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Abstract

We consider the problem of estimating the value of MAX-CUT in a graph in the streaming model of

computation. At one extreme, there is a trivial 2-approximation for this problem that uses only O(log n)
space, namely, count the number of edges and output half of this value as the estimate for the size of the

MAX-CUT. On the other extreme, for any fixed ε > 0, if one allows Õ(n) space, a (1 + ε)-approximate

solution to the MAX-CUT value can be obtained by storing an Õ(n)-size sparsifier that essentially

preserves MAX-CUT value.

Our main result is that any (randomized) single pass streaming algorithm that breaks the 2-approximation

barrier requires Ω(n)-space, thus resolving the space complexity of any non-trivial approximations of

the MAX-CUT value to within polylogarithmic factors in the single pass streaming model. We achieve

the result by presenting a tight analysis of the Implicit Hidden Partition Problem introduced by Kapralov

et al.[SODA’17] for an arbitrarily large number of players. In this problem a number of players receive

random matchings of Ω(n) size together with random bits on the edges, and their task is to determine

whether the bits correspond to parities of some hidden bipartition, or are just uniformly random.

Unlike all previous Fourier analytic communication lower bounds, our analysis does not directly use

bounds on the ℓ2 norm of Fourier coefficients of a typical message at any given weight level that follow

from hypercontractivity. Instead, we use the fact that graphs received by players are sparse (matchings)

to obtain strong upper bounds on the ℓ1 norm of the Fourier coefficients of the messages of individual

players using their special structure, and then argue, using the convolution theorem, that similar strong

bounds on the ℓ1 norm are essentially preserved (up to an exponential loss in the number of players) once

messages of different players are combined. We feel that our main technique is likely of independent

interest.

http://arxiv.org/abs/1811.10879v1
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1 Introduction

In the MAX-CUT problem an undirected graph is given as input, and the goal is to find a bipartition of the

vertices of this graph (or, equivalently, a cut) that maximizes the number of edges that cross the bipartition.

The size of a MAX-CUT is the number of edges that cross the optimal bipartition. In this paper, we study

the space complexity of approximating the MAX-CUT size in an undirected graph in the streaming model

of computation. Our main result is a strong lower bound (optimal to within polylogarithmic factors) on the

space required for a non-trivial approximation to MAX-CUT size.

Specifically we consider a space bounded algorithm that is presented with a stream of edges of a graph

on known vertex set [n] , {1, . . . , n} and is required to output an α-approximation to the size of the

maximum cut in the graph. An algorithm that simply counts m, the number of edges in the graph, and

reports m/2 requires space O(log n) and produces a 2-approximation to the size of a maximum cut since

the MAX-CUT size is at most m and at least m/2 in any undirected graph. On the other extreme, for

any ǫ > 0, it is possible to maintain a cut-preserving sparsifier of the graph using Õ(n) space that allows

one to recover a (1 + ǫ)-approximation to the maximum cut value – in fact, one can recover the actual

vertex partition as well in this case. Till recently it was open as to whether such good approximations

could be obtained with polylogarithmic space. This question was resolved in the negative by [KKS15,

KK14]. In particular, [KKS15] showed that any (2 − ǫ)-approximation algorithm requires Ω̃(
√
n) space,

and [KKSV17] ruled out the possibility of an approximation scheme in o(n) space. This however left open

the possibility that a non-trivial approximation (i.e. better than the trivial 2-approximation described above)

can be achieved in o(n) space. In this work, we settle this problem by showing that no sublinear space

algorithm can achieve a strictly better than 2-approximation to the size of the maximum cut:

Theorem 1.1 For every ǫ ∈ (0, 99/100), every randomized single-pass streaming algorithm that yields

a (2 − ǫ)-approximation to MAX-CUT size must use n/(1/ǫ)O(1/ǫ2) = Ω(n) space, where n denotes the

number of vertices in the graph.

Our main technical contribution is a nearly optimal lower bound on the communication complexity of

the Implicit Hidden Partition problem introduced in [KKSV17]. The implicit hidden partition problem is

a multiple-player communication game where many players are given labellings of sparse subsets of edges

and must determine if they are consistent with a bipartition of vertices. This setting is in contrast to the

vanilla “hidden partition problem” used in several previous works on MAX-CUT lower bounds, where one

player is given a cut in a complete graph on n vertices and the other player is given a labelling of a linear

number of edges of the graph where the labelling supposedly indicates whether those edge cross the cut, and

the two players have to decide if the labelling is consistent with the given cut. Gavinsky et al [GKK+08] gave

a tight Ω(
√
n) lower bound on the one-way communication complexity of this problem, and this was used

by [KKS15] for instance to give a Ω̃(
√
n) lower bound on the space needed to find a (2− ǫ)-approximation

of MAX-CUT. Since in the implicit hidden partition problem no player has an explicit knowledge of the

bipartition, this problem plausibly has a linear (Ω(n)) lower bound on the communication complexity and

this is what we prove.

The main technical tool underlying our analysis is a novel and general way of using the convolution

theorem in Fourier analysis to analyze information conveyed by the combined messages of multiple players

(which corresponds to the intersection of their individual messages). While this idea has recently been

used for proving lower bounds on the streaming complexity of MAX-CUT [KKSV17] and the sketching

complexity of subgraph counting [KKP18], in both of these works the convolution theorem is applied in a

rather restricted setting. Specifically, the structure of the Fourier transforms of the messages of the players

is such that convolution simply amounts to multiplication in Fourier domain, i.e. only a single nonzero

contributes to the corresponding sum of Fourier coefficients. In our setting convolving the Fourier transforms
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of the players’ messages leads to contributions across different levels of the weight spectrum, and analyzing

such processes requires a new technique. Our main insight is the idea of controlling the ℓ1 norm of the

Fourier transform of the intersection of the players’ messages as opposed to the ℓ2 norm, bounds on which

follow more naturally as a consequence of hypercontractivity (note that ℓ2 bounds on various levels of

the Fourier spectrum that follow from the hypercontractive inequality underlie the analysis of the Boolean

Hidden Matching problem of [GKK+08], as well as recent works on streaming and sketching lower bounds

through Fourier analysis [KKS15, KK14, KKSV17, KKP18]). Conceptually, the idea of controlling the ℓ1
norm stems from the fact that since individual players receive parity information of some hidden vector X
across edges of a sparse graph (a matching), strong upper bounds on the ℓ1 norm of the Fourier transform

of the corresponding player’s message follow (due to sparsity of the graph), and these ℓ1 bounds remain

approximately preserved when the players’ functions are multiplied (i.e. when the players’ messages are

combined).

Related work: The streaming model of computation, formally introduced in the seminal work of [AMS96]

and motivated by applications in processing massive datasets, is an extremely well-studied model for de-

signing sublinear space algorithms. The past decade has seen an extensive body of work on understand-

ing the space complexity of fundamental graph problems in the streaming model; see, for instance, the

survey by McGregor [McG14]. It is now known that many fundamental problems admit streaming al-

gorithms that only require Õ(n) space (i.e. they do not need space to load the edge set of the graph

into memory) – e.g. sparsifiers [AG09, KL11, AGM12b, KLM+14], spanning trees [AGM12a], match-

ings [AG11, AG13, GKK12, Kap13, GO12, HRVZ15, Kon15, AKLY15], spanners [AGM12b, KW14]. Very

recently it has been shown that it is sometimes possible to approximate the cost of the solution without even

having enough space to load the vertex set of the graph into memory (e.g. [KKS14, EHL+15, CCE+15]).

Our work contributes to the study of streaming algorithms, by providing a tight impossibility result for

non-trivially approximating MAX-CUT value in o(n) space.

Organization In section 2 we introduce our communication problem (DIHP), give a reduction from

DIHP to MAX-CUT, state our main technical theorem (Theorem 2.1) on the communication complex-

ity of DIHP in this section and prove Theorem 1.1 assuming this result. The rest of the paper is devoted to

proving Theorem 2.1. Section 3 presents preliminaries on Fourier analysis and basic combinatorics of ran-

dom matchings. Section 4 presents our basic setup for proving Theorem 2.1, introduces a crucial definition

of (C, s∗)-bounded sets, and proves some of their basic properties. Section 5 presents a technical overview

of the analysis: we start with a simple component growing protocol for DIHP that serves as a good model

for our lower bound proof, give a direct analysis for this protocol, state the main technical components of

our general lower bound proof and use the simple protocol to illustrate some of the steps. The rest of the

paper is devoted to formally proving Theorem 2.1. Section 6 proves Theorem 2.1 assuming a key technical

lemma, whose proof is given in Section 7.

2 Communication problem and hard distribution

In this section we introduce a T -player “sequential” communication problem and state our lower bound for

this problem. We first describe the general model in which this problem is presented.

We consider a communication problem where T players receive, sequentially, public inputs Mt and

private inputs wt, for t ∈ [T ]. Their goal is to compute some joint function F (M1, . . . ,MT ;w1, . . . , wT ). At

stage t, the tth player announces its message St = rt(M1, . . . ,Mt;S1, . . . , St−1;wt) for some function rt.
The message ST is defined to be the output of the protocol. The complexity of the protocol is the maximum

length of the message {St}t∈[T ]. We consider the setting where the inputs are drawn from some distribution
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µ and the error of the protocol is the probability that its output does not equal F (M1, . . . ,MT , w1, . . . , wT ).
We now describe the specific communication problem we consider in this work. For a protocol Π we let |Π|
denote the maximum size of messages posted by players.

Implicit Hidden Partition (IHP) Problem of [KKSV17]. We define a parametrized class of problems

IHP(n, α, T ) for positive integers n and T and real α ∈ (0, 1/2) as follows: IHP(n, α, T ) is a T -player

problem with public inputs Mt ∈ {0, 1}αn×n being incidence matrices of matchings (so their rows sum

to 2 and columns sum to at most 1), and the private inputs are wt ∈ {0, 1}αn . Their goal is to decide the

Boolean function F (M1, . . . ,MT ;w1, . . . , wT ) which is YES if and only if there exists x ∈ {0, 1}n such

that wt = Mtx(mod 2) for all t ∈ [T ], and NO otherwise.

By associating [n] with the vertices of a graph G, we may think of x as a partition (cut) of the graph G
whereas the edges are the set ∪t∈[T ]Mt. The condition wt = Mtx enforces that an edge crosses the cut if

and only if it is labelled 1 in wt. Thus the communication problem corresponds to asking if there is a cut

consistent with the labelling of edges which are partitioned into matchings and presented as such.

Distributional Implicit Hidden Partition (DIHP) Problem. We will work with the following distri-

butional version of IHP. We define a distribution DY supported on YES instances which is obtained by

sampling X∗ ∈ {0, 1}n uniformly, sampling Mt’s independently and uniformly from the set of αn sized

matchings on [n] and setting wt = MtX
∗. The distribution DN supported mostly on NO instances is

obtained by sampling Mt’s as above, and wt’s independently and uniformly from {0, 1}αn . The final dis-

tribution D is simply D = 1
2(DY + DN ). We use DIHP to denote the distributional IHP problem where

instances are drawn from D.

The following theorem is the main technical contribution of the paper:

Theorem 2.1 There exists a constant C0 > 0 such that for every ǫ ∈ (0, 1) and every sufficiently large n
every protocol Π for DIHP(n, α, T ) with α = 10−11, T = 512/(αǫ2) that succeeds with probability at

least 2/3 satisfies |Π| ≥ n/(C0/ǫ)
C0/ǫ2 .

Remark 2.2 We note that there exists a protocol Π with |Π| = n/cT which solves DIHP(n, α, T ) for

constant α, where c = c(α) > 1, which makes our lower bound close to tight (up to the dependence on 1/ǫ
in the base of the exponent, which we think can likely be removed by a more careful, but somewhat more

complex, analysis). The protocol works as follows. The first player posts bits on the first s/(1 + α)T edges

of the matching M1. Then each player posts bits on all edges incident to at least one of the edges which

have been revealed previously. In other words, the players keep growing connected components in the graph

whose edges they reveal the bits on. It can be shown that with high probability each player will post at most

s bits and a cycle will be found thus solving the problem. See Section 5.1 for more details.

Reduction from DIHP to MAX-CUT. We now give a reduction from DIHP to MAX-CUT (see Theo-

rem 2.3 below). Our main result, Theorem 1.1, then follows by putting together Theorem 2.3 and the yet to

be proved Theorem 2.1. The rest of the paper is then devoted to proving Theorem 2.1.

We start with the reduction. We show that for every ǫ > 0, if there exists a single-pass streaming

algorithm ALG that uses space s = s(n) and approximates the MAX-CUT value to within a factor of

(2− ǫ) with probability at least 9/10, then instances of DIHP(n, α, T ) with α = 10−11 and T = 512/(αǫ2)
can be distinguished with probability at least 2/3 by a protocol that uses messages of size at most s. This

reduction combined with Theorem 2.1, establishes our main result, namely, every single-pass streaming

algorithm needs Ω(n) space to approximate MAX-CUT value to within a factor of (2 − ǫ) for every fixed

ǫ > 0.
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The main idea of the reduction is to map instances of DIHP to instances of MAX-CUT by only consid-

ering those edges where the corresponding entry of the wt vector is 1. This in turn induces a distribution

over YES and NO instances for MAX-CUT as below:

YES Let G′
t = (V,E′

t) be the (bipartite) graph obtained by including those edges in Et that cross the chosen

(hidden) bipartition. Let E′ := E′
1 ∪ E′

2 ∪ . . . ∪ E′
T , and let G′(V,E′) denote the final graph.

