively up the

tree for signature reconstruction.

Note that signatures are robust to indels as a single indel can only

slightly change a signature vector, although it can have a global

1
The best setting of ζ will depend on other parameters introduced in the paper. For

simplicity, the reader may wish to think of ζ as 1/4.

effect and change many signature coordinates at once. This leads

to the somewhat accurate intuition that indels can introduce more

noise than substitutions, as they can only produce local changes.

However, because each coordinate of a signature, sa,i , is an average

over blocks of large size, we can control the indel-induced noise by

1) showing the signature is almost independent coordinate-wise

and 2) applying concentration to produce an accurate distance

estimator. Next, we introduce a novel analysis of indel-induced

noise in signature reconstruction that allows for recursion up the

tree. Specifically, we show that the indel-induced noise decays at

about the same rate as the signal of the correlations between nodes,

as we move down the tree.

Putting it together, we are able to recursively reconstruct the

signatures for all nodes using simply leaf signatures, showing that

these estimators have low variance of O(log2 n) as long as the

edge length is less than the Kesten-Stigum threshold. Intuitively,

this phenomenon occurs because the number of samples increases

at a faster rate than the decay in correlation. By averaging over

signatures in a sequence, this reduces the noise toO(1/poly log(n)).
Finally, we show that this is sufficient for a highly accurate distance

estimator via a Chernoff-type bound with O(logn) conditionally
independent estimators to achieve tight concentration, leading to

a recursive reconstruction algorithm via a simple distance-based

reconstruction algorithm.

In the asymmetric case, let Dmax be the maximum depth of

our model tree. When pins (e) , pdel (e), we see that if pdel (e) >

pins (e) + κ
log logn
Dmax

, our model will generate a nearly zero-length

bitstring with high probability, as noticed in [1]. Therefore, re-

construction is impossible. Furthermore, note that if Dmax > k2,
where k is the sequence length at the root, then the standard devia-

tion in leaf sequence lengths due to insertion and deletion is on the

order of Θ(
√
Dmax ) = Ω(k) even if pdel (e) = pins (e). Again, we

encounter nearly zero-length bitstrings with decent probability.

Otherwise, for any constants α , β > 0 if we haveDmax ≤ log
α n

and |pdel (e) − pins (e)| ≤
β log logn
Dmax

, we show that if κ is large

enough
2
our algorithm can still reconstruct the underlying model

tree, albeit through a more complicated analysis.

Theorem 2.2. Assume that λmax ≤ ln(
√
2) and λmin =

Ω(1/poly log(n)). Also assume for some constants α , β that |pins (e)−

pdel (e)| ≤
β log logn
Dmax

for all edges e , where Dmax ≤ log
α n is the

maximum depth of the model tree. Then for a sufficiently large con-

stant κ, when the root has O(logκ n) sequence length, there is an
algorithm TreeReconstruct that can reconstruct the phylogenetic

tree with high probability under the CFN-Indel model.

Throughout the paper, we will use the following observation:

Observation 1. Let X be any random variable, and E an event

which occurs with probability 1 −n−Ω(logn)/B, where B is any upper

bound on |X |. Then E[X |E] and E[X ] differ by at most n−Ω(logn).

In this paper, all random variables we use can be upper bounded

in magnitude by O(poly(n)). Thus for events E which occur with

probability 1−n−Ω(logn), we may use E[X |E] and E[X ] interchange-

ably as they only differ by at most n−Ω(logn), which will not affect

2
We note that the dependence of our κ value on α, β does not match the previously

mentioned lower bounds.
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any of our calculations. However, interchanges will often still be

justified in proofs.

3 RECONSTRUCTIONWITH BALANCED
TREES AND SYMMETRIC PROBABILITIES

In this section, we are in the symmetric case and assume pdel (e) =
pins (e) for every edge. We also assume that the model tree is per-

fectly balanced. Both these assumptions will be relaxed later and

our results are extended to the asymmetric case in the next section.

We first demonstrate that some regularity conditions on the un-

derlying bitstrings in the model tree hold with high probability.

Given these regularity conditions, we show that the concentration

for an recursive signature estimator provides a good distance esti-

mator between any two nodes in the tree. Finally, we present our

final distance-based reconstruction algorithm. Unless otherwise

specified, proofs assume κ is a sufficiently large constant depend-

ing only on ζ , λmin and the parameters ϵ,δ in the lemma/theorem

statements. Our algorithmic construction will fix values of ϵ,δ , and
thus works for some sufficiently large κ.

3.1 High Probability Tree Properties
Before we begin to describe our method for reconstructing the tree,

we observe a few regularity properties about the bitstrings in the

tree and prove that these properties hold with high probability.

Definition 3. For an edge (a,b) from parent node a to child node

b, we say that the jb th bit of the bitstring at b is inherited from the

ja th bit of the bitstring at a if:

◦ The ja th bit of the bitstring at a does not participate in a

deletion on the edge (a,b).
◦ The number of insertions minus the number of deletions on the

edge (a,b) in bits 1 to ja − 1 of the bitstring at a is jb − ja .

For a that is an ancestor of b, we extend this definition by saying

that the jb th bit of b is inherited from the ja th bit of the bitstring

at a if for the unique a-b path x0 = a,x1, . . . xk = b, there are

j0 = ja , j1 . . . jk = jb such that for any i , the ji th bit of the bitstring

at xi is inherited from the ji−1th bit of the bitstring at xi−1.
To account for the case where a = b, we say that for any node a,

the jth bit of a’s bitstring is inherited from the jth bit of a’s bitstring.

Definition 4. For any two nodes a,b, the ja th bit of the bitstring at

a and the jb th bit of the bitstring at b are shared if both are inherited

from the jth bit of the bitstring at the least common ancestor of a and

b for some j.

Definition 5. For any two nodes a and b, we say that the jth bit of

the bitstring at a shifts bym bits on the path from a to b if there is

j ′ such that the |j ′ − j | =m and the jth bit of the bitstring at a and

the j ′th bit of the bitstring at b are shared.

It will simplify our analysis to assume all bitstrings are length at

least k , which might not happen if the length of the root bitstring

is k . Instead, we will let the length of the root bitstring be 2k , and
then by the following lemma all of the leaf bitstrings have k bits to

look at.

Lemma 1. If the bitstring at the root has length 2k , then with prob-

ability 1 − n−Ω(logn), the bitstring at all nodes have length at least k
and at most 4k .

The next two regularity properties show that the bit shifts are in

fact also small and that the number of excess zeros on a consecutive

sequence of bits is small. They both follow from independence and

concentration of binomials.

Lemma 2. With probability 1 − n−Ω(logn), no bit shifts by more

than 4 log
2 n
√
k bits on any path in the tree.

Lemma3. With probability 1−n−Ω(logn), for all nodesa, the number

of zeroes in any consecutive sequence of length m sequence in a’s
bitstring differs fromm/2 by at most

√
m logn. Consequently, |sa,i | ≤

O(logn).