NO Let G′
t = (V,E′

t) be the graph obtained by including each edge in Et independently with probability

1/2. Let E′ := E′
1 ∪ E′

2 ∪ . . . ∪ E′
T , and let G′(V,E′) denote the final graph.

We denote the input distribution defined above by DY
graph (YES case) and DN

graph (NO case) respectively.

Let Dgraph = 1
2DY

graph + 1
2DN

graph. We note that the graphs generated by our distribution Dgraph are

in general multigraphs. We note that the expected number of repeated edges is only O(1/ǫ2), and edge

multiplicities are bounded by 2 with high probability.

Using this distribution we get

Theorem 2.3 (Reduction from DIHP to MAX-CUT) For every ǫ, α ∈ (n−1/10, 1) and T = 512/(αǫ2),
the following conditions hold for sufficiently large n. Let ALG denote a (possibly randomized) single-pass

streaming algorithm for approximating MAX-CUT value in (multi)graphs to within a factor of (2− ǫ) using

space s = s(n) on graphs on n nodes with probability at least 9/10. Then ALG can be used to obtain a

deterministic protocol Π for the DIHP(n, α, T ) with |Π| ≤ s that succeeds with probability at least 2/3
over the randomness of the input. This holds even if ALG is only required to work on multigraphs that

contain at most O(1/ǫ2) repeated edges, and edge multiplicity is bounded by 2.

The proof relies on the following Lemma, which establishes that there is almost a factor of 2 gap between

MAX-CUT value in DY
graph and DN

graph:

Lemma 2.4 For every ǫ, α ∈ (n−1/10, 1), α < 1/4 and T = 512/(αǫ2) if G′
T = (V,E′

T ), |V | = n, |E′| =
m be generated according to the process above, then for sufficiently large n there exists m0 = m0(n, α, T )
such that in the YES case the MAX-CUT value is at least m0, and in the NO case the MAX-CUT value is at

most m0/(2− ǫ), both with probability at least 1− 1/
√
n.

The proof of the lemma uses the following version of Chernoff bounds.

Lemma 2.5 Let X =
∑n

i=1Xi, where Xi are Bernoulli 0/1 random variables satisfying, for every k ∈ [n],
E[Xk|X1, . . . ,Xk−1] ≤ p for some p ∈ (0, 1). Let µ = np. Then for all ∆ > 0

Pr[X ≥ µ+∆] ≤ exp

(
− ∆2

2µ+ 2∆

)
.

The (somewhat standard) proof is given in Appendix D. We also need

Lemma 2.6 Let G be a miltigraph with n vertices and m edges (counted with multiplicities) in which each

edge has multiplicity at most k. Let S ⊂ [n] be a uniformly random subset of vertices and X be the number

of edges crossing (S, S̄). Then for any δ > 0 we have

Pr[X < m/2 · (1− δ)] ≤ k

δ2m
.
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The proof is a simple application of Chebyshev’s inequality, and is presented in Appendix D. We now give

Proof outline of Lemma 2.4 We let m0 = αnT
2 · (1 − δ) with δ = ǫ/100. In the YES case the graph is

bipartite so the value of MAX-CUT is equal to the number of edges in the graph. Since in the YES case

we only keep those edges of the matchings which cross a fixed random bipartition, and in the union of

matchings every edge has multiplicity at most T , Lemma 2.6 ensures that the probability that the number of

edges if smaller than m0 is at most
T

δ2αnT
=

1

δ2αn
≤ 1/

√
n,

since ǫ, α > n−1/10 by assumption of the lemma.

We now consider the NO case. Since every edge of the matchings is kept with probability 1/2 inde-

pendently of the others, by Lemma 2.5 with probability at least 1− exp
(
− δ2αnT

4(1+δ)

)
the number m of edges

in the graph will be at most αnT
2 · (1 + δ). One then shows using Lemma 2.5 that for every cut (S, S̄),

where S ⊆ V , the probability that significantly more than half of the edges of the graph cross the cut is

smaller than 2−2n. Taking a union bound over all 2n possible cuts completes the proof. The detailed proof

is provided in Appendix D.

Equipped with Lemma 2.4, we can now give a proof of the reduction:

Proof of Theorem 2.3: By Lemma 2.4 in the YES case the MAX-CUT value is at least m0, and in the

NO case the MAX-CUT value is at most m0/(2− ǫ), both with probability at least 1− 1/
√
n.

Thus with high probability, the MAX-CUT value in a YES instance of DIHP is at least (2 − ǫ) times

the MAX-CUT value in a NO instance of DIHP. To complete the reduction, it now suffices to show that the

algorithm ALG can be simulated by a DIHP protocol with message complexity at most s. This simulation

can be done as follows: player t upon receiving its input (Mt, wt), runs ALG using the state posted by

player (t − 1) on the set of edges in Mt where the wt value is 1. The state of the algorithm ALG at the

end is then posted by player t on the board. The last player then outputs YES if ALG outputs YES and

NO otherwise. Note that since we are evaluating the resulting protocol with respect to an input distribution,

it is possible to make the protocol deterministic by fixing the randomness of ALG appropriately.

Given Theorem 2.3 and assuming Theorem 2.1, our main theorem follows easily.

Proof of Theorem 1.1: The proof follows by putting together Theorem 2.3 and Theorem 2.1.

3 Preliminaries

In this section we first review Fourier analysis on the boolean hypercube and give a version of the KKL

bound that will be important in our analysis(Section 3.1), give basic facts about the total variation distance

between distributions (Section 3.2) and state basic bounds on uniformly random matchings that we will use

(Section 3.3).

3.1 Fourier analysis on the boolean hypercube

Let p : {0, 1}n → R be a real valued function defined on the boolean hypercube. We use the following

normalization in the Fourier transform:

p̂(v) =
1

2n

∑

x∈{0,1}n
p(x) · (−1)x·v.

With this normalization the inverse transform is given by

p(x) =
∑

v∈{0,1}n
p̂(v) · (−1)x·v .

7



For a pair of functions p, q : {0, 1}n → R the convolution of p and q, denoted by p ∗ q is defined as

(p ∗ q)(v) =
∑

x∈{0,1}n
p(x)q(x+ v).

We will use the relation between multiplication of functions in time domain and convolution in frequency

domain to analyze the Fourier spectrum of ht = f1 · f2 · . . . · ft (recall that ht is the indicator of Bt as per

Definition 4.1). With our normalization of the Fourier transform the convolution identity is

(̂p · q)(v) =
∑

x∈{0,1}n
p̂(x)q̂(x+ v).

(1)

Thus, for each t = 1, . . . , T we have that

ĥt = f̂1 ∗ . . . ∗ f̂t.

This identity will form the basis of our proof.

We will also need Parseval’s equality, which with our normalization takes form

||p̂||2 =
∑

v∈{0,1}n
p̂(v)2 =


 1

2n

∑

x∈{0,1}n
p(x) · (−1)x·v




2

=
1

2n

∑

x∈{0,1}n
p(x)2 =

1

2n
||p||2 (2)

Remark 3.1 If f(x) : {0, 1}n → {0, 1} is an indicator of a set A ⊆ {0, 1}n , we have ||f ||2 = |A|, so that

||f̂ ||2 = |A|
2n .

Definition 3.2 For a function h : {0, 1}n → {0, 1} that is the indicator of a set A ⊆ {0, 1}n we write h̃ to

denote the Fourier transform of h scaled by 2n/|A|. Specifically, for every v ∈ {0, 1}n we have

h̃(v) =
2n

|A| ĥ(v) =
1

|A|
∑

x∈{0,1}n
h(x) · (−1)x·v = Ex∈A[(−1)x·v].

The following two important Lemmas will be proved in Appendix F.

Lemma 3.3 Let A ⊂ {0, 1}m be a set of cardinality at least 2m−d with indicator function f . Then for every

y ∈ {0, 1}m and every q ≤ d one has

∑

x∈{0,1}m
|x⊕y|=q

∣∣∣f̃(x)
∣∣∣ ≤

√(
m

q

)(
4d

q

)q

,

where for x ∈ {0, 1}m by |x| we denote the number of ones in x.

Lemma 3.4 Let Mt ∈ {0, 1}αn×n be the incidence matrix of a matching M , where the rows correspond to

edges e of M (Meu = 1 if e is incident on u and 0 otherwise). Let g : {0, 1}αn → {0, 1}s for some s > 0. Let

a ∈ {0, 1}s and let q : {0, 1}αn → {0, 1} be the indicator of the set Areduced := {z ∈ {0, 1}αn : g(z) = a}.

Further, let f : {0, 1}n → {0, 1} denote the indicator of the set

Afull := {x ∈ {0, 1}n : g(Mx) = a}.
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Then for any v ∈ {0, 1}n

f̂(v) =

{
0, if v cannot be perfectly matched via edges of M
q̂(w), w the perfect matching of v using edges of M o.w.

(3)

Furthermore, the perfect matching of v, when it exists, is unique. The second condition above is equivalent

to the existence of w ∈ {0, 1}αn = {0, 1}M such that v = MTw. Thus, Fourier coefficients of f are

indexed by sets of edges of M . Note that nonzero weight k coefficients of q̂ are in one to one correspondence

with nonzero weight 2k coefficients of f̂ , i.e. the only nonzero Fourier coefficients of f̂ are of the form

f̂(MTw) = q̂(w) for some w ∈ {0, 1}M .

3.2 Total variation distance

We define the notion of total variation distance between two distributions and state some of its useful prop-

erties. For a random variable X taking values on a finite sample space Ω we let pX(ω), ω ∈ Ω denote the

pdf of X. For a subset A ⊆ Ω we use the notation pX(A) :=
∑

ω∈A pX(ω). We will use the total variation

distance || · ||tvd between two distributions:

Definition 3.5 (Total variation distance) Let µ, ν be two probability measures on a finite space Ω. The to-

tal variation distance between µ and ν is given by V (µ, ν) = maxΩ′⊆Ω(µ(Ω
′)−ν(Ω′)) = 1

2

∑
ω∈Ω |µ(ω)−

ν(ω)|.

Definition 3.6 Let X,Y be two random variables taking values on a finite domain Ω. We denote the pdfs of

X and Y by pX and pY respectively. The total variation distance between X and Y is defined to be the total

variation distance between pX and pY . We will write ||X − Y ||tvd to denote the total variation distance

between X and Y .

We will need the following claim.

Claim 3.7 (Claim 6.5 of [KKS15]) Let X,Y be two random variables. Let W be independent of (X,Y ).
Then for any function f one has ||f(X,W )− f(Y,W )||tvd ≤ ||X − Y ||tvd.

3.3 Basic combinatorics of random matchings

Here we define several quantities related to random matchings and state Lemmas concerning random match-

ings. Proofs are given in Appendix D.2.

Definition 3.8 For every α ∈ (0, 1), every integer ℓ between 0 and n/2 we let pα(ℓ, n) denote the probabil-

ity, over the choice of a uniformly random matching M of size αn, that a fixed set of 2ℓ points is perfectly

matched by M (i.e., M restricted to this set is a perfect matching).

Definition 3.9 Let A be a set of cardinality 2k. Then q(k, i, n) is the probability that a random matching of

size αn matches exactly 2i out of 2k points of A and there are no edges of the matching connecting points

from A to points from Ac.

Definition 3.10 Let A be a set of cardinality 2k. Then q(k, i, b, n) is the probability that a random matching

of size αn matches exactly 2i out of 2k points of A and there are exactly b edges of the matching connecting

points from A to points from Ac.

Definition 3.11 For a set A and a matching M we say that an edge e of M is inner if it connects points

from A, boundary if it connects a point from A and a point from Ac, external if it connects points from Ac.
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Lemma 3.12 For every integer n and every 0 ≤ ℓ ≤ n/2

p(ℓ, n) =

(
αn

ℓ

)(
n

2ℓ

)−1

.

Lemma 3.13 For every integer n and every 0 ≤ i ≤ k ≤ n/2

q(k, i, n) =

(
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1

.

Lemma 3.14 For all non-negative integers n, i, k, b satisfying k ≤ n/2 and 2i+ b ≤ 2k

q(k, i, b, n) =

(
αn

i

)(
αn− i

b

)
2b
(

n− 2αn

2(k − i)− b

)(
n

2k

)−1

.

Lemma 3.15 Suppose we have k < n/10, α < 1/100, and 2i+ b ≤ 2k then

q(k, i, b, n) ≤ q(k, i, n)20−b4k−i.

4 The basic setup, (C, s∗)-bounded sets and their properties

In this section we introduce our basic setup for analyzing the DIHP problem, define the notion of (C, s∗)-
bounded sets and introduce some of their basic properties.

4.1 The basic setup

For a random variable Jt we write J1:t to denote the tuple (J1, . . . , Jt). In this notation, the inputs to

IHP(n, α, T ) are denoted by M1:T and w1:T . Recall also that St = rt(M1:t;S1:t−1;wt) denotes the message

posted by the tth player. We use s to denote an upper bound on the size of the messages. The goal of our

analysis is to show that if s ≪ n then the total variation distance between the distribution of messages St

and matchings Mt posted on the blackboard at time T in the YES case and in the NO case is small.

More specifically, let SY
1:T denote the random variables corresponding to the messages posted by the

players when the input (M1:T , w1:T ) is drawn from DY , and let SN
1:T denote the corresponding sequence

when the input is drawn from DN . Our goal is to show that the total variation distance between (M1:T , S
Y
1:T )

and (M1:T , S
N
1:T ), is vanishingly small. As we show in section 6 it suffices to consider the YES case only. In

Lemma 6.3 we show that it suffices to show that with high probability for each t = 1, . . . , T the distribution

of MtX
∗ is close to uniform in {0, 1}Mt . We now outline the techniques that we develop to prove this claim.

Our analysis relies on Fourier analytic techniques for reasoning about the distribution of MtX
∗. Con-

ditioning on messages posted up to time t makes X∗ uniformly random over a certain subset of the binary

cube. We will analyze this subset of the hypercube, or, rather, the Fourier transform of its indicator function,

and show that if communication is small, the distribution of X∗ conditional on typical history is such that

MtX
∗ is close to uniformly random in total variation distance.

We first define notation that lets us reason about the distribution of X∗. The knowledge that the players

acquire about X∗ is represented by some set Bt ⊆ {0, 1}n with X∗ being distributed uniformly on Bt.

These sets Bt are constructed iteratively, by accumulating the information about X∗ that each player’s

message conveys - specifically there exist sets At (defined below) such that Bt = A1 ∩ A2 ∩ . . . ∩ At.

Recall that we only consider the YES case, so the state variables are superscripted accordingly.
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Definition 4.1 (Sets At,Bt and their indicator functions ft, ht) Fix α ∈ (0, 1) and integers n, T ≥ 1
and t ∈ [T ]. Consider a YES instance (M1:T , w1:T ) of DIHP(n, α, T ) with X∗ being the (random) hidden

partition (so wt = MtX
∗). Recall SY

t = rt(M1:t;S1:t−1,MtX
∗). We define Areduced,t ⊆ {0, 1}Mt be the

set of possible values of wt = MtX
∗ that lead to message SY

t and At to denote the values of X∗ ∈ {0, 1}n
that correspond to Areduced,t. Formally, letting gt(·) := rt(M1:t, S

Y
1:t−1, ·) : {0, 1}Mt → {0, 1}s, we have

Areduced,t = g−1
t (SY

t ) ⊆ {0, 1}Mt ,

and At = {x ∈ {0, 1}n : Mtx ∈ Areduced,t}. (4)

Let ft : {0, 1}n → {0, 1} denote indicator functions of the sets At, t = 1, . . . , T . For each t let ht =
f1 · . . . · ft, so that ht is the indicator of Bt := A1 ∩A2 ∩ . . . ∩At. We let B0 := {0, 1}n for convenience.

Claim 4.2 For t = 1, . . . , T let pt : {0, 1}n → [0, 1] denote the following distribution:

pt(x) = Pr[Mtx ∈ At,reduced].

Further, let p(x) =
∏T

t=1 pt(x) for all x ∈ {0, 1}n.

The conditional distribution of X∗ given messages A1, . . . ,At is exactly given by p(x)/||p||1 as above.

Proof: Since X∗ is uniformly random in {0, 1}n initially, we have

Pr[X∗ = x|MtX
∗ ∈ At,reduced, t = 1, . . . , T ]

=
Pr[X∗ = x ∧MtX

∗ ∈ At,reduced, t = 1, . . . , T ]

Pr[MtX∗ ∈ At,reduced, t = 1, . . . , T ]

=
Pr[MtX

∗ ∈ At,reduced, t = 1, . . . , T |X∗ = x]Pr[X∗ = x]

Pr[MtX∗ ∈ At,reduced, t = 1, . . . , T ]

=
Pr[X∗ = x]

Pr[MtX∗ ∈ At,reduced, t = 1, . . . , T ]
·

T∏

t=1

Pr[Mtx ∈ At,reduced, t = 1, . . . , T ]

=
2−n

Pr[MtX∗ ∈ At,reduced, t = 1, . . . , T ]
·

T∏

t=1

Pr[Mtx ∈ At,reduced, t = 1, . . . , T ]

= p(x)/||p||1

4.2 (C, s∗)-bounded sets and their properties

The following definition is crucial for our analysis:

Definition 4.3 ((C, s∗)-bounded set) Let B ⊂ {0, 1}n with indicator function h. We say that B (or h) is

(C, s∗)-bounded if

• For all ℓ ≤ s∗ we have
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ ≤

(
C
√
s∗n
ℓ

)ℓ

;
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• For all s∗ < ℓ < n
C2 we have

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ ≤

(
C2n

ℓ

)ℓ/2

.

Defining the function UC,s*(ℓ) by

UC,s*(ℓ) =





1 ℓ = 0;(
C
√
s∗n
ℓ

)ℓ
ℓ ∈ [1 : s∗];

(
C2n
ℓ

)ℓ/2
ℓ > s∗,

(5)

we are able to simplify notation, ensuring that an indicator function h is (C, s∗) bounded if and only if for

all ℓ < n/C2 we have ∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃(v)
∣∣∣ ≤ UC,s*(ℓ).

Remark 4.4 For intuition it is useful to compare our bounds throughout the paper to the bounds on the

weight of Fourier coefficients of the simple adaptive component growing algorithm described in Section 5.1

when the latter is given a somewhat larger space budget, specifically s′ :=
√
s∗n amount of space.

The following lemma provides the base case of our analysis:

Lemma 4.5 For every s∗, every matching M on [n], every A ⊆ {0, 1}M such that |A|/2|M | ≥ 2−s∗ the set

B := {x ∈ {0, 1}n : Mx ∈ A} is (3, s∗)-bounded.

Proof: By Lemma 3.4 Fourier coefficients of 1B can be written in terms of those of 1A, namely, we have

1̂B(M
Tw) = 1̂A(w),

for every w ∈ {0, 1}M and 1̂B(v) = 0 if v is not of the form MTw. Also note that |MTw| = 2 · |w| and

|B| = 2n−αn · |A|. The latter implies that we also have for every w ∈ {0, 1}M

1̃B(M
Tw) =

2n

|B| · 1̂B(M
Tw) =

2αn

|A| · 1̂A(w) = 1̃A(w).

We then apply Lemma 3.3 to infer

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ =

∑

w∈{0,1}M
|w|=ℓ

∣∣∣1̃A(w)
∣∣∣ ≤

√(
αn

ℓ

)(
4s∗

ℓ

)ℓ

≤
(
3
√
s∗n
ℓ

)ℓ

. (6)

For high weights (ℓ > s∗) we use a trivial bound saying that sum of squares of normalized Fourier coeffi-

cients at any level is at most 2s
∗

. We also use the fact that by Lemma 3.4 the function 1B has at most
(
αn
ℓ

)

non-zero Fourier coefficients at level 2ℓ.

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ ≤

√(
αn

ℓ

)
2s∗ ≤

(
2en

ℓ

)ℓ/2

.
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Remark 4.6 (Intuition for the choice of UC,s*(ℓ)) Lemma 4.5 basically states that the set of possible x ∈
{0, 1}n consistent with a message of one player is (3, s∗) bounded. This Lemma is never explicitly used in

the proof of Theorem 2.1, however, it provides a good intuition for why the definition of (C, s) boundedness

should be as it is. Indeed, the fact that in the lemma above Fourier coefficients of 1B at level 2ℓ correspond

to Fourier coefficients of 1A at level ℓ allows to write

∑

v∈{0,1}n
|v|=2ℓ

1̃B

2
(v) ≤

(
4s∗

ℓ

)ℓ

. (7)

In order to convert this into a bound on the L1 norm we need to know how many non-zero summands we

have on the left hand size. For one matching the correspondence with Fourier coefficients of 1A readily

implies that we have at most
(
αn
ℓ

)
non-zero summands. When several messages of players are combined this

is no longer true and the number of non-zero summands can get as large as
(
n
2ℓ

)
, however, it turns out that

L1 norm behaves as if there were order
(n
ℓ

)
non-zero summands.

Lemma 4.7 For every C > 100, δ ∈ (n−1, 1/2) and α ∈ (0, 1/100) the following condition holds if

n is sufficiently large. Let B ⊂ {0, 1}n be (C, s∗)-bounded for s∗ ∈ [10 ln (n + 1), δ4n/C2] as per

Definition 4.3, |B|/2n ≥ 2−s∗ , and let h : {0, 1}n → {0, 1} be the indicator of B. Let M be a uniformly

random matching on [n] of size αn. Then with probability at least 1 − δ over the choice of M for any

non-negative function q on {0, 1}M one has

1− δ ≤ Ex∼Uniform(B) [q(Mx)]

Ez∼Uniform({0,1}M ) [q(z)]
≤ 1 + δ.

The proof is given in Appendix A.

Remark 1 We note that the proof of Lemma 4.7 does not use the bound on the spectrum of h at levels above

s∗ that follow from (C, s∗)-bounded property.

Remark 2 Using this lemma we can now work with the uniform measure on {0, 1}Mt instead of the one

given by Mtht−1. For instance, we may assume that each player receives such bits on Mt that the cor-

responding function ft and the part of the cube At satisfy |At| > 2n−s∗ (as the opposite happens with

probability at most 2−s).

5 Technical overview of our analysis

In this section we define a simple protocol for DIHP(n, α, T ) and analyze its Fourier spectrum. We show

that our protocol does not solve DIHP(n, α, T ) for constant α ∈ (0, 1) and T ≥ C1/α with a sufficiently

large constant C1 > 1, unless the communication budget is at least n/AT for some constant A > 1. We also

non-rigorously explain why this protocol solves the problem if the communication budget is at least n/cT

for some constant c > 1. Our main theorem (Theorem 2.1) in particular implies that this protocol is close to

optimal. More importantly, however, the proof of Theorem 2.1 can be viewed as analyzing an ℓ1-relaxation

of the simple protocol.

5.1 A component growing protocol for DIHP

In this section we consider very simple communication protocols, where players choose a subset of the

edges of the matching that they receive, post the bits on that subset on the board, and ignore the bits on the
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other edges (note that the subset of edges should be no larger than the communication bound s). We note

that in order to achieve a constant advantage over random guessing for DIHP it suffices to ensure that the

set of edges whose labels are posted on the board form a cycle. Indeed, in the YES case the sum of labels

over the edges of any cycle is zero, while in the NO case it is a uniformly random number in {0, 1}. Thus,

one can distinguish between the two cases with constant probability.

A very simple non-adaptive protocol. The question is of course which subset of edges the players choose.

A very basic approach would be to post bits on edges both of whose endpoints have indices between 1 and√
s/n · n. Note that the expected number of such edges in a given matching is O(s), which is consistent

with the communication budget per player. This protocol is non-adaptive in the sense that the edges that

the t-th player posts the bits for are independent of the matchings of the other players. It is easy to see that

this protocol will not find a cycle as long as s ≪ n/T 2. Indeed, the graph induced on the first
√

s/n · n
vertices is quite similar to an Erdős-Rényi graph with expected degree

√
s/n · T ≪ 1, and hence the

graph will contain no cycle with high (constant) probability. Note that this behaviour seems to suggest that

Theorem 1.1 could be strengthened significantly, ensuring that the dependence of space on T , the number

of matchings, is polynomial as opposed to exponential. However, it turns out that the simple non-adaptive

protocol above is not a good model for the problem. We now introduce a more interesting, but still quite

simple, protocol, which serves as a good model for our general analysis.

The component growing protocol. Let s be the per player communication budget. In order to show that

even adaptive protocols cannot solve DIHP unless s ≫ n/CT for a constant C > 1, for every such

protocol Π we define a strictly stronger protocol Π′ that has a larger communication budget than Π and is

more convenient to analyze. This new protocol Π′ can be thought of as having budget larger than s, is still

unable to solve the problem if s ≪ n/AT for some large A > 1. The protocol Π′ is defined as follows.

The first player simply posts the bits according to the protocol Π. We let F1 denote the forest created in

this way, with edges labeled by numbers in {0, 1}. For every t = 2, . . . , T , the t-th player posts the bits on

edges of Mt that have at least one endpoint in a connected component in Ft−1 (these bits should be thought

of as free), as well as the bits on a set of s edges of the matching Mt that do not intersect any component in

Ft−1 so that any edge revealed by Π is also revealed by Π′. Let Ft denote the forest obtained in this way.

If at least one of the edges of Mt closes a cycle (i.e. edges of Ft−1 ∩ Mt form a cycle), the t-th player

computes the sum of bits on the cycle, and outputs YES if that sum is zero, and NO otherwise. Note that

if the game is in the YES case, the players always say YES . If the game is in the NO case, then if a cycle

is found, the players say NO with probability 1/2. Thus, the players obtain advantage 1/4 over random

guessing for DIHP. We note that every player posts s bits, and some number of bits (those that intersect

existing components in Ft−1) are revealed for free, so the communication cost of this protocol is at least s
bits per player. We show below that this simple protocol does not find a cycle, and hence does not solve

DIHP(n, α, T ) with high constant probability unless s is close to n.