We defer the proofs of Lemmas 1, 2, and 3 to Section A.

3.2 Distance Estimator
We define Er eд to be event that the high-probability regularity

assumptions that are proven in Lemma 1, 2, and 3 all hold. Using

correlations of signatures, we can define the distance estimator of

two leafs a,b, C̃(a,b) analogously to [8].

C̃(a,b) =
2

L

L/2∑
i=1

sa,2i+1sb,2i+1

In the case when indels do not occur, standard techniques can

be used to show that for any leafs a,b, C̃(a,b) has an expecta-

tion that exponentially decays with respect to d(a,b). The expo-
nential decay comes from the observation that since the muta-

tions can be viewed as a Markov transition from one state to

the other, the correlations between states exponentially decays.

Therefore, a back-of-the-envelope calculation gives E[C̃(a,b)] ≈

exp(−
∑
e ∈P (a,b) λ(e))E[C̃(a,a)] ≈ exp(−d(a,b)).

We show that in the presence of indels, such an expectation still

holds with O(1/poly log(n)) relative error. Key to our surprisingly

small relative error, even when the insertion and probability errors

are as large as a constant, is the observation that the indel-induced

noise also decays exponentially with respect to d(a,b).

Lemma 4. For any two nodes a,b in the tree, and any i , E[sa,isb,i ] =
1

4
(1 ±O(log−κζ +2 n)) exp(−d(a,b))

We defer the proof to Section A.

Corollary 5. For any two nodes a,b,

E[C̃(a,b)] =
1

4

(1 ±O(log−κζ +2 n)) exp(−d(a,b))

Despite the indels, we can show that the odd-index blocks are

almost independent conditioned on Er eд , i.e. in our analysis, we in-

troduce a shift-invariant blockwise-independent signature scheme

that is provably similar to our actual signature scheme. Thus, with

high probability, we can also derive a tight concentration of our

distance estimator that only uses signature correlations. We defer

the proof and details to Section A.

Lemma 6. Let δ > 0 be any constant and ϵ =

Ω(logmax{−κ(1/2−ζ )+2δ+6,−κζ /2+δ+3}(n)). Then for nodes a,b such

that d(a,b) < δ log log(n), then | − ln(4C̃(a,b)) − d(a,b)| < ϵ with

probability at least 1 − n−Ω(logn).
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3.3 Signature Reconstruction
The lemmas proven so far show that the estimator − ln(4C̃(a,b))
suffices to reconstruct the tree up to height δ log logn. To recon-

struct past this height, we will come up with a recursive estimator

of the signatures of internal nodes, and then using this estimator

build a more robust distance estimator for nodes at height above

δ log logn.
Let Lh be the nodes at height h = 0, ..., logn, where L0 contains

all the leaves. For a node a ∈ Lh , let A be the set of leaves that

are descendants of a and we expect |A| = 2
h
. Define the following

estimator of sa,i

ŝa,i =
1

|A|

∑
x ∈A

ed (x,a)sx,i

In the next few lemmas, we demonstrate that this signature

estimator exhibits 1) robustness to indel-induced noise in expecta-

tion and 2) low variance when λmax is below the Kesten-Stigum

threshold. The ultimate purpose of signature reconstruction is to

introduce a distance estimator that uses O(log(n)) conditionally
independent reconstructed signatures to derive a concentration

result for the distance between any nodes a,b. The definition of ŝa,i
comes from similar intuition to that of Lemma 4: we expect that

each edge on the path from a to some descendant x adds multiplica-

tive decay to the correlation between a’s and x ’s bitstrings, so as

the next lemma formalizes, it should be that E[sx,i ] ≈ sa,ie
−d (x,a)

.

Lemma 7. Let E denote the bitstring at the node a and Pr(Er eд |E) >
1−n−Ω(logn). Then, for a leaf x that is a descendant of a, E[sx,i |E] =

e−d (x,a)(sa,i + νa,i ), where |νa,i | ≤ 8k1/4 log2 n/
√
l =

O(log−κζ /2+2 n).

We defer the proof to the full paper.

Corollary 8. Let E denote the bitstring at the nodea and Pr(Er eд |E)
> 1 − n−Ω(logn). Then E[ŝa,i |E] = sa,i + νa,i , where |νa,i | ≤

O(log−κζ /2+2 n).

Next, we show that the signature estimator ŝa,i has O(log
2 n)

variance, which relies on the fact that the variance reduction due

to averaging is greater than the variance increase due to mutation

when the mutation rate is less than the Kesten-Stigum threshold.

It might be surprising that as we move up the tree, the variance

of the estimator stays unchanged. However, since the correlations

between two nodes exponentially decays in the distance, each term

in the signature estimator becomes more “independent”, allowing

for a tight variance bound.

Lemma 9. Let E denote the bitstring at the node a and Pr(Er eд |E) >
1−n−Ω(logn). Then, E[ŝ2a,i |E] = O(log

2 n) as long as λmax < ln

√
2.

Proof.

E[ŝ2a,i |E] =
1

|A|2

∑
x,y∈A

ed (x,a)+d (y,a)E[sx,isy,i |E]

To analyze E[sx,isy,i |E], let x ∧y be the least common ancestor

of x ,y and let E ′ denote the bitstring of x∧y. Note that conditioned
on E ′, sx,i , sy,i are independent and by Lemma 7:

E[sx,isy,i |E] = E[E[sx,isy,i |E, E
′]]

= E[E[sx,i |E
′]E[sy,i |E

′]]

= e−d (x,y)E[(sx∧y,i + δx∧y,i )
2 |E]

Then, since Er eд |E is a high probability event and noting that the

quantity (sx∧y,i + δx∧y,i )
2
is at most log

2 n and thus conditioning

on an event that happens with probability 1 − n−Ω(logn) does not

change its expectation by more than n−Ω(logn), we get E[(sx∧y,i +

δx∧y,i )
2] ≤ O(log2 n) and thus E[sx,isy,i |E] ≤ e−d (x,y) ·O(log2 n).

This gives:

E[ŝ2a,i |E] ≤
1

|A|2

∑
x,y∈A

ed (x,a)+d (y,a)E[sx,isy,i |E]

≤ O(log2 n)
1

|A|2

∑
x,y∈A

e2d (a,x∧y)
(1)

Now, for a fixed x , note that 1/2 of y ∈ A satisfies d(a,x ∧ y) ≤
λmax and and 1/4 of them satisfies d(a,x ∧ y) ≤ 2λmax and so on.

Since e2λmax < 2,

1

|A|

∑
y∈A

e2d (a,x∧y) ≤
[
(1/2)e2λmax + (1/4)e4λmax + ...

]
= O(1)

Finally, by symmetry,

E[ŝ2a,i |E] ≤ O(log2 n)
1

|A|

∑
x ∈A

1

|A|

∑
y∈A

e2d (a,x∧y) = O(log2 n)

□

3.4 Distance Estimators
Distance computations can be done with reconstructed signatures

by analogously defining

Ĉ(a,b) =
2

L

L/2∑
i=1

ŝa,2i+1ŝb,2i+1

Although we may use Ĉ(a,b) directly as an estimator for the

distance between a,b, the variance in the reconstructed signature

is still too high for the necessary concentration. To provide the

concentration, we use many conditionally independent estimators.

For two nodes a,b, consider creating the distance estimator

ˆd(a,b) as follows. For some height ∆h = δ log logn, consider the
nodes that are descendants of a,b exactly ∆h below a,b respec-

tively; order them arbitrarily as a1, ...,a2∆h and b1, ...,b2∆h , as in

Figure 1. Next, compute d̃(aj ,bj ) = − ln(e
d (aj ,a)+d (bj ,b)

4Ĉ(aj ,bj )),

which is an estimator for d(a,b). Note that we have 2∆h = Ω(logn)
of these estimators. We will aggregate these estimators in order

to derive high probability concentration of the aggregate around

− ln(4C̃(a,b)), allowing us to use Lemma 6 to show concentration

of the aggregate around the true distance.

So, we proceed with the analogous construction that Roch

presents for accuracy amplification for the substitution-only model
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a

aja1 a
2
∆h bjb1 b

2
∆h

b

A
2
∆hA1 Aj

· · · · · ·

B
2
∆hB1 Bj

· · · · · ·

δ log logn

Figure 1: Concentration via conditionally independent esti-
mators. Slightly modified from a figure in [22]

[22]. Consider the set of estimates Sh (a,b) =
{
d̃(aj ,bj )

}
2
h

j=1
. We

will use a median-like measure to aggregate these estimates. For

each j, we let r j be the minimum radius of an interval centered on

d̃(aj ,bj ) that captures at least 2/3 of the other points in Sh (a,b).

r j = inf

{
r > 0 :

���{j ′ , j : |d̃(aj ,bj ) − d̃(aj′ ,bj′)| ≤ r }
��� ≥ 2

3

2
h
}

Then, if j∗ = argminj r j , then our distance estimator is
ˆd(a,b) =

d̃(aj∗ ,bj∗ ).

Lemma 10 (Deep Distance Computation: Small Diameter). For

any constant δ > 0, let a,b be nodes at height at least δ log logn such

that d(a,b) ≤ δ log logn. If λmax < ln(
√
2), | ˆd(a,b) − d(a,b)| < ϵ

with high probability.

Proof. Let ξ denote the set of variables that are the underlying

true bitstrings at nodes in {aj }
2
∆h

j=1 and {bj }
2
∆h

j=1 . Throughout this

proof, we will condition ξ unless otherwise stated. Notice that we

can translate all high probability results even upon conditioning.

Note if the unconditioned probability Pr(Er eд) > 1 − n−Ω(logn),
the law of total expectation and a simple Markov bound shows us

that Pr(Pr(Er eд |ξ ) > 1 − n−Ω(logn)) > 1 − n−Ω(logn), where the
outer probability is taken over instantiation of ξ . This allows us
to condition and establish independence of ŝaj ,i and ŝbj ,i , while

preserving high probability results.

By Lemma 7, with high probability, E[ŝaj ,i ] = saj ,i +δaj ,i where

|δaj ,i | ≤ O(log−κζ /2+2 n). Furthermore, by Lemma 3, |saj ,i | ≤
O(logn) with high probability. Symmetrically, these bounds hold

for bj . Therefore, we see that

E[Ĉ(aj ,bj )] =
2

L

L/2∑
i=1
E[ŝaj ,2i+1ŝbj ,2i+1]

=
2

L

∑
i
saj ,2i+1sbj ,2i+1 +O(log

−κζ /2+3 n)

= C̃(aj ,bj ) +O(log
−κζ /2+3 n)

(2)

Furthermore, we can bound the variance by using Lemma 9. We

first bound the covariance of terms in Ĉ(aj ,bj ):

Lemma 11. Conditioned on ξ , for i , i ′,

Cov(ŝaj ,2i+1ŝbj ,2i+1, ŝaj ,2i′+1ŝbj ,2i′+1) = O(log
−κζ /2+5 n)

The proof is deferred to the full paper. Then the variance is

bounded as follows:

Var(Ĉ(aj ,bj )) = O(1/L
2)

[∑
i
Var(ŝaj ,2i+1ŝbj ,2i+1)

+
∑
i,i′

Cov(ŝaj ,2i+1ŝbj ,2i+1, ŝaj ,2i′+1ŝbj ,2i′+1)

]
≤ O(1/L2)

∑
i
E[ŝ2aj ,2i+1]E[ŝ

2

bj ,2i+1
]

+O(log−κζ /2+5 n)

= O(log2 n/L) +O(log−κζ /2+5 n)

= O(log−κζ /2+5 n)

(3)

Therefore, we can make the estimator variance 1/poly log(n).
Since d(aj ,bj ) ≤ 2δ log logn + d(a,b) ≤ 3δ log logn, by Lemma 6,

we can guarantee w.h.p. that (1 + ϵ)e−d (aj ,bj ) ≥ 4C̃(aj ,bj ) ≥

(1− ϵ)e−d (aj ,bj ) when k is chosen with a large enough κ. Since ϵ is

Ω(1/poly log(n)), we see thatE[4Ĉ(aj ,bj )] ∈ (1−2ϵ, 1+2ϵ)e
−d (aj ,bj )

with constant probability by a Chebyshev bound for a fixed j . There-
fore, we conclude that | − ln(4Ĉ(aj ,bj )) −d(aj ,bj )| < 2ϵ with prob-

ability at least 5/6. Since d(aj ,bj ) = d(a,b) + d(a,aj ) + d(b,bj ), we

have |d̃(aj ,bj ) − d(a,b)| < 2ϵ with probability at least 5/6.

Finally, since aj ,bj provide Ω(logn) independent estimators of

d(a,b), by Azuma’s inequality, we can show that at least 2/3 of

all aj ,bj satisfies |d̃(aj ,bj ) − d(a,b)| < 2ϵ with probability at least

1−2−Ω(logn) = 1−n−Ω(1). In particular, this means that there exists

j such that r j < 4ϵ and for all j such that |d̃(aj ,bj ) − d(a,b)| > 6ϵ ,

we must have r j ≥ 4ϵ . Therefore, we conclude that |d̃(aj∗ ,bj∗ ) −

d(a,b)| = | ˆd(a,b) − d(a,b)| < 6ϵ . □

3.5 Reconstruction Algorithm
The algorithm for reconstruction is ultimately based from our abil-

ity to apply signature reconstruction and derive well-concentrated

distance estimators in an inductive process. The base case would be

to simply use the sequences at the leaves and the basic distance func-

tion to reconstruct the tree up to O(log logn) height, after which
we use our signature reconstruction algorithm to produce a recon-

structed distance function that provides high accuracy throughout

the entire process.