At the same time, we note that adaptive protocols are quite powerful: they can solve DIHP(n, α, T ) as

long as their communication budget s exceeds n/cT for some c > 1. An example such protocol works as

follows. The first player posts s/2 bits on arbitrary edges of the matching M1. The subsequent players then

maintain a collection of connected components C1, . . . Ck formed by the edges whose bits are posted (we

call such edges revealed). At each step a new player reveals edges incident to at least one of the connected

components. We then remove the smallest components from the list so that the total size of all components

remains at most s/2. Note that this ensures that every player posts at most s bits. After a new player reveals

edges, most of the components will increase its size by a factor of (1 + α) with high probability. Thus, at

each step the average component size will be multiplied by (1+α) whereas the total size of all components

will stay close to s. Note that deleting the smallest components cannot decrease the avarage component
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size. After T − 1 steps we will get approximately s/cT connected components each of size cT . One can see

that if s · cT ≫ n then with high probability one of the edges of Mt will have both endpoints in the same

connected component and thus we will solve the problem.

In the rest of this section we first show (Section 5.2) directly that even the powerful protocol Π′ (with

free edges) defined above still cannot solve DIHP(n, α, T ) with constant α ∈ (0, 1) unless s ≫ n/CT for

some absolute constant C > 1. This analysis is quite simple, but does not generalize to arbitrary protocols.

We then illustrate our analysis of general protocols by instantiating the relevant parts of the analysis for the

simple protocol above and proving that it does not solve DIHP(n, α, T ) unless s ≫ n/T T (note the slightly

weaker bound) by analyzing its Fourier spectrum in Section 5.3.

5.2 Combinatorial analysis of the component growing protocol

Our analysis uses a potential function defined on the forest F maintained by the protocol. The potential

function is simply the sum of squares of sizes of (nontrivial) connected components of F . We refer to this

quantity as the weight of F , or ||F ||:

Definition 5.1 For a forest F with non-trivial(size more than 1) connected components C1, . . . , Ck we

define its weight by ‖F‖ :=
∑k

i=1 |Ci|2.

For t = 1, . . . , T let Ft denote the forest computed by players 1, 2, . . . , t. Recall that in order to

distinguish between the YES and NO cases using our simple protocol the players must ensure that at least

one of the matchings Mt contains an edge with both endpoints inside one of the connected components of

Ft−1. Let C1, . . . , Ck denote the collection of connected components in Ft−1, and note that for a uniformly

random edge e = (u, v) one has

Pr[∃j = 1, . . . , k s.t. u, v ∈ Cj] ≤
k∑

j=1

|Cj |2/n2, (8)

and hence, taking a union bound over all edges of Mt, we get

Pr[∃j = 1, . . . , k, e = (u, v) ∈ Mt s.t. u, v ∈ Cj ] ≤ |Mt| ·
k∑

j=1

|Cj |2/n2 ≤
k∑

j=1

|Cj |2/n = ‖Ft−1‖/n.

The latter expression does not take into account the fact that as edges are added one after another, the set of

components may increase, but if one adds edges of the matching Mt, a similar bound follows. In particular,

one can show that the players succeed with probability at most

T∑

t=1

O(‖Ft‖/n) = O(T ) · (‖FT ‖/n),

since ‖Ft‖ is a non-decreasing function of t. It thus suffices to prove that ‖FT ‖ ≪ n/T . We now outline a

simple analysis that shows that if Ft is the forest computed by the players in the simple protocol above, then

as long as s ≪ n/AT for a sufficiently large A > 1, then after t steps one has

‖Ft‖ ≤ s · Bt (9)

for some constant B > 1. Thus, if the players start with s ≪ n/AT space with A ≥ 100B, say, then one

has ‖FT ‖/n ≪ 100−T , and thus the players do not succeed distinguishing between the YES and NO cases

with any significant advantage over random guessing.
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Analyzing the growth of ‖Ft‖. Fix t ∈ [T ], and let C1, C2, . . . , Ck be the nontrivial(size more than 1)

connected components of Ft−1. Let e1, e2, . . . , eαn be edges of Mt. We now analyze the expected increase

of the weight ‖Ft‖ of Ft relative to the weight ‖Ft−1‖ of Ft−1.

In order to compare ‖Ft‖ to ‖Ft−1‖, we define |Mt| intermediate forests, where the j-th such forest is

the forest that results from adding edges from the set e1, . . . , ej to Ft−1. Specifically, let F 0
t := Ft−1, and

for every j = 1, . . . , |Mt| let

F j
t :=

{
F j−1
t ∪ {ej} if ej intersects with a nontrivial component in F j−1

t

F j−1
t o.w.

Recall that besides keeping edges of Mt that intersect connected components of Ft−1, the t-th player also

posts the bits on an arbitrarily chosen subset of edges of Mt on the board. Let E∗ denote this set of additional

edges (not incident on any nontrivial component in Ft−1 whose bits the t-th player posts). This means that

Ft ⊆ F
|Mt|
t ∪ E∗. Since edges in E∗ are not incident to any components in F

|Mt|
t , their addition simply

increases the weight of the forest by 4s (since every component is of size 2). We now upper bound ‖F |Mt|
t ‖.

For every i = 1, . . . , |Mt| we upper bound

Eei

[
‖F i

t ‖
∣∣F i−1

t , e[1:i−1]

]
.

Conditioned on edges e1, e2, . . . , ei−1, the edge ei is a uniformly random edge not sharing end-points with

e1, e2, . . . , ei−1. Thus, for every subset of vertices C ⊆ [n] one has

Prei [|C ∩ ei| = 1|e[1:i−1]] ≤ 4|C|/n, (10)

since |Mt| = αn and α < 1/4 by assumption. Note that if for a component C in F i−1
t one has |C ∩ ei| = 1

and the other endpoint of ei does not belong to any nontrivial component in F i−1
t , then the increase in the

weight of the forest is (|C|+ 1)2 − |C|2 = 2|C|+ 1. We call such edges ei boundary edges.

Similarly, for every pair of subset of vertices C,C ′ ⊆ [n], C ∩ C ′ = ∅ one has

Prei [|C ∩ ei| = 1 and |C ′ ∩ ei| = 1|e[1:i−1]] ≤ 8|C||C ′|/n2, (11)

and we note that if the event above happens, the increase in the weight of the forest due to addition of ei
is (|C|+ |C ′|)2 − |C|2 − |C ′|2 = 2|C||C ′|. We call such edges ei internal edges. These notions of internal

edges and boundary edges will later be crucial in the proof of our main theorem through Fourier analysis

(see Section 5.3 below for an outline and then proofs of Lemmas 7.1 and 7.9 for the actual application).

Putting the two observations above (increase of potential due to boundary edges and internal edges)

together, we get

Eei

[
‖F i

t ‖
∣∣e[1:i−1]

]
≤ ‖F i−1

t ‖+
∑

C nontrivial component

in F i−1
t

(2|C|+ 1) · Prei [|C ∩ ei| = 1|e[1:i−1]]

+
∑

C,C′ nontrivial components

in F i−1
t

(2|C| · |C ′|) · Prei [|C ∩ ei| = 1 and |C ′ ∩ ei| = 1|e[1:i−1]]

(12)
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Substituting (10) and (11) into (12), we obtain

Eei

[
‖F i

t ‖
∣∣e[1:i−1]

]
≤ ‖F i−1

t ‖+
∑

C nontrivial component

in F i−1
t

(2|C|+ 1) · 4|C|
n

+
∑

C,C′ nontrivial components

in F i−1
t

(2|C| · |C ′|) · 8|C| · |C ′|
n2

≤ ‖F i−1
t ‖+ 12‖F i−1

t ‖
n

+
8‖F i−1

t ‖2
n2

= ‖F i−1
t ‖ ·

(
1 +

12

n
+

8‖F i−1
t ‖
n2

)
.

(13)

Applying this |Mt| = αn times formally requires a careful application of concentration inequalities (the

details are provided in Appendix C), but ultimately results in

E

[
‖F |Mt|

t ‖
]
≈ ‖Ft−1‖ ·

(
1 +

12

n
+

8‖Ft−1‖
n2

)|Mt|
≈ ‖Ft−1‖ · (B/2) (14)

for some constant B, as long as all intermediate forests satisfy ‖F i−1
t ‖ ≪ n (which they do with the

appropriate setting of parameters – see Appendix C for details).

Now recall that besides keeping edges of Mt that intersect connected components of Ft−1, the t-th
player also posts the bits on an arbitrarily chosen subset of edges of Mt that do not share an endpoint with

Ft−1 on the board (we call such edges external edges; a similar notion plays a crucial role in our analysis

of general protocols see (26) and related discussion). Recall that Ft ⊆ F
|Mt|
t ∪ E∗, where E∗ denotes the

set of additional edges (not incident on any nontrivial component in Ft) that the t-th player reveals. We thus

get ‖Ft‖ ≤ ‖F |Mt|
t ‖+ 4s, which, when put together with (14), gives

E [‖Ft‖] ≈ ‖Ft−1‖ · B + 4s.

Applying the above iteratively for t = 1, . . . , T results in

E[‖Ft‖] . ‖F0‖ ·Bt . s ·Bt.

This (informally) establishes (9), and shows that the players need s ≫ n/Bt in order to solve DIHP(n, α, T ).

The analysis outlined above is quite simple, but does not generalize to arbitrary communication proto-

cols. In the next section we introduce our Fourier analytic approach, and illustrate some of the main claims

by instantiating them on our component growing protocol above.

5.3 Overview of general analysis (proof of Theorem 2.1)

In this section we first make some remarks about the Fourier spectrum of our component growing protocol,

and then use it to illustrate our analysis, which is formally presented in Section 6.

5.3.1 Second level Fourier spectrum of the component growing protocol vs combinatorial analysis

Suppose that the players use the simple protocol as described above. In that case the set of possible values

of the hidden partition X∗ consistent with the players’ knowledge at time t can be defined quite easily:

Bt = {x ∈ {0, 1}n : ∀e = (a, b) ∈ Ft, xa + xb = we}. (15)
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Thus, Bt is simply a linear subspace of {0, 1}n with constraints given by the edges in Ft. We will derive

expressions for the Fourier transform of the indicators ht := 1Bt of Bt for this simple protocol. Similarly,

set of possible values of the hidden partition X∗ consistent with the t-th player’s message can be defined

quite easily as well:

At = {x ∈ {0, 1}n : ∀e = (a, b) ∈ Ft ∩Mt, xa + xb = we}. (16)

Again, At is simply a linear subspace of {0, 1}n with constraints given by the edges revealed by the t-th
player. The normalized Fourier transform of the indicator ft := 1At of At for this simple protocol is quite

simple:

f̃(z) =

{
(−1)

∑
wi if z is matched by edges {ei} of Mt

0 o.w.
(17)

These expressions will not be directly useful for our proof, but will provide very good intuition.

It can be verified (a calculation is included in appendix E for convenience of the reader) that h̃t(v) can

only be nonzero if the set v has an even intersection with every cluster in Ft. We refer to such v ∈ {0, 1}n
as admissible for brevity. Furthermore, it can be verified that h̃t(v) has the following simple form. For each

admissible v let Q(v) denote a pairing of vertices of v via edge-disjoint paths in Ft (we associate Qv with

the set of edges on these paths). This is illustrated in Fig. 1(a), where the vertices of v ∈ {0, 1}n are marked

red, and the edges of Q(v) are the green dashed edges. Then we have

h̃t(v) =

{
(−1)

∑
e∈Q(v) we if v is admissible

0 o.w.

We refer to appendix E for the proof. For example, the coefficient h̃t({a1, a2, b1, b2, c1, c2}) is nonzero,

equals 1 in absolute value, and its sign is determined by the parities of labels on the green paths connecting

a1 to a2, b1 to b2, and c1 to c2 (see Fig. 1(a)).

a1

a2

b1

b2 c1
c2

(a) Illustration of admissibility property: coefficient

{a1, a2, b1, b2, c1, c2} (marked in red) is admissible, coeffi-

cient {a1, c2} is not.

a1

a2

b1

b2 c1
c2

(b) Growth of connected components of Ft−1 into Ft af-

ter addition of a matching Mt (its edges are shown as zig-

zagged).

Figure 1: Fourier transform of ht vs growth of connected components in Ft.

Recall that our direct analysis of the adaptive protocol in Section 5.1 used the weight of the forest Ft,

defined by

‖Ft‖ =

k∑

i=1

|Ci|2,

where C1, . . . , Ck are the nontrivial (size strictly larger than 1) connected components of Ft. As we noted

in that section, this particular way of analyzing the component growing protocol does not generalize, but
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the following reformulation does. Consider weight two Fourier coefficients of ht. As noted above, one has

h̃t({a, b}) 6= 0 if and only if a and b belong to the same connected component in Ft. We therefore have

∑

v∈{0,1}n:|v|=2

∣∣∣h̃t(v)
∣∣∣ = 1

2

∑

a,b∈[n],
a6=b

∣∣∣h̃t({a, b})
∣∣∣

=
1

2

k∑

i=1

∑

a,b∈Ci,
a6=b

∣∣∣h̃t({a, b})
∣∣∣

=

k∑

i=1

(
Ci

2

)

= Θ(‖Ft‖).

This suggests an analysis that is based on proving that

∑

v∈{0,1}n:|v|=2

∣∣∣h̃t(v)
∣∣∣≪ n (18)

for all t = 1, . . . , T , i.e, the sum of absolute values of second level Fourier coefficients stays small through-

out the game, hoping that this is a general enough approach for handling arbitrary protocols. Our proof

indeed proceeds along similar lines but there are two major difficulties that one needs to overcome in order

to make this work. First, while for the simple protocol higher order Fourier coefficients are (essentially)

determined by weight two Fourier coefficients, i.e., by the collection of connected components in Ft, this is

not the case for general protocols. We thus need to generalize (18) to higher weights. Second, we need to

design techniques for analyzing the equivalent of ‘component growth’ in the combinatorial version of our

analysis, in terms of Fourier coefficients.