In the previous section, we showed that if two nodes are

O(log logn) distance apart, then distance estimators will concen-

trate to the mean with poly logn sequence length. The recursive

argument depends crucially that we can detect closeby nodes so

that we only use statistically accurate distance estimators. Fortu-

nately, testing for the size of the diameter of two nodes, on whether

it is larger than or less than O(log logn), is viable by the same

concentration properties of our various distance estimators.
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Lemma 12. Let δ > 0 be any constant and ϵ = Ω(1/poly log(n)).
Then, for nodes a,b, if d(a,b) > r + ϵ with r = δ log logn and

k > log
κ (n), then − ln(4C̃(a,b)) > r with probability at least

1 − n−Ω(logn).

Proof. Follows analogously to Lemma 6. □

Definition 6. For two nodes a,b that are more than h = δ log logn
up the tree, we define T (Sh (a,b), r ) = 1 if at least half of Sh (a,b) is
bounded by r and 0 otherwise.

T (Sh (a,b), r ) = 1

{
|[−r , r ] ∩ Sh (a,b)| ≥

1

2

2
h
}

Lemma 13. [Deep Computation: Diameter Test] Leta,b be nodes and
we choose r = O(log logn). If k > poly log(n), then with high proba-

bility, T (Sh (a,b), r ) = 1 when d(a,b) < r − ϵ and T (Sh (a,b), r ) = 0

when d(a,b) > r + ϵ .

Proof. The case when d(a,b) < r − ϵ follows directly from

the proof of Lemma 10. When d(a,b) > r + ϵ , note that the only
change to the proof of Lemma 10 is that instead of calling Lemma 6

to upper and lower bound C̃(aj ,bj ), we use Lemma 12 to deduce

that d̃(aj ,bj ) ≥ r + ϵ/2 still holds with constant probability by

Chebyshev and T (Sh (a,b), r ) = 0 occurs with high probability

using Azuma’s inequality bound over all pairs (aj ,bj ). □

With the diameter test, we can ensure that all distance computa-

tions are accurate with an additive error of ϵ by using a diameter

condition and also guarantee that all close enough nodes have dis-

tances computed. Therefore, we can compute an accurate localized

distancematrix.With that, we use the traditional Four PointMethod

to determine quartets. The standard technique, called the Four Point

Method, to compute quartet trees (i.e., unrooted binary trees on four

leaves) is based on the Four Point Condition [5]. The underlying

combinatorial algorithm we use here is essentially identical to the

one used by Roch in [22].

Definition 7. (From [11]) Given a four-taxon set {a,b, c,d} and
a dissimilarity matrix D, the Four Point Method (FPM) infers tree

ab |cd (meaning the quartet tree with an edge separating a,b from

c,d) if D(a,b) + D(c,d) ≤ min{D(a, c) + D(b,d),D(a,d) + D(b, c)}.
If equality holds, then the FPM infers an arbitrary topology.

If D(a,b) is a dissimilarity matrix that has maximum deviation

from d(a,b) by an additive error of ϵ < f /2, where f is the min-

imum non-zero entry in d , then FPM will always infer the true

quartet, as in Figure 2. In this case, setting ϵ < λmin/2 will allow

for correct short quartet inference and therefore this implies that

λmin = Ω(1/poly log(n)) in order for the sequence length require-

ment to still be polylogarithmic (in general it will depend inverse

polynomially on ϵ).
Once quartet splits are determined accurately, any quartet-based

tree-building algorithm can be used. For simplicity, we will use a

cherry picking algorithm that simply identifies a,b as a cherry if

they are always on the same side of all quartet splits. Then, we can

reconstruct the ancestors of these cherries and simply recurse. This

is the high-level summary of our reconstruction algorithm 1.

Definition 8. A quartet Q = {a,b, c,d} of Lh is r-short if

a

b c

d

vu

pick cherries u v

a b c d

Figure 2: The Four Point Method on {a,b, c,d} with distance
matrix D will infer the correct quartet as long as D(a,b) do
not differ from the underlying additive distance d(a,b) by
more than λmin/2.We then use quartet splits to pick cherries
and recurse on ancestors (i.e. a,b)

◦ When h = 0, we use D(x ,y) = − ln(4C̃(x ,y)) and

max

x,y∈Q
D(x ,y) ≤ r

◦ When h > δ log logn, we use D(x ,y) = ˆd(x ,y) and

min

x,y∈Q
T (Sh (x ,y), r ) = 1

Lemma 14. If a quartet Q is O(log logn)-short, λmin =

Ω(1/poly log(n)), and k > poly log(n), then with high probability

FPM with the corresponding distance matrix D will return the true

quartet tree.

Proof. Since FPM will return the true quartet tree when the

distance matrix is ϵ < λmin/2 away from the true distance matrix,

this follows directly from combining Lemma 12, 6 for the case when

h = 0. We use Lemma 13, 10 for the case when h > δ log logn. □

When we recursively build this tree up, it is crucial that we

can calculate distances between nodes in each sub-tree that is re-

constructed so far. This is because our distance estimators
ˆd(a,b)

requires knowledge or a good estimate of all distances in the subtree

under a and b in order to calculate the O(logn) conditionally in-

dependent low-variance distance estimates. Fortunately, it suffices

to have a good enough estimate of these distances when distances

can only take only discrete integer multiples of λmin , as assumed

in our ∆-branch model. Under this assumption, we can ascertain

the distances by simply rounding to the nearest integer multiple of

λmin as long as ϵ < λmin/2. The estimation of all relevant distances

is based of a very simple three-point rule.

Definition 9 (Three-Point Rule). For a triplet of nodes a,b, c that
meet at x and a dissimilarity matrix D, we define D̂(a,x) to be the
estimator

D̂(a,x) =
1

2

[D(a,b) + D(a, c) − D(b, c)]

We are now ready to present the final algorithm,

TreeReconstruct. We assume that the input to the algorithm are

just the leaf signatures s = {sx } and λmin .

Theorem 2.1. Assume that λmax ≤ ln(
√
2) is less than the Kesten-

Stigum threshold and λmin = Ω(1/poly log(n)). Furthermore, assume

that we are in the symmetric case where pins (e) = pdel (e) for all
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Algorithm 1 Tree Reconstruction With Signatures

Require: Leaf signatures {sx } for all x ∈ L0, λmin

1: function TreeReconstruct({sx }, λmin )

2: Apply FPM to 2δ log logn-short quartets of L0 with

D(a,b) =
− ln(4C̃(a,b)) to infer splits

3: Use quartet splits and the three-point rule to build multiple

subtrees up to δ log logn height by iteratively identifying

cherries.

4: Estimate and fill in distances within each subtree using the

three-point rule, rounded to the nearest λmin multiple.