5.3.2 Evolution of Fourier coefficients

We now present our general analysis, and illustrate it by applying to the component growing protocol from

Section 5.1. Recall that after t players have spoken the random bipartition X∗ is uniform in the set Bt =
A1 ∩A2 ∩ . . . ∩At. The following lemma (see Section 6 for the proof) is crucial for our proof:

Lemma 6.2 For every constant α ∈ (0, 10−10), integer n ≥ 1, every T ∈ [10, ln n], s ≥ √
n, the following

conditions hold if n is sufficiently large. Suppose there exists a protocol Π for DIHP(n, α, T ) such that

|Π| = s < n/(10T )10
9T . Let δ = 1/(1000T ). Then there exist events E1 ⊇ E2 ⊇ . . . ⊇ ET with

Pr[E1] = 1 and Pr[Ēt+1|Et] ≤ 1/(100T ) for t = 1 . . . T − 1, such that Et depends on (SY
1:t−1,M1:t) only,

and conditioned on Et one has

1. Bt−1 is ((1012T )t, 10Ts)-bounded (as per Definition 4.3);

2. |Bt−1|/2n ≥ 2−s(t−1)−10(t−1) log T ;

3. for any non-negative function q on {0, 1}Mt

1− δ ≤
Ex∼Uniform(Bt−1) [q(Mtx)]

Ez∼Uniform({0,1}Mt) [q(z)]
≤ 1 + δ.
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The third part of the lemma helps us conclude that the messages posted on the board do not reveal

enough information to distinguish between the YES and the NO cases: indeed it implies that the posterior

distribution of the labels that the t-th player observes on Mt in the YES case is pointwise close to uniform.

Since we show that this is true for all players t = 1, . . . , T , the result follows by simple properties of the

total variation distance (see Lemma 6.3 and then proof of Theorem 2.1 in Section 6). The first two parts of

Lemma 6.2 are the main invariants on the evolution of the Fourier spectrum of ht that drive our analysis.

Recall that by Definition 4.3 a set B ⊆ {0, 1}n is (C, s∗)-bounded if for all ℓ ≤ s∗ we have

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ ≤

(
C
√
s∗n
ℓ

)ℓ

; (19)

and for all s∗ < ℓ < n
C2 we have

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ ≤

(
C2n

ℓ

)ℓ/2

. (20)

As per (5), defining the function UC,s*(ℓ) by

UC,s*(ℓ) =





1 ℓ = 0;(
C
√
s∗n
ℓ

)ℓ
ℓ ∈ [1 : s∗];

(
C2n
ℓ

)ℓ/2
ℓ > s∗,

we are able to simplify notation, ensuring that an indicator function h is (C, s∗) bounded if and only if for

all ℓ < n/C2 we have ∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃(v)
∣∣∣ ≤ UC,s*(ℓ).

Intuition behind the choice of the bound UC,s*(ℓ). We note that the bound above is essentially obtained

as follows: one first thinks of the bounds on the ℓ1 norm of the Fourier transform of the indicator f of the set

A in the cube that is consistent with the message of a single player that follow by applying Cauchy-Schwarz

to the ℓ2 norm bounds provided by hypercontractivity (see Lemma F.2 in Appendix F; this is the bound that

was used in [GKK+08] and follow up works). We then prove by induction that even the Fourier transform

of the product of such indicator functions maintains the small ℓ1 norm property. The fact that UC,s*(ℓ)
provides different bounds for small and large ℓ is a consequence of the fact that hypercontractivity only

implies strong bounds on the ℓ22 mass of the Fourier spectrum of an (indicator of a) set A of density 2−s∗

when ℓ ≤ s∗, for larger ℓ one simply uses Parsevals’ equality. See the proof of Lemma 3.3 for the details of

this calculation.

We also note that the bound that we prove on the ℓ1 norm of the Fourier transform of h is indeed

surprisingly strong: it is much stronger than what follows by Cauchy-Schwarz for an arbitrary function of

the same ℓ22 norm.

Overall, in our analysis we distinguish between ‘low weight’ Fourier coefficients, namely those with

weights between 1 and s∗, the ‘intermediate weight’ Fourier coefficients, namely those between s∗ and n
C2 ,

and the ‘high weight’ Fourier coefficients, namely those with weights between n
C2 and n. Here, s∗ = 10Ts

is an upper bound for the total amount of information revealed by all players.
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The low weight bound (19) for the component growing protocol (ℓ ∈ [1, s∗]). Note that instantiating

the first guarantee of Lemma 6.2 above for ℓ = 1 leads to a bound of

∑

v∈{0,1}n
|v|=2

∣∣∣1̃B(v)
∣∣∣ ≤ (1012T )t ·

√
10Ts · n,

which is similar to our upper bound of s · Bt on ‖Ft‖ from Section 5.2. Also note that the bound that we

get for general communication protocols with a budget of s bits is similar to what one would get for the

simple protocol with ≈ √
s · n bits (see rhs above). This is a consequence of the fact that our analysis starts

with ℓ22 bounds on Fourier coefficients and converts those into ℓ1 bounds, with an appropriate loss from

Cauchy-Schwarz.

The intermediate weight bound (20) for the component growing protocol (ℓ ∈ (s∗, n/C2]). Note that

since the middle weight coefficients correspond to weights at least s∗ = 10Ts, they all vanish for any simple

protocol of size at most s. Indeed, since each player reveals at most s edges, the total size of non-trivial

connected components in the resulting forest FT does not exceed 2Ts.

Hight weights for the component growing protocol (ℓ > n/C2). Similarly, the high weight part of

the spectrum is zero for the component growing protocol, since the maximum weight of a nonzero Fourier

coefficient is upper bounded by twice the number of edges in the forest Ft, and that number never becomes

close to n with the appropriate setting of parameters.

We now outline the proof of Lemma 6.2. Note that the main challenge that we had to overcome in

the analysis of the component growing protocol in Section 5.2 is bounding the rate at which connected

components of different sizes are merged when edges of the next matching Mt connect two nontrivial

components (we refer to these edges as internal edges, see Section 5.2) or connect a nontrivial component

to an isolated vertex (we refer to these edges as boundary edges, see Section 5.2). Our Fourier analytic

approach analyzes the component merging process using the convolution theorem: we note that the arrival of

internal or boundary edges results in the Fourier transform of ht being convolved with the Fourier transform

of the message ft that the t-th player sends, and we analyze this process directly.

The proof of Lemma 6.2 is by induction on t, with the inductive step being the main technical lemma of

our paper. It is given by

Lemma 6.1 For every n,C, s∗, α, δ that satisfy conditions

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4 (P5) δ ∈ (n−1, 1/2),

every B ⊆ {0, 1}n, if B is (C, s∗)-bounded (as per Definition 4.3) and M is a uniformly random matching

of size αn, the following conditions hold with probability at least 1− 5δ over the choice of M .

For every Areduced ⊆ {0, 1}M such that |Areduced|/2αn ≥ 2−s∗ , if A = {x ∈ {0, 1}n : Mx ∈
Areduced}, then B

′ := B ∩A is ((109/δ)C, s∗)-bounded.

We now illustrate the proof using the component growing protocol. Let Bt be as in Definition 4.1. In

particular, for the component growing protocol Bt is explicitly given by (15). For simplicity we write M
for Mt, B

′ for Bt, B for Bt−1, and A for At. We further let h := 1B, f := 1A, h′ := h · f = 1B′ . Proving

that h′ is ((109/δ)C, s∗)-bounded involves upper bounding the ℓ1 norm of Fourier coefficients at various

21



levels 2ℓ, ℓ ∈ [1, n/(2C2)]. Convolution theorem (1) together with triangle inequality give

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃′(v)
∣∣∣ = 2n

|B′|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ′(v)
∣∣∣

=
2n

|B|
2n

|A|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ′(v)
∣∣∣

≤
∑

v∈{0,1}n
|v|=2ℓ

∑

z∈{0,1}n

∣∣∣∣
2n

|B| ĥ(v ⊕ z)
2n

|A| f̂(z)
∣∣∣∣

=
∑

v∈{0,1}n

∑

z∈{0,1}n
|v⊕w|=2ℓ

∣∣∣h̃(v)f̃(z)
∣∣∣

=
∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣
∑

z∈{0,1}n
|v⊕z|=2ℓ

∣∣∣f̃(z)
∣∣∣ .

(21)

Here in going from line 2 to line 3 we used the fact that |B′|/2n = (|B|/2n) · (|A|/2n) for our simple proto-

col, as long as no cycle has been revealed. This in particular proves part 2 of Lemma 6.2 for the component

growing protocol without the additive loss in the exponent (we get |Bt−1|/2n = 2−s(t−1) as opposed to just

|Bt−1|/2n ≥ 2−s(t−1)−10(t−1) logT ; see proof of Lemma 6.2 in Section 6 for general argument). It is useful

to recall at this point (see (16) and (17)) that f̃(w) 6= 0 only if w is perfectly matched by M .

Now note that for the component growing protocol the sum
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃′(v)
∣∣∣ is the number of sets of

2ℓ vertices that intersect every connected component in Ft−1 an even number of times. The sum on the rhs

of the last line in (21) is over all v that intersect every component in Ft−1 an even number of times, and

subsets z of edges of Mt such that v ⊕ z has weight 2ℓ. For small ℓ most of the sum is contributed by sets

of 2ℓ vertices having two vertices in each connected component of Ft−1. In particular, every such v together

with z ∈ {0, 1}n that satisfies |v⊕ z| = 2ℓ and f̃(z) 6= 0 corresponds to a collection of components in Ft−1

that are merged into a collection of ℓ components in Ft by the edges in z.

The core of our proof (see Lemma 7.1 and Lemma 7.9) shows that if h is (C, s∗)-bounded, then

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣


 ≤ U109C,s*(ℓ),

which in turn implies that h′ = h ·f is (109C, s∗)-bounded on average. Applying Markov’s inequality to the

above then yields a proof of Lemma 6.1, and applying Lemma 6.1 iteratively leads to a proof of Lemma 6.2.

We now illustrate the main ideas of the proof of the implication above when ℓ is small, namely when

ℓ ≤ s∗. For clarity of exposition we sketch the proof of the following bound:

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM



∑

z∈{0,1}n
|v⊕z|=2ℓ

∣∣∣f̃(z)
∣∣∣


 ≤

(
20Cs

ℓ

)
, (22)
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starting from the assumption that for all ℓ = 1, . . . , n/C2

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃(v)
∣∣∣ ≤

(
Cs

ℓ

)
. (23)

We note that the condition above implies (C, s)-boundedness.

We first note that f̃(z) 6= 0 only if z = Mw for w ∈ {0, 1}M (see (16) and (17) for the compo-

nent growing protocol, and Lemma 3.4 for general protocols), and thus for every v ∈ {0, 1}n one has

EM

[
∑

z∈{0,1}n
|v⊕z|=2ℓ

∣∣∣f̃(z)
∣∣∣
]
= EM

[
∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣
]

. We also note that since our matchings are small

(|M | ≤ αn for small constant α ∈ (0, 1), see, e.g. Lemma 6.2), the condition |v ⊕ Mw| = 2ℓ implies

that |v| < n/100. Thus, the only terms with a nonzero contribution to the sum that we need to bound are

v ∈ {0, 1}n with |v| = 2k ≤ n/100. Thus, it suffices to bound, for a parameter k ∈ [0 : n/200] and

v ∈ {0, 1}n with |v| = 2k, the quantity

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 . (24)

Note that this quantity depends on v only through k = |v|. We will later combine our bounds over all

k ∈ [0 : n/200] to obtain the result of the lemma.

Bounding (24) for fixed v: internal and boundary edges. A vector v ∈ {0, 1}n naturally corresponds to

a subset of [n] of its non-zero coordinates. Let IntM (v) = {eint1 , eint2 , . . . } be the set of edges e = (a, b) ∈ M
that match points of v, i.e. with a, b ∈ v. Let ∂M (v) = {ebound1 , ebound2 , . . . } be the set of boundary edges,

i.e. edges e = (a, b) ∈ M with a ∈ v, b 6∈ v or vice versa. Let ExtM (v) = {eext1 , eext2 , . . . } be the set of

external edges, i.e. edges e = (a, b) ∈ M with a, b ∈ [n] \ v. See Fig. 2 for an illustration.

Set v

IntM (v) (internal edges) ExtM (v) (external edges)

∂M (v) (boundary edges)

Figure 2: A coefficient v together edges of the matching M classified into internal edges IntM (v), external

edges ExtM (v) and boundary edges ∂M (v).

We decompose the sum (24) according to the set of boundary edges in w:

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 = EM


 ∑

S⊆∂M (v)

∑

w∈{0,1}M
1{w∩∂M (v)=S}1{|v⊕Mw|=2ℓ}

∣∣∣f̃(Mw)
∣∣∣


 .
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It turns out that if w ∩ ∂M (v) = S then the latter indicator function can be rewritten as the indicator of

|w⊕wS| = ℓ− (k − |IntM (v)|), where wS ∈ {0, 1}M is the set of all internal edges IntM (v) and all edges

in S (see the proof of Lemma 7.1 for details). This gives the following upper bound:

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 = EM




∑

S⊆∂M (v)

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

1{w∩∂M (v)=S} ·
∣∣∣f̃(Mw)

∣∣∣




≤ EM




∑

S⊆∂M (v)

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

∣∣∣f̃(Mw)
∣∣∣


 ,

where we dropped the indicator function in going from the first line to the second line above. Note that

|f̃(Mw)| = 1 if all the edges of w are revealed by the t-th player and zero otherwise. Since all the edges of

wS (i.e. internal edges and some subset of the boundary edges) are revealed we know that w ⊕ wS is also a

subset of the revealed edges which means that we have

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

∣∣∣f̃(Mw)
∣∣∣ ≤

(
s

ℓ− k + |IntM (v)|

)
. (25)

Note that here we are crucially using the fact that w ⊕ wS is a set of external edges only. This allows

us to bound the sum of Fourier coefficients by a function of s, the communication budget per player. The

equivalent statement for general protocols is provided by Lemma 3.3 (see (39)), which bounds the sum of

absolute values of Fourier coefficients of a dense subset of the boolean cube by a similar expression to the

above.

Since the bound in (25) is independent of S, summing over all possible subsets S ⊆ ∂M (v), we infer

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤ EM

[
2|∂M (v)|

(
s

ℓ− k + |IntM (v)|

)]
. (26)

We then bound the sum on the last line above:

EM

[
2|∂M (v)|

(
s

ℓ− k + |IntM (v)|

)]
= EM

[
k∑

i=0

2k∑

b=0

2b1{|∂M (v)|=b and |IntM (v)|=i}

(
s

ℓ− k + i

)]

=

k∑

i=|k−ℓ|+

2k∑

b=0

2bq(k, i, b, n)

(
s

ℓ− k + i

)
.

In going from line 1 to line 2 above we used the fact that by Definition 3.10 for every v ∈ {0, 1}n with

|v| = 2k one has EM [1{|∂M (v)|=b and |IntM (v)|=i}] = q(k, i, b, n), i.e. q(k, i, b, n) is the probability that a

uniformly random matching M of size αn is such that i edges of M match points of v (i.e. |IntM (v)| = i)
and b edges of M are boundary edges (i.e. |∂M (v)| = b). Recall that |k − ℓ|+ = max{0, k − ℓ}. We note
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that q(k, i, b, n) depends on the size αn of the matching M , but we prefer to keep this dependence implicit

to simplify notation.

We thus have that for a fixed v ∈ {0, 1}n with |v| = 2k

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤

k∑

i=|k−ℓ|+

2k∑

b=0

q(k, i, b, n)2b
(

s

ℓ− k + i

)
. (27)

We now note that intuitively, q(k, i, b, n) ≈ n−i, since (at least for small i and k) the probability of having

an internal edge in a given set of size 2k is approximately 1/n. In fact, for small k, i we have q(k, i, b, n) .
10kn−i (the formal bounds are somewhat different for larger k and i, and are given in Lemma 3.15 and

Lemma 3.13).

We now consider two cases.

Case 1: k ≥ ℓ. This case essentially corresponds to analyzing the rate at which collection of k components

get merged into collections of ℓ components. Using Lemma 3.15 and Lemma 3.13 we get that the summand

in (27) decays exponentially with b and i, and since in this case the sum starts at i = k − ℓ, we get

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤

k∑

i=k−ℓ

2k∑

b=0

q(k, i, b, n)2b
(

s

ℓ− k + i

)

. 10k ·
k∑

i=k−ℓ

n−i

(
s

ℓ− k + i

)

≈ 10k · n−(k−ℓ).

This is consistent with the intuition that (at least for constant k and ℓ) the probability that a given collection

of k constant size components becomes merged into only ℓ < k components is about n−(k−ℓ): this is simply

because such an event requires at least k − ℓ edges of the matching Mt to have both endpoints inside the k
components.

Case 2: k > ℓ. In this case, as in case 1, the sum in (27) above is close to the value of the maximum

summand, which gives, since the sum starts with i = |k − ℓ|+ = 0,

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤

k∑

i=0

2k∑

b=0

q(k, i, b, n)2b
(

s

ℓ− k + i

)

. 10k ·
(

s

ℓ− k

)
.

This is consistent with the intuition that a given collection of k components in Ft−1 can contribute to about( s
ℓ−k

)
size ℓ components in Ft: simply consider adding any subset of ℓ−k edges of the matching Mt that do
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not intersect with nontrivial components in Ft−1. Note that this is the part where we analyze the contribution

of the bits that the players are actually charged for in the component growing protocol, i.e. external edges.1

Using the bounds from Case 1 and Case 2 above in equation (22), we obtain

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM



∑

z∈{0,1}n
|v⊕z|=2ℓ

∣∣∣f̃(z)
∣∣∣


 .

∑

k≤ℓ

10k ·
(
Cs

k

)
·
(

s

ℓ− k

)
+
∑

k>ℓ

10k ·
(
Cs

k

)
· nℓ−k

.

(
20Cs

ℓ

)
.

The sketch above is informal, but Lemma 7.1 (whose proof is given in Section 6) provides the formal version

that matches the qualitative conclusion. We state this lemma here for convenience of the reader:

Lemma 7.1 For every n, s∗, C > 1, α ∈ (0, 1) that satisfy conditions

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

if B ⊆ {0, 1}n is (C, s∗)-bounded and M is a uniformly random matching on [n] of size αn, the following

conditions hold. For every Areduced ⊆ {0, 1}M , if A = {x ∈ {0, 1}n : Mx ∈ Areduced} and f is the

indicator of A, if |A|/2n ≥ 2−s∗ , then for every ℓ ∈ [1, s∗]

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM



∑

z∈{0,1}n
|v⊕z|=2ℓ

∣∣∣f̃(z)
∣∣∣


 ≤

(
109C

√
s∗n

ℓ

)ℓ

.

Similar ideas lead to the proof of Lemma 7.3. In the general case we also need to bound the mass transfer

from intermediate and high weights, see Lemmas 7.5 and 7.7.

6 Proof of main theorem (Theorem 2.1)

In this section we give the proof of Theorem 2.1, restated here for convenience of the reader:

Theorem 2.1 There exists a constant C0 > 0 such that for every ǫ ∈ (0, 1) and every sufficiently large n
every protocol Π for DIHP(n, α, T ) with α = 10−11, T = 512/(αǫ2) that succeeds with probability at

least 2/3 satisfies |Π| ≥ n/(C0/ǫ)
C0/ǫ2 .

Section outline. The proof is structured as follows. We first state our main technical lemma (Lemma 6.1,

proved in Section 7), which is the core tool behind the proof. Lemma 6.1 analyzes the relation between the

properties of the Fourier transform of Bt−1 and the Fourier transform of Bt: we show that if Bt−1 is (C, s∗)-
bounded (as per Definition 4.3) for some parameter s∗ ≈ T · s that is essentially the total communication

budget of the players and Mt is a uniformly random matching of size αn, then Bt is ((109/δ)C, s∗)-bounded

with high probability (note that the lemma is stated without any reference to the index t, but is actually

applied iteratively as above in subsequent analysis). We then prove Lemma 6.2 below, which iteratively

applies Lemma 6.1 and analyzes the evolution the Fourier coefficients of Bt. The proof of Theorem 2.1 then

follows by combining basic properties of the total variation distance (Lemma 6.3 below) with Lemma 6.2.

The following technical lemma, which is the main result of Section 7, is the main tool in our proof:

1At the same time, one should note that while the simple intuitive overview of case 1 does not involve external edges, they do

have an effect on the actual proof – see Lemmas 7.1 and 7.9 in Section 6. The fact that their effect in this case is second order lets

us present the simple intuition for case 1 above.
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Lemma 6.1 For every n,C, s∗, α, δ that satisfy conditions

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4 (P5) δ ∈ (n−1, 1/2),

every B ⊆ {0, 1}n, if B is (C, s∗)-bounded (as per Definition 4.3) and M is a uniformly random matching

of size αn, the following conditions hold with probability at least 1− 5δ over the choice of M .

For every Areduced ⊆ {0, 1}M such that |Areduced|/2αn ≥ 2−s∗ , if A = {x ∈ {0, 1}n : Mx ∈
Areduced}, then B

′ := B ∩A is ((109/δ)C, s∗)-bounded.

6.1 Evolution of Fourier coefficients

The next lemma bounds the evolution of Fourier coefficients of the sets Bt for t = 1, . . . , T , and forms the

main technical part of the proof of Theorem 2.1. The proof of Lemma 6.2 essentially amounts to iteratively

applying Lemma 6.1 and keeping track of the density |Bt|/2n throught a natural inductive hypothesis, using

Lemma 4.7 at every step of the induction to argue that |Bt|/2n ≈ (|Bt−1|/2n) · (|At|/2n) (i.e., the densities

almost multiply):

Lemma 6.2 For every constant α ∈ (0, 10−10), integer n ≥ 1, every T ∈ [10, ln n], s ≥ √
n, the following

conditions hold if n is sufficiently large. Suppose there exists a protocol Π for DIHP(n, α, T ) such that

|Π| = s < n/(10T )10
9T . Let δ = 1/(1000T ). Then there exist events E1 ⊇ E2 ⊇ . . . ⊇ ET with

Pr[E1] = 1 and Pr[Ēt+1|Et] ≤ 1/(100T ) for t = 1 . . . T − 1, such that Et depends on (SY
1:t−1,M1:t) only,

and conditioned on Et one has

1. Bt−1 is ((1012T )t, 10Ts)-bounded (as per Definition 4.3);

2. |Bt−1|/2n ≥ 2−s(t−1)−10(t−1) log T ;

3. for any non-negative function q on {0, 1}Mt

1− δ ≤ Ex∼Uniform(Bt−1) [q(Mtx)]

Ez∼Uniform({0,1}Mt) [q(z)]
≤ 1 + δ. (28)

Proof: We let s∗ := 10Ts to simplify notation. Our proof is by induction on t = 1, . . . , T .

Base (t = 1) The event E1 happens with probability 1, and the set B0 is defined as B0 = {0, 1}n, so the

inductive claim is satisfied since for any matching M1 a random variable M1x with x ∼ Uniform({0, 1}n)
is uniform in {0, 1}M1 .

Inductive step: t → t+1 We first define the events E ′
t+1 and E ′′

t+1 and prove that both of them occur with

high probability conditioned on Et. We then show that the inductive hypothesis for t+ 1 holds conditioned

on Et+1, which we define to be Et ∩ E ′
t+1 ∩ E ′′

t+1 ∩ E ′′′
t+1, where E ′′′

t+1 is a similar event that ensures that the

third condition is satisfied, establishing the inductive step.

Constructing events E ′
t+1 and E ′′

t+1. Define E ′
t+1 := {|At| ≥ 2n−s−9 log T }. Conditioned on Et, we have

by the inductive hypothesis and Lemma D.1

Ex∼Uniform(Bt−1)[1/|At|] ≤ (1 + δ) · Ex∼Uniform({0,1}Mt)[1/|At|] ≤ (1 + δ) · 2s−n.

This means that by Markov’s inequality for the event we have Pr[E ′
t+1|Et] > 1− (1+ δ) · 2−9 log T > 1− δ.
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Lower bounding |Bt|/2n. We start by showing that conditioned on Et the set Bt satisfies

|Bt|
2n

≥ (1− δ)
|Bt−1|
2n

|At|
2n

. (29)

Indeed, it suffices to take for q the indicator function of Areduced,t and apply (28). Since

Ex∼Uniform(Bt−1)[q(Mx)] =
|Bt−1 ∩At|

|Bt−1|
=

|Bt|
|Bt−1|

, Ez∼Uniform({0,1}Mt )[q(z)] =
|Areduced,t|

2αn
=

|At|
2n

,

we have

|Bt|
2n

=
|Bt−1|
2n

· Ex∼Uniform(Bt−1)[q(Mx)]

≥ (1− δ)
|Bt−1|
2n

· Ez∼Uniform({0,1}Mt )[q(z)] (by (28))

= (1− δ)
|Bt−1|
2n

· |At|
2n

establishing (29). Now by conditioning on E ′
t+1 we have |At| ≥ 2n−s−9 log T . Putting this together with (29)

yields

|Bt|
2n

≥ (1− δ)
|Bt−1|
2n

|At|
2n

≥ (1− δ)
|Bt−1|
2n

· 2−s−9 log T (by conditioning on E ′
t+1)

≥ (1− δ)2−s(t−1)−10(t−1) log T · 2−s−9 logT (by the inductive hypothesis)

= (1− δ) · 2log T · 2−st−10t log T

≥ 2−st−10t log T (since δ < 1/2 and T ≥ 10)

(30)

establishing the lower bound on |Bt| required for the inductive step.

Proving that Bt is ((1012T )t+1, 10Ts)-bounded. Let E ′′
t+1 be the success event from Lemma 6.1 applied

to the sets B := Bt−1 and Areduced = Areduced,t with C = (1012T )t, δ = 1/(103T ), s∗ = 10Ts. By

Lemma 6.1 (we verify that preconditions are satisfied below) we have Pr[E ′′
t+1|Et] ≥ 1−5δ and conditioned

on E ′′
t+1 the set Bt = Bt−1 ∩At is ((109/δ)C, s∗)-bounded, as required.