5: for h ← δ log logn to logn do
6: Apply FPM to 2δ log logn-short quartets on Lh with

D(a,b) = ˆd(a,b) to infer splits.

7: Identify cherries as pairs of vertices that only appear

on the same side of quartet splits.

8: Estimate and fill in the edge lengths on cherries using

the three-point rule on a short quartet, rounded to

nearest λmin multiple.

9: Add cherries, with edges containing estimated decay

rates, to the tree

10: end for
11: return the resulting tree t
12: end function

edges e . Then for a sufficiently largeκ, withO(logκ n) sequence length,
there is an algorithm TreeReconstruct that can reconstruct the

phylogenetic tree with high probability under the CFN-Indel model.

Proof. Set ϵ = λmin/3 = Ω(1/poly log(n)). Then, by Lemma 14,

all quartets queries made by TreeReconstruct are correct. Note

that a,b that are neighbors (i.e. for which a,b is a cherry) appear on

the same side of all short quartets. Furthermore, if a,b ∈ Lh are not

cherries and d(a,b) < O(log logn), then there must exists x ,y, such
that {a,x ,b,y} is O(log logn)-short and a,b are not on the same

side of the split. Otherwise, if d(a,b) = Ω(log logn) is large, then by

Lemma 12 and Lemma 13, none of the quartets involving a,b will

be considered O(log logn)-short. Finally, since all short quartets
are considered, we conclude that all cherries picked are correct.

Lastly, we note that we can estimate distances up to error ϵ <
λmin/2, which allows us to round to the nearest multiple of λmin to

get noiseless distance reconstruction with high probability. There-

fore, all estimated decay rates or lengths are correct, as we re-

construct up the tree, by using Lemma 10, and noting that if all

distances in D are accurate up to error ϵ , then the Three-Point Rule

is accurate up to error at most 3ϵ/2 < λmin/2. □

4 UNBALANCED TREES AND ASYMMETRIC
PROBABILITIES

In this section, we show how to relax the assumption that the

tree is completely balanced. Instead, we consider trees which are

approximately balanced. In particular, let D(a) denote the number

of edges on the path from a to the root. Then for Dmax such

that Dmax ≤ log
α n for a constant α , we assume all nodes satisfy

D(a) ≤ Dmax .

We also relax the assumption that pdel (e) = pins (e) for ev-
ery edge, instead assuming that |pins (e) − pdel (e)| is bounded by

β
log logn
Dmax

for a constant β . As mentioned in Section 2, up to the

constants α , β these assumptions are optimal, i.e. for a fixed κ and

sufficiently large α or β , reconstruction with high probability is not

possible due to significant loss of bitstring length down the tree.

We will assume for simplicity of presentation the length of the root

bitstring is Θ(logκ n), but the analysis easily generalizes to the case

where the root has a larger bitstring.

Again, in all proofs we assume κ is a sufficiently large constant

depending only on the fixed values α , β , ζ , λmin and parameters

δ , ϵ in the lemma/theorem statements (which will be fixed by our

algorithmic construction).

4.1 Tree Properties
Let ka be the number of bits in the bitstring at vertex a, and kr =
Θ(logκ n) specifically be the number of bits in the root bitstring.

Let L = ⌊k
1/2−ζ
r ⌋ for some small constant ζ > 0. The length of a

block at the root lr will be ⌊kr /L⌋ as before.
Then, define η(a) =

∏
e ∈Pr ,a (1+pins (e)−pdel (e)). Note that the

expected position of bit j of r in a conditioned in the bit not being

deleted is jη(a). Thus, wewill define the length of a block in bitstring
a to be la = ⌊lrη(a)⌋, and the ith block of the bitstring at node a to

be bits (i−1)la+1 to ila of the bitstring. Note that by the assumption

that |pins (e) − pdel (e)| ≤ β
log logn
Dmax

, log
−β (n) ≤ η(a) ≤ log

β (n) for

all a.
Key to our algorithmic construction is the fact that not only do

we expect ka = krη(a), but that this concentrates very tightly.

Lemma 15. With probability 1−n−Ω(logn) for all vertices a, kr (1−
D(a)·logβ/2+1(n)

log
κ/2−2 n

) ≤ ka/η(a) ≤ kr (1 +
D(a)·logβ/2+1(n)

log
κ/2−2 n

)

The proof is deferred to the full paper. For the purposes of anal-

ysis, it will be convenient to define the normalized shift of a bit.

Definition 10. For any two nodes a and b, we say that the jth bit of

the bitstring at a has a normalized shift ofm bits on the path from

a to b if there is some j ′ such that |j ′/η(b) − j/η(a)| =m and the jth
bit of the bitstring at a and the j ′th bit of the bitstring at b are shared.

Lemma 16. With probability 1−n−Ω(logn), no bit has a normalized

shift of more than 4 log
α+1 n

√
kr bits on any path in the tree.

The proof is deferred to the full paper. Analogously to before,

we will define Er eд to be the intersection of the high probability

events described in Lemmas 15, 16, and 3.

We define sa,i analogously to before, letting it be 1/
√
la times

the signed difference between the number of zeroes in the ith block

of the bitstring of the bitstring at node a and half the length of

ith block, and note that Lemma 3 still applies. However, we do

not know the true block lengths, so even for the leaves we cannot

exactly compute sa,i .
Instead, for a leaf bitstring let l ′a = ⌊ka/L⌋. Note that this quan-

tity is computable given only the leaf bitstrings as well as the

minimum sequence length requirement kr . Our algorithm will split

each leaf bitstring into “pseudo-blocks” of length l ′a , i.e. the ith
pseudo-block of leaf a consists of bits (i − 1)l ′a + 1 to il ′a of the
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bitstring. Our estimate s̃a,i of sa,i is then 1/
√
l ′a times the signed

difference between the number of zeroes in the ith pseudo-block of

the bitstring at node a. s̃a,i is computable for all leaf nodes a since

we can compute l ′a easily, so giving a reconstruction algorithm

based on the signatures s̃a,i gives a constructive result.

Lemma 17. Conditioned on Er eд ,

s̃a,i = sa,i ±O(log
α/2+β/4+5/2−κζ /2 n)

We defer the proof to the full paper.

4.2 Distance Estimator
We would like to compute the following estimator as before:

C̃(a,b) =
2

L

L/2∑
i=1

sa,2i+1sb,2i+1

But we cannot directly compute sa,i , so we use the following

estimator instead:

C̃ ′(a,b) =
2

L

L/2∑
i=1

s̃a,2i+1s̃b,2i+1

Note that by Lemma 17 and Lemma 3 we immediately get the

following Corollary:

Corollary 18. Conditioned on Er eд ,

|C̃ ′(a,b) − C̃(a,b)| = O(logα/2+β/4+7/2−κζ /2 n)

Lemma 19. For any two nodes a,b in the tree, and any i ,

E[sa,isb,i ] =
1

4

(1 ±O(log−κζ +α+1 n)) exp(−d(a,b))

The proof follows similarly to the proof of Lemma 4 and is

deferred to the full paper.