We now verify that the preconditions of Lemma 6.1 are satisfied. We have to check five conditions:

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4) n > 109C4 (P5) δ ∈ (n−1, 1/2)

First two conditions are clear since α < 10−10 and C = (1012T )t > 106. Condition (P3) is satisfied since

s∗ = 10Ts <
n

(10T )109T−1
≤ n

(1012T )100T
≤ n

109 · (1012T )3T ≤ n

109C3
.

Condition (P4) is satisfied because s ≥ 1 implies n ≥ (10T )10
9T and so

n ≥ (10T )10
9T > 109 · (1012T )4T ≥ 109C4.

Condition (P5) is satisfied since 1/2 > 1
103T

= δ > n−1, as T ≤ lnn by assumption.
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Proving point-wise closeness of pdfs. Conditioned on Et ∩ E ′
t+1 ∩ E ′′

t+1 the set Bt is ((1012T )t+1, s∗)-
bounded and satisfies |Bt|/2n ≥ 2−st−10t logT ≥ 2−s∗ , since T ≤ lnn and s ≥ √

n by assumption of the

theorem. Let E ′′′
t+1 be the event (over the choice of the matching Mt+1) that for any non-negative function q

on {0, 1}Mt+1

1− δ ≤
Ex∼Uniform(Bt−1) [q(Mtx)]

Ez∼Uniform({0,1}Mt) [q(z)]
≤ 1 + δ, (31)

that is, the event that the third assumption is satisfied for t+1. By Lemma 4.7 invoked with C = (1012T )t+1

and s∗ = 10Ts and δ = 1/(1000T ) we have Pr[E ′′′
t+1|Et ∩ E ′

t+1 ∩ E ′′
t+1] ≥ 1 − δ. Indeed, preconditions of

the lemma are satisfied since we have C = (1013T )t+1 > 100, δ = 1/(103T ) ∈ (n−1, 1/2), α < 1/100
and

s∗ = 10Ts ≤ (10T )n/(10T )10
9T = n/(10T )10

9T−1 ≤
(

1

1000T

)4

n/(1013T )2t = δ4n/C2.

It remains to note that for Et+1 := Et ∩ E ′
t+1 ∩ E ′′

t+1 ∩ E ′′′
t+1 we have

Pr[Ēt+1|Et] ≤ Pr[E ′
t+1|Et] + Pr[E ′′

t+1|Et] + Pr[E ′′′
t+1|Et ∩ E ′

t+1 ∩ E ′′
t+1] ≤ δ + 5δ + δ < 1/(100T ).

6.2 Putting it together

We now combine Lemma 6.2 from the previous section with basic properties of the total variation distance

to obtain a proof of Theorem 2.1. Specifically, the proof relies on Lemma 6.3 below, which is essentially the

hybrid argument. Informally, the lemma says the following. Consider the YES case distribution DY , and

for each t = 1, . . . , T − 1 compare the distribution of SY
t+1 to the distribution of messages of the (t+ 1)-st

player obtained by supplying this player with random labels on their edges as opposed to labels consistent

with the hidden bipartition X∗ (the latter leads to rt(M1:t, S
Y
1:t−1, Ut)). If the resulting distributions are

close in total variation distance, then the joint distribution of all messages and matchings Mt posted on the

board after T rounds in the YES case is close to the same distribution in the NO case.

Lemma 6.3 Let X∗ ∼ UNIF ({0, 1}n) be a uniformly random binary vector of length n. For each

t = 1, . . . , T let Ut ∼ UNIF ({0, 1}αn) be an independent uniformly random vector of length αn. Let

M1, . . . ,MT be independently chosen random matchings on [n].
Let SY

0 = SN
0 := 0 and for each t = 1, . . . , T let

SY
t := rt(M1:t, S

Y
1:t−1,MtX

∗)

and

SN
t := rt(M1:t, S

N
1:t−1, Ut)

for some functions rt, t = 1, . . . , T . Suppose that there exists a sequence of events E1 ⊃ E2 ⊃ . . . ⊃ ET
such that Et depends only on M1:t and SY

1:t−1, and E1 occurs with probability 1, such that for any fixed

M1:t, S
Y
1:t−1 satisfying Et one has for some γ > 0

||SY
t − rt(M1:t, S

Y
1:t−1, Ut)||tvd ≤ γ/T. (*)

Suppose further that for each t = 1, . . . , T we have Pr[Ēt|Et−1] ≤ γ/T . Then

||(M1:T , S
Y
1:T )− (M1:T , S

N
1:T )||tvd ≤ 2γ.
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The (simple) proof of the lemma is given in Appendix B.

We now give

Proof of Theorem 2.1: Follows by putting together Lemma 6.3 and Lemma 6.2, as we show below.

Assume by contradiction that for any C0 there exists a protocol Π for DIHP(n, α, T ) succeeding with

probability at least 2/3 and satisfying |Π| < n/(C0/ε)
C0/ε2 . Take C0 = 1030, since T ≤ 1014/ε2, we have

|Π| < n/(C0/ε)
C0/ε2 ≤ n/(1030/ε)10

16T ≤ n/(
√
10T )10

16T < n/(10T )10
9T .

Without loss of generality we may assume that s = |Π| satisfies s ≥ √
n, and hence we can apply Lemma

6.2 since α = 10−11 ∈ (0, 10−10) and T ∈ [10, ln n] for n large enough. We choose Et to be the events

whose existence is guaranteed by Lemma 6.2. By Lemma 6.2 one has, conditioned on Et, for every fixed

Mt, that

||MtX
∗ − UNIF ({0, 1}Mt )||tvd ≤ δ = 1/(1000T ) (32)

for every t = 1, . . . , T . We claim that these events satisfy the preconditions of Lemma 6.3. Indeed, recalling

that SY
t = rt(M1:t, S

Y
1:t−1,MtX

∗) (see Definition 4.1), we get for any fixed SY
t−1 and M1:t satisfying Et−1

||SY
t − rt(M1:t, S

Y
1:t−1, Ut)||tvd = ||rt(M1:t, S

Y
1:t−1,MtX

∗)− rt(M1:t, S
Y
1:t−1, Ut)||tvd

≤ ||MtX
∗ − Ut||tvd,

(33)

where we applied Claim 3.7 in the last transition with f = rt, W = (M1:t, S
Y
1:t−1) and X = MtX

∗

and Y = Ut. We stress the fact that here W is deterministic and so the tvds are over the randomness of

X∗ ∼ Uniform(Bt−1), Ut ∼ Uniform({0, 1}Mt ).
Since by Lemma 6.2 we have Pr[Ēt|Et−1] ≤ 10δ and ||MtX

∗ − Ut||tvd ≤ δ, we can then apply Lemma

6.3 with γ = 10δT = 1/100 to deduce that

||(M1:T , S
Y
1:T )− (M1:T , S

N
1:T )||tvd ≤ γ,

which means that it is not possible to distinguish between YES and NO cases with probability more than

(1 + γ)/2 leading to a contradiction.

7 Proof of main technical lemma (Lemma 6.1)

The main result of this section is a proof of Lemma 6.1, restated here for convenience of the reader:

Lemma 6.1 (Restated) For every n,C, s∗, α, δ that satisfy conditions

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4 (P5) δ ∈ (n−1, 1/2),

every B ⊆ {0, 1}n, if B is (C, s∗)-bounded and M is a uniformly random matching of size αn, the following

conditions hold with probability at least 1− 5δ over the choice of M .

For every Areduced ⊆ {0, 1}M such that |Areduced|/2αn ≥ 2−s∗ , if A = {x ∈ {0, 1}n : Mx ∈
Areduced}, then B

′ := B ∩A is ((109/δ)C, s∗)-bounded.

We also restate the definition of (C, s∗)-boundedness and the definition of UC,s*(ℓ) for convenience.

Definition 4.3((C, s∗)-bounded set; restated) Let B ⊂ {0, 1} with indicator function h. We say that B (or

h) is (C, s∗)-bounded if
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• For all ℓ ≤ s∗ we have
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ ≤

(
C
√
s∗n
ℓ

)ℓ

;

• For all s∗ < ℓ < n
C2 we have

∑

v∈{0,1}n
|v|=2ℓ

∣∣∣1̃B(v)
∣∣∣ ≤

(
C2n

ℓ

)ℓ/2

.

As per (5), defining the function UC,s*(ℓ) by

UC,s*(ℓ) =





1 ℓ = 0;(
C
√
s∗n
ℓ

)ℓ
ℓ ∈ [1 : s∗];

(
C2n
ℓ

)ℓ/2
ℓ > s∗,

we are able to simplify notation, ensuring that an indicator function h is (C, s∗) bounded if and only if for

all ℓ < n/C2 we have ∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃(v)
∣∣∣ ≤ UC,s*(ℓ).

Proof outline. The lemma starts with the assumption that a subset B of {0, 1}n is (C, s∗)-bounded, and

proves that the intersection B
′ = B ∩ A with a subset A of {0, 1}n (which should be thought of as the

typical message corresponding to a player who receives labels MX for X selected uniformly at random

from B) is (109C, s∗)-bounded. It is instructive to contrast the bounds implied by the set B being (C, s∗)-
bounded (see Definition 4.3 and eq. (5), also restated above) with corresponding bounds for our component

growing algorithm presented in Section 5 (see Section 5.3). Intuitively, the rhs in the definition of (C, s∗)-
boundedness above shows that the amount of Fourier mass that a general protocol can have at some level ℓ is

upper bounded by the amount of mass that the component growing protocol with slightly increased budget,

namely
√
s∗n = s∗ ·

√
n/s∗ ≫ s∗, can have at levels ℓ ∈ [1, s∗]. This increase from s∗ to

√
s∗n is due to

our conversion on the ℓ22 norm of the Fourier transform to bounds on the ℓ1 norm.

The proof of Lemma 6.1 is based on the convolution theorem, and follows quite closely the outline

presented in Section 5. The main part of the proof that goes beyond the outline presented in Section 5 is the

analysis of contribution to and from weights higher than s∗ (specifically, weight levels in [s∗, n/(2C2)] and

[n/(2C2), n]), as such weight levels carry zero Fourier mass for the simple component growing protocol

from Section 5. The corresponding analysis is carried out in Lemma 7.1 (mass transfer to low weights,

possibly from low, intermediate or high weight coefficients) and Lemma 7.9 (mass transfer to intermediate

weight coefficients). At the same time, we note that most of the final contribution to the Fourier transform

of the final function comes from ‘low’ weight levels, namely from ℓ ∈ [1, s∗] (see Lemma 7.3), similarly to

the component growing protocol in Section 5, and the dominant bound is thus given by Lemma 7.1.

Proof of Lemma 6.1: By Lemma 4.7 with probability at least 1− δ over the choice of M we have

2n

|B′| ≤
2n

|B| ·
2n

|A| ·
1

1− δ
.

Indeed we just need to take q the indicator function of Areduced (see the proof of 29 in Lemma 6.2). So we

show that conditioned on this the set B′ is ((109/δ)C, s∗)-bounded with probability at least 1− 4δ.

31



We let h := 1B, f := 1A, h′ := h · f = 1B′ . Proving that h′ is ((109/δ)C, s∗)-bounded involved upper

bounding the ℓ1 norm of Fourier coefficients at various levels 2ℓ, ℓ ∈ [1, n/(2C2)]. Convolution theorem (1)

together with triangle inequality give
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ′(v)
∣∣∣ ≤

∑

v∈{0,1}n
|v|=2ℓ

∑

w∈{0,1}n

∣∣∣ĥ(v ⊕ w)f̂(w)
∣∣∣

=
∑

v∈{0,1}n

∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣ĥ(v)f̂ (w)
∣∣∣

=
∑

v∈{0,1}n

∣∣∣ĥ(v)
∣∣∣
∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̂(w)
∣∣∣ .

(34)

We need to bound
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃′(v)
∣∣∣ = 2n

|B′|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ′(v)
∣∣∣, but it turns out to be more useful to

upper bound 2n

|B| · 2n

|A|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ′(v)
∣∣∣ which is within a factor of (1 − δ) of what we need. Multiplying

both sides of (34) by 2n

|B| · 2n

|A| , we get

2n

|A| ·
2n

|B| ·
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ(v)
∣∣∣ ≤

∑

v∈{0,1}n
|v|=2ℓ

∑

w∈{0,1}n

∣∣∣h̃(v ⊕ w)f̃ (w)
∣∣∣

=
∑

v∈{0,1}n

∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣h̃(v)f̃(w)
∣∣∣

=
∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣
∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣ .

Taking expectation over the choice of M and recalling that 2n/|B′| ≤ (2n/|B|) · (2n/|A|)/(1 − δ) we get

2n

|B′|EM



∑

v∈{0,1}n
|v|=2ℓ

∣∣∣h̃′(v)
∣∣∣


 ≤ 1

1− δ
·
∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣


 . (35)

By Lemma 7.1 we have for all ℓ ∈ [1, s∗], using the fact that |A|/2n = |Areduced|/2αn ≥ 2−s∗ by

assumption of the lemma, we get

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣


 ≤

(
109C

√
s∗n

ℓ

)ℓ

,

and by Lemma 7.9 we have for all ℓ ∈ [s∗, n/(2C2)], using the fact that |A|/2n = |Areduced|/2αn ≥ 2−s∗

by assumption of the lemma,

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣


 ≤

(
(109C)2n

ℓ

)ℓ

.
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Putting these bounds together and recalling the definition of U109C,s*(ℓ) (see (5), as well as the definition

restated above) we have for each ℓ ∈ [1 : n/(2C2)] and all sets Areduced

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣


 ≤ U109C,s*(ℓ).