Corollary 20. For any two nodes a,b,

E[C̃(a,b)] =
1

4

(1 ±O(log−κζ +α+1 n)) exp(−d(a,b))

Lemma 21. Let δ > 0 be any constant and

ϵ = Ω(logmax {−κ(1/2−ζ )+2δ+6,−κζ /2+α/2+δ+5/2} n). Then for nodes

a,b such thatd(a,b) < δ log log(n), then |−ln(4C̃(a,b))−d(a,b)| < ϵ

with probability at least 1 − n−Ω(logn).

Proof. The proof follows exactly as did the proof of Lemma 6.

□

Corollary 22. Let δ > 0 be any constant and

ϵ = Ω(logmax{−κ(1/2−ζ )+2δ+6,−κζ /2+α/2+β/4+δ+7/2} n). Then for

nodes a,b such that if d(a,b) < δ log log(n), then | − ln(4C̃ ′(a,b)) −

d(a,b)| < ϵ with probability at least 1 − n−Ω(logn).

Proof. The proof follows from Lemma 21 and Corollary 18. □

4.3 Signature Reconstruction
For a nodea in the tree, letA be the set of leaves that are descendants

of a. Leth(a) be the maximum number of edges on the path between

a and any of its leaves, i.e. h(a) = maxx ′∈AD(x
′) − D(a). For for

a leaf x ∈ A let h(x) = maxx ′∈AD(x
′) − D(x), i.e. h(x) is the

difference between x ’s depth and the maximum depth of any leaf.

If a is far away from all of its leaf descendants, we will use the

following estimator of its signature:

ŝa,i =
1

2
h(a)

∑
x ∈A

ed (x,a)2h(x )s̃x,i

Note that

∑
x ∈A 2

h(x ) = 2
h(a)

. In addition, if the tree below a
is balanced then h(x) = 0 for all x ∈ A so the estimator is defined

analogously to before.

Lemma 23. Let E denote the bitstring at the node a and Pr(Er eд |

E) > 1 − n−Ω(logn). Then, for a leaf x that is a descendant of a,

E[̃sx,i |E] = e−d (x,a)(sa,i + νa,i ), where |νa,i | =

O(logα/2+β/4+5/2−κζ /2(n)).

The proof follows similarly to the proof of Lemma 7 and is

deferred to the full paper.

Corollary 24. Let E denote the bitstring at the node a and Pr(Er eд |

E) > 1 − n−Ω(logn). Then E[ŝa,i |E] = sa,i + νa,i , where |νa,i | ≤

O(logα/2+β/4+5/2−κζ /2(n)).

Lemma 25. Let E denote the bitstring at the node a and Pr(Er eд

|E) > 1 − n−Ω(logn). Then, E[ŝ2a,i |E] = O(log
2 n) as long as

e2λmax < 2.

Proof. Note that the sum over all x ,y pairs in A such that x ∧y

ism edges away from a of 2
h(x )+h(y)

is 2
h(a)−m

. Then, the proof

follows analogously to the proof of Lemma 9. □

As before, we define:

Ĉ(a,b) =
2

L

L/2∑
i=1

ŝa,2i+1ŝb,2i+1

For some height h = δ log logn, we define ˆd(a,b) similarly to

before, but splitting the exact definition of
ˆd(a,b) into three cases:

Case 1: If a,b both have no leaf descendants less than h edges

away from them, consider the nodesAh and Bh which are the set of

descendants of a,b exactly h edges below a,b respectively. Order

Ah arbitrarily and let aj be nodes of Ah with 1 ≤ j ≤ 2
h = log

δ n

and similarly for Bh . Again let d̃(aj ,bj ) = − ln(e
d (aj ,a)+d (bj ,b)

4Ĉ(aj ,bj )). Let Sh (a,b) =
{
d̃(aj ,bj )

}
2
h

j=1
, and

r j = inf

{
r > 0 :

���{j ′ , j : |d̃(aj ,bj ) − d̃(aj′ ,bj′)| ≤ r }
��� ≥ 2

3

2
h
}

.

Then, if j∗ = argminj r j , then our distance estimator is
ˆd(a,b) =

d̃(aj∗ ,bj∗ ).
Case 2: If a has no leaf descendants less than h edges away but

b has some leaf descendant b ′ which is less than h edges from b,
order Ah arbitrarily and let aj be nodes of Ah with 1 ≤ j ≤
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2
h = log

δ n. Let d̃(aj ,b
′) = − ln(ed (aj ,a)+d (b

′,b)
4Ĉ(aj ,b

′)), and

Sh (a,b) =
{
d̃(aj ,b

′)

}
2
h

j=1
, and define r j and ˆd(a,b) analogously to

Case 1.

Case 3: If a and b both have leaf descendants a′,b ′ less than h

edges away, we just define
ˆd(a,b) = − ln(ed (a

′,a)+d (b′,b)
4C̃ ′(a′,b ′)).

Lemma 26 (Deep Distance Computation: Small Diameter). Let a,b

be nodes such that d(a,b) = O(log logn). If λmax < ln(
√
2), then

| ˆd(a,b) − d(a,b)| < ϵ with high probability.

Proof. In Case 1, the proof follows as did the proof of Lemma 10

(including an analogous proof of Lemma 11). In Case 2, the proof

follows similarly to the proof of Lemma 10, except we also condition

on the bitstring at b ′ and note that d(a,b ′) = O(log logn). In Case

3, the proof follows directly from Corollary 22. □

4.4 Reconstruction Algorithm
Since we have proven statements analogous to those needed to

prove Theorem 2.1, the proof of Theorem 2.2 follows very similarly

to Theorem 2.1, except that a short quartet needs to be slightly

redefined for our purposes.

Definition 11. A quartet Q = {a,b, c,d} is r-short corresponding
to a distance matrix D if for every pair x ,y ∈ Q ,

◦ When x ,y both have leaf descendants x ′,y′ less than

δ log logn away, we use D(x ,y) = ˆd(x ,y) and D(x ,y) ≤ r .

◦ Otherwise, we use D(x ,y) = ˆd(x ,y) and T (Sh (x ,y), r ) = 1

By Lemma 26, we see that O(log logn)-short quartets can be

detected and FPM on these quartets always return the true quartet

tree, by an analogous argument to the symmetric case. Note that in

the asymmetric case, at each step of the tree reconstruction process,

not all nodes will be paired as cherries but at least one cherry will

be paired (by looking at the cherry with maximum depth) and we

can therefore always ensure progress.

There is, however, a slight issue with directly following the the

same reconstruction algorithm because we may join subtrees that

are no longer both dangling, which intuitively means that the path

between the root of both subtrees goes above them in the real model

tree. For example, in the case of balanced trees, if S1, S2 are subtrees
that are to be joined at some iteration of the algorithm, then we

reconstruct the shared ancestor of S1, S2 and join the roots of S1, S2
as children of the reconstructed ancestor. However, in this case, it

might be possible that the ancestor of S1 is a node in S2 that is not
the root node of S2!

This non-dangling issue is elaborated in the general tree recon-

struction algorithm of [22] and is circumvented with standard re-

ductions to the Blindfolded Cherry Picking algorithm of [7], which

essentially allows us to reduce all subtree joining processes to the

dangling case. The basic idea is that there exists a re-rooting of our

subtrees that reduces to the dangling case and finding the correct

re-rooting boils down to some O(1) extra distance computations

per iteration. Because our algorithm is a close replica of the general

tree reconstruction algorithm of Roch, we refer the reader to the

appendix of [22] for details.

5 FUTURE DIRECTIONS
In this paper, we give reconstruction guarantees which are optimal

(up to the choice of constants α , β,κ) for a popular model of the

phylogenetic reconstruction problem. However, we did not attempt

to optimize the constant κ in the exponent of our sequence length

requirement. In particular, we note that while we have k bits of

information for each sequence, we only use Õ(
√
k) bits of infor-

mation about each sequence in our algorithm, so there is some

reason to believe methods similar to ours cannot achieve the opti-

mal value of κ. It is an interesting problem to design an algorithm

which uses Ω(k) bits of information and matches our asymptotic

guarantees with potentially better constants, but doing so seems

challenging given the presence of indels. Furthermore, we operated

in the ∆-branch model with discretized edge lengths, which avoids

errors accumulating over a series of distance estimations. Without

discretized edge lengths, a more refined analysis seems necessary

in order to avoid this error accumulation.

In addition, there are other models of theoretical or practical

interest, but for which the extension from our results is not imme-

diately obvious. One alternative model which has been studied in

the trace reconstruction problem (see e.g. [14]) and which could be

extended to the phylogenetic reconstruction problem is to view the

bitstrings as infinitely long. The new goal is to design an algorithm

which only views the first k(n) bits of each bitstring for as small a

function k(n) as possible. This model is well-motivated by practical

scenarios, where DNA sequences are large but reading the entire

sequence is both inefficient and unnecessary for reconstructing

the tree. When we assume the bitstrings are infinitely long, then

reconstruction may be possible without the assumptions we made

to ensure no leaf bitstrings were empty (i.e., it may be possible to

reconstruct trees with maximum depth Ω(n) or with large differ-

ences in the insertion and deletion rates). In Section 4 we crucially

used sequence lengths to estimate the positions of blocks in the

bitstrings, so even with these assumptions our results do not easily

extend to this model.

Lastly, our results are optimal up to constants and build on many

techniques for phylogenetic reconstruction with independent and

random mutations. However, algorithms which perform well on

simulated data generated using independent and randommutations

are known to perform relatively poorly on real-world data [21]. An

interesting problem is to define a theoretical model for phyloge-

netic reconstruction with dependent mutations or semi-adversarial

mutations which better models this real-world data and to design

algorithms for this model. In particular, one advantage of our al-

gorithm is that it uses statistics about large-length blocks of bits

which are very robust to the errors introduced by indels. One might

hope that this robustness extends to models with dependent and/or

semi-random mutations.

A DEFERRED PROOFS FROM SECTION 3
Proof of Lemma 1. Let ka be the length of the bitstring at node

a. For any edge e = (a,b) where a is the parent, kb is equal to ka
plus the difference between two binomial variables with ka trials

and probability of success pindel (e). Applying Azuma’s inequal-

ity shows that |kb − ka | is at most 2 logn
√
ka , with probability
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1−n−Ω(logn). Then fixing any nodev and applying this high proba-

bility statement to at most logn edges on the path from the root to

any node a gives that k < ka < 4k with probability 1 − n−Ω(logn).
The lemma then follows from a union bound over all n nodes. □

Proof of Lemma 2. Note that conditioned on the jth bit of a
not being deleted on an edge e = (a,b) where a is the parent, the

number of bits by which it shifts on the edge (a,b) is the difference
between two binomial variables with j trials and probability of

success pindel (e), which is at most 2 logn
√
j with probability 1 −

n−Ω(logn). By Lemma 1, with probability 1 − n−Ω(logn) we know

that j ≤ 4k so this is at most 4 logn
√
k . Then, fixing any path and

applying this observation to the at most 2 logn edges on the path,

by union bound we get that the sum of shifts is at most 4 log
2 n
√
k

with probability 1 − n−Ω(logn). Applying union bound to all O(n2)
paths in the tree gives the lemma. □

Proof of Lemma 3. For a fixed node a and any consecutive se-

quence of lengthm, note that each bit in the bitstring is equally

likely to be 0 or 1, by symmetry, and furthermore, each bit is in-

dependent since they cannot be inherited from the same bit in

ancestral bitstrings. The number of zeros in the sequence, S0, can
be expressed as a sum ofm i.i.d. Bernoulli variables. Therefore, by

Azuma’s inequality we have Pr(S0 −m/2 ≥ t
√
m) ≤ exp(−Ω(t2)).

There are 2n−1 nodes, and by Lemma 1, for each node the number

of different consecutive subsequences of the node’s bitstring is

poly log(n). Therefore, setting t = logn and applying a union bound

over all O(n logO (1)(n)) subsequences gives the lemma. □

Proof of Lemma 4. Fixing any block i of nodes a,b and letting

σa, j denote the jth bit of the bitstring at a:

E[sa,isb,i ] =
1

l
E

©­«
il∑

j=(i−1)l+1

σa, j −
l

2

ª®¬ ©­«
il∑

j′=(i−1)l+1

σb, j′ −
l

2

ª®¬


=
1

l
E

©­«
il∑

j=(i−1)l+1

(
σa, j −

1

2

)ª®¬ ©­«
il∑

j′=(i−1)l+1

(
σb, j′ −

1

2

)ª®¬


=
1

l
E


il∑

j=(i−1)l+1

il∑
j′=(i−1)l+1

(
σa, j −

1

2

) (
σb, j′ −

1

2

)
=

1

l

il∑
j=(i−1)l+1

il∑
j′=(i−1)l+1

E

[(
σa, j −

1

2

) (
σb, j′ −

1

2

)]
Note that if bit j of a’s bitstring and bit j ′ of b’s bitstring are not

shared, then their values are independent and in particular, since

E[σa, j ] = 1/2 for any a, j:

E

[(
σa, j −

1

2

) (
σb, j′ −

1

2

)]
= E

[(
σa, j −

1

2

)]
E

[(
σb, j′ −

1

2

)]
= 0

Let E be any realization of the locations where insertions and

deletions occur throughout the tree. We will look at E[sa,isb,i |E],
leaving the root bitstring, the values of bits inserted by insertions,

and the locations of substitutions unrealized. Note that E fully

specifies what bits are shared by block i of a,b, giving:

E[sa,isb,i |E] =
1

l

∑
shared j, j′

E

[(
σa, j −

1

2

) (
σb, j′ −

1

2

)]
Now, note that

(
σa, j −

1

2

) (
σb, j′ −

1

2

)
is 1/4 if σa, j ,σb, j′ are the

same and −1/4 otherwise. Since bit j of a and bit j ′ of b descended

from the same bit, it is straightforward to show (see e.g., [25]) that

the probability a,b are the same is
1

2
(1 +

∏
e ∈Pa,b (1 − 2psub (e))),

giving that E
[(
σa, j −

1

2

) (
σb, j′ −

1

2

)]
= 1

4

∏
e ∈Pa,b (1 − 2psub (e))

if j, j ′ are shared bits of a,b.
Applying the law of total probability to our conditioning on E,

we get that E[sa,isb,i ] is the expected number of shared bits in

block i of a and block i of b times
1

4l
∏

e ∈Pa,b (1 − 2psub (e)). So all

we need to do is compute the expected number of shared bits which

are in block i of a and b. Let a ∧ b be the least common ancestor

of a,b. The jth bit in a ∧ b will not be deleted on the path from

a ∧ b to a or b with probability

∏
e ∈Pa,b (1 − pdel (e)). Let ρ j be the

probability that the jth bit of a ∧ b appears in the ith block of both

a and b conditioned on it not being deleted. Then the expected

number of shared bits is (
∑
j ρ j ) ·

∏
e ∈Pa,b (1 − pdel (e)).

For our fixed block i , call the jth bit of a ∧ b a good bit if j is

between (i−1)l+4 log2 n
√
k and il−4 log2 n

√
k inclusive. Call the jth

bit an okay bit if j is between (i−1)l −4 log2 n
√
k and il +4 log2 n

√
k

inclusive but is not a good bit. If the jth bit is not good or okay, call

it a bad bit. Note that 4 log
2 n
√
k ≤ l ·O(log−κζ +2 n), which is o(l)

if κ is sufficiently large and ζ is chosen appropriately. Then, there

are l · (1−O(log−κζ +2 n)) good bits and l ·O(log−κζ +2 n) okay bits

for block i . Lemma 2 gives that ρ j ≥ 1 − n−Ω(logn) for all good

bits. Similarly, ρ j ≤ n−Ω(logn) for all bad bits. For okay bits, we can

lazily upper and lower bound ρ j to be in [0, 1]. This gives:∑
j
ρ j =

∑
good j

ρ j +
∑

okay j

ρ j +
∑
bad j

ρ j

= l(1 −O(log−κζ +2 n)) + l ·O(log−κζ +2 n) + n−Ω(logn)

= l(1 ±O(log−κζ +2 n))

Combining this with the previous analysis gives that

E[sa,isb,i ] =
1

4

(1±O(log−κζ +2 n))
∏

e ∈Pa,b

(1−2psub (e))(1−pdel (e))

Rewriting this in exponential form and using the definition of

λ(e) and d(a,b) =
∑
e ∈Pa,b λ(e) concludes our proof. □

Proof of Lemma 6. We show how to bound the probability of

the error in one direction, the other direction follows similarly.

Let ja,i be the index where the (i − 1)l + 1th bit of the bitstring

of a ∧ b, a and b’s least common ancestor, ends up in the bitstring

at a (or if it is deleted on the path from a ∧ b to a, where it would
have ended up if not deleted). i.e., the bits in the ith block of a ∧ b
appear in positions ja,i to ja,i+1 − 1 of the bitstring at a.

Let s∗a,i be defined analogously to sa,i , except instead of looking

at the bits in the ith block of a, we look at bits ja,i to ja,i+1 − 1

(we still use the multiplier
1√
l
). Note that conditioned on Er eд ,

s∗a,i and sa,i differ by O(
k

1

4 log
2 n

√
l
) = O(log−κζ /2+2 n), so s∗a,is

∗
b,i
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and sa,isb,i differ byO(log
−κζ /2+3 n). Furthermore, s∗a,is

∗
b,i is com-

pletely determined by the bits in the ith block of a ∧b and substitu-

tions, insertions, and deletions on the path from a to b in positions

corresponding to the ith block of a ∧ b. For i , i ′, these sets of
determining random variables are completely independent, so the

random variables {s∗a,is
∗
b,i }i are independent.

Define C̃∗(a,b) analogously to C̃(a,b), except using s∗a,i instead

of sa,i . C̃
∗(a,b) and C̃(a,b) (and their expectations conditioned on

Er eд ) differ byO(log
−κζ /2+3 n). By rearranging terms and applying

Lemma 4 we get:

Pr[− ln(4C̃(a,b)) > d(a,b) + ϵ]

= Pr[4C̃(a,b) < e−d (a,b)−ϵ ]

= Pr[C̃(a,b) <
1

4

e−d (a,b) −
1

4

(1 − e−ϵ )e−d (a,b)]

= Pr[C̃(a,b) < E[C̃(a,b)] −
1

4

(1 − e−ϵ±

O(log−κζ +2 n))e−d (a,b)]

= Pr[C̃(a,b) < E[C̃(a,b)|Er eд] − (1 − e
−ϵ ±O(log−κζ +2 n))

(
1

4

e−d (a,b))]

≤ Pr[C̃(a,b) < E[C̃(a,b)|Er eд] − (1 − e
−ϵ ±O(log−κζ +2 n))

(
1

4

e−d (a,b))|Er eд] + n
−Ω(logn)

≤ Pr[C̃∗(a,b) < E[C̃∗(a,b)|Er eд] − (1 − e
−ϵ

±O(log−κζ /2+δ+3 n)(
1

4

e−d (a,b))|Er eд] + n
−Ω(logn)

(4)

Note that conditioned on Er eд no s∗a,is
∗
b,i exceeds O(log

2 n) in

absolute value, so the difference in E[C̃∗(a,b)] induced by condition-
ing on an additional value of sa,2i+1sb,2i+1 isO(log

2 n/L). Azuma’s

and an appropriate choice of κ then gives:

Pr[C̃∗(a,b) < E[C̃∗(a,b)|Er eд] − (1 − e
−ϵ±

O(log−κζ /2+δ+3 n))
1

4

e−d (a,b) |Er eд]

≤ exp

(
−
((1 − e−ϵ ±O(log−κζ /2+δ+3 n)) 1

4
e−d (a,b))2

(L/2 − 1)O(log2 n/L)2

)
= exp(−Ω(Lϵe−2d (a,b)/log4 n))

≤ exp(−Ω(ϵ logκ(1/2−ζ )−2δ−4 n))

≤n−Ω(logn)

(5)

Combining (4) and (5) gives the desired bound.

□
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