Thus, by Markov’s inequality the probability over the choice of M that

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣
∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣ ≥ U109C/δ,s*(ℓ)

for some ℓ > 0 and some Areduced is at most

n/(2C2)∑

ℓ=1

U109C,s*(ℓ)

(1− δ) ·U109C/δ,s*(ℓ)
=

1

1− δ
·
n/(2C2)∑

ℓ=1

δℓ ≤ δ

(1− δ)2
≤ 4δ.

Recalling that 2n/|B′| ≤ (2n/|B|) · (2n/|A|)/(1 − δ) happens with probability at least 1− δ we conclude

that B′ is ((109/δ)C, s∗)-bounded with probability at least 1− 5δ.

7.1 Bounding mass transfer to low weight Fourier coefficients

The goal of this subsection is to prove Lemma 7.1 below.

Proof outline. The lemma starts with the assumption that a subset B of {0, 1}n is (C, s∗)-bounded and

upper bounds the ℓ1 norm of the convolution of the normalized Fourier transform h̃ of B with the normalized

Fourier transform f̃ of a subset A of {0, 1}n (which should be thought of as the typical message correspond-

ing to a player who receives labels MX for X selected uniformly at random from B) on coefficients with

Hamming weight 2ℓ, for ℓ ∈ [1, s∗].
The proof follows the outline presented in Section 5 (see Section 5.3). Indeed, we first partition the

pairs v (a subset of the vertices, or a coefficient of h̃), and w (a subset of the edges of the matching that f̃ is

supported on) classes depending on the number of boundary, internal and external edges of the matching

M involved in the mass transfer. See the proof below for the definition of these types of edges M , Fig. 2 for

an illustration and Section 5.3 for an illustration of these notions on the simple example of the component

growing protocol from Section 5. We then reduce the problem of bounding the Fourier mass to the problem

of verifying certain sums that reflect the tradeoffs between the amount of mass at various Fourier levels and

basic combinatorics on matchings. A crucial parameter that governs these calculations is the probability,

over the choice of a uniformly random matching, that this matching has a given number of internal and

boundary edges with respect to a fixed subset of the vertices (i.e. a fixed Fourier coefficient). Convenient

upper bounds on such quantities are provided by Lemma 3.13 and Lemma 3.14. Using these lemmas, we

reduce the problem to verifying several combinatorial bounds (which at this point are disjoint from any

Fourier analytic considerations), which is done in Lemma 7.2, Lemma 7.3, Lemma 7.5 and Lemma 7.7

from Section 7.1.1

Overall, the proof of Lemma 7.1 follows quite closely the outline presented in Section 5, with the

main that goes beyond this outline being the analysis of contribution to and from weights higher than s∗

(specifically, weight levels in [s∗, n/(2C2)] and [n/(2C2), n]), as such weight levels carry zero Fourier
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mass for the simple component growing protocol from Section 5. This analysis is provided by Lemmas 7.2,

Lemma 7.3, Lemma 7.5 and Lemma 7.7 from Section 7.1.1. At the same time, we note that most of the

final contribution to the Fourier transform of the final function comes from ‘low’ weight levels, namely from

ℓ ∈ [1, s∗] (see Lemma 7.3), similarly to the component growing protocol in Section 5.

Lemma 7.1 (Mass transfer to low weights) For every n, s∗, C > 1, α ∈ (0, 1) that satisfy conditions

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

if B ⊆ {0, 1}n is (C, s∗)-bounded and M is a uniformly random matching on [n] of size αn, the following

conditions hold. For every Areduced ⊆ {0, 1}M , if A = {x ∈ {0, 1}n : Mx ∈ Areduced} and f is the

indicator of A, if |A|/2n ≥ 2−s∗ , then for every ℓ ∈ [1, s∗]

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM



∑

z∈{0,1}n
|v⊕z|=2ℓ

∣∣∣f̃(z)
∣∣∣


 ≤

(
109C

√
s∗n

ℓ

)ℓ

.

Proof: We first note that f̃(z) 6= 0 only if z = Mw for w ∈ {0, 1}M , and thus for every v ∈ {0, 1}n one has

EM

[
∑

z∈{0,1}n
|v⊕z|=2ℓ

∣∣∣f̃(z)
∣∣∣
]
= EM

[
∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣
]

. We also note that for every v ∈ {0, 1}n such

that |v⊕Mw| = 2ℓ one has |v| ≤ |v⊕Mw|+ |Mw| ≤ ℓ+ |Mw| ≤ s∗+2αn ≤ n/200 since s∗ ≤ n/109

and α < 1/400 by assumptions (P1), (P2) and (P3). Thus, the only terms with a nonzero contribution to

the sum that we need to bound are v ∈ {0, 1}n with |v| = 2k ≤ n/200. Thus, it suffices to bound, for a

parameter k ∈ [0 : n/100] and v ∈ {0, 1}n with |v| = 2k, the quantity

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 . (36)

We will later (see (41) below) combine our bounds over all k ∈ [0 : n/100] to obtain the result of the lemma.

Let IntM (v) = {eint1 , eint2 , . . . } be the set of edges e = (a, b) ∈ M that match points of v, i.e. with

a, b ∈ v. Let ∂M (v) = {ebound1 , ebound2 , . . . } be the set of boundary edges, i.e. edges e = (a, b) ∈ M with

a, b ∈ v. Let ExtM (v) = {eext1 , eext2 , . . . } be the set of external edges, i.e. edges e = (a, b) ∈ M with

a, b ∈ [n] \ v.

We decompose the sum (36) according to the number of boundary edges in Mw:

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 = EM


 ∑

S⊆∂M (v)

∑

w∈{0,1}M
1{w∩∂M (v)=S}1{|v⊕Mw|=2ℓ}

∣∣∣f̃(Mw)
∣∣∣


 . (37)

We now rewrite the latter indicator function. For a subset S ⊆ ∂M (v) define wS ∈ {0, 1}M as the set of

all internal edges IntM (v) and all edges in S. We then have |v ⊕MwS | = 2k − 2|IntM (v)|, since adding a

boundary edge to v does not change the Hamming weight, and adding an internal edge reduces it by 2. Also

note that |w ⊕ wS | = ℓ− (k − |IntM (v)|). Indeed, |v ⊕MwS | = 2k − 2IntM (v), |v ⊕ w| = 2ℓ, w can be
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obtained from wS be removing internal edges and adding external edges and both of these changes increase

|Mw ⊕Mws| by 2. These observations together with (37) yield the following upper bound on (36):

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤ EM




∑

S⊆∂M (v)

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

1{wS=S} ·
∣∣∣f̃(Mw)

∣∣∣




≤ EM




∑

S⊆∂M (v)

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

∣∣∣f̃(Mw)
∣∣∣


 ,

(38)

where we dropped the indicator function in going from the first line to the second line above. We now apply

Lemma 3.3 to the inner summation on the rhs of (38). We now let f ′ denote the indicator of Areduced and

note that f̃ ′(w) = f̃(Mw) for all w ∈ {0, 1}M . Since Areduced/2
αn = |A|/2n ≥ 2−s∗ , this, in turn, can

be bounded by Lemma 3.3 applied to the set Areduced ⊂ {0, 1}M (i.e. m = αn) with q = ℓ− k + IntM (v)
and y = ws. We obtain

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

∣∣∣f̃(Mw)
∣∣∣ =

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

∣∣∣f̃ ′(w)
∣∣∣

≤

√(
αn

ℓ− k + |IntM (v)|

)(
64s∗

ℓ− k + |IntM (v)|

)ℓ−k+|IntM (v)|

≤
(

15
√
s∗αn

ℓ− k + |IntM (v)|

)ℓ−k+|IntM (v)|
.

(39)

Summing over all possible subsets S ⊆ ∂M (v), we then infer

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤ EM


 ∑

S⊆∂M (v)

(
15
√
s∗αn

ℓ− k + |IntM (v)|

)ℓ−k+|IntM (v)|



≤ EM

[
2|∂M (v)|

(
15
√
s∗αn

ℓ− k + |IntM (v)|

)ℓ−k+|IntM (v)|]
,

where in going from line 1 to line 2 in the equation above we used the fact that the bound is independent of

the set S and upper bounded the summation by multiplying by the number of such sets S, i.e. 2|∂M (v)|.
We now bound the sum on the last line above. We have

EM

[
2|∂M (v)|

(
15
√
s∗αn

ℓ− k + |IntM (v)|

)ℓ−k+|IntM (v)|]

= EM

[
k∑

i=0

2k∑

b=0

2b1{|∂M (v)|=b and |IntM (v)|=i}

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
]

=
k∑

i=|k−ℓ|+

2k∑

b=0

2bq(k, i, b, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
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In going from line 2 to line 3 above we used the fact that by Definition 3.10 for every v ∈ {0, 1}n with

|v| = 2k one has EM [1{|∂M (v)|=b and |IntM (v)|=i}] = q(k, i, b, n), i.e. q(k, i, b, n) is the probability that a

uniformly random matching M of size αn is such that i edges of M match points of v (i.e. |IntM (v)| = i)
and b edges of M are boundary edges (i.e. |∂M (v)| = b). Note that we sum over b between 0 and 2k, as

the number of boundary edges of v with respect to M is bounded by its Hamming weight 2k. Similarly,

the number of internal edges i cannot be larger than |v|/2 = k, and must be at least k − ℓ in order for the

binomial coefficient
( αn
ℓ−k+i

)
on the first line above to be nonzero (combinatorially, this means that in order

for v + Mw to have weight 2ℓ for some w ∈ {0, 1}M one must have |IntM (v)| ≥ k − ℓ). Recall that

|k − ℓ|+ = max{0, k − ℓ}.

We thus have that for a fixed v ∈ {0, 1}n with |v| = 2k

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤

k∑

i=|k−ℓ|+

2k∑

b=0

q(k, i, b, n)2b
(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

Recall that by Lemma 3.14 we have q(k, i, b, n) ≤ q(k, i, n)20−b4k−i (note that k ≤ n/100 and α < 1/100
by assumption (P2), so the preconditions of the lemma are satisfied). We thus get, substituting into the rhs

of the equation above,

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤

k∑

i=|k−ℓ|+

2k∑

b=0

4k−iq(k, i, n)2−b

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

≤ 2

k∑

i=|k−ℓ|+
4k−iq(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

≤ 2
k∑

i=|k−ℓ|+
4ℓq(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

≤ 8ℓ
k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

.

(40)

Equipped with the upper bound (40), we now sum over possible v of Hamming weight k ∈ [0 : n/100]:

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣




≤ 8ℓ
n/100∑

k=0




∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣


 ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i



(41)

Recall that we want to bound the expression above for ℓ ≤ s∗. We now split the sum depending on how
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large k is. We consider three intervals. For k ∈ [0 : 100s∗] and k ∈ [100s∗ + 1 : n/C2] we use the bound

∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ ≤ UC,s*(k),

but for k ∈ [n/C2 + 1 : n/100] we use the bound that follows by Cauchy-Schwarz together with Par-

seval’s inequality: sum of squares of all normalized Fourier coefficients is 2n/|B| ≤ 2s
∗

due to (C, s∗)-
boundedness of B, and so

∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ ≤

√√√√√√√




∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣
2


 ·

(
n

2k

)
≤
√

2s∗
(
n

2k

)
.

Thus, it is sufficient to derive strong upper bounds on S0, S1, S2, S3 that we define below:

S0 :=
∑

k=0

UC,s*(k) ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

 (42)

S1 :=

100s∗∑

k=1

UC,s*(k) ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

 (43)

S2 :=

n/C2∑

k=100s∗+1

UC,s*(k) ·
(

k∑

i=k−ℓ

q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
)

(44)

S3 :=

n/100∑

k=n/C2+1

√
2s∗
(
n

2k

)
·
(

k∑

i=k−ℓ

q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
)

(45)

Lemma 7.2, Lemma 7.3, Lemma 7.5 and Lemma 7.7 show that S0 ≤ U15,s*(ℓ), S1 ≤ U108C,s*(ℓ), S2 ≤
U107C,s*(ℓ), and S3 ≤ 1, which concludes the proof since

8ℓ
(
U15,s*(ℓ) +U108C,s*(ℓ) +U107C,s*(ℓ) + 1

)
= 8ℓ

(
(15/C)ℓ + 108ℓ + 107ℓ + 1

)(C
√
s∗n
ℓ

)ℓ

≤
(
109C

√
s∗n

ℓ

)ℓ

We note that the dominant contribution comes from S1, i.e. from mass transfer from low weights to low

weights, and the amount of mass transfer is consistent with what we would expect for the component grow-

ing protocol with the slightly increased communication budget of
√
s∗n (as opposed to s∗).

7.1.1 Bounding S0, S1, S2, S3 (technical lemmas)

The first lemma bounds transfer of mass from weight zero to low weights:
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Lemma 7.2 (Mass transfer from weight zero to low weights) For every n, s∗, every ℓ ∈ [1 : s∗], if pa-

rameters C,α, s∗, n satisfy

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

then

∑

k=0

UC,s*(k) ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

 ≤ U15,s*(ℓ).

Proof: The sum only contains the summand corresponding to i = k = 0; since q(0, 0, n) = 1, we get at

most
(
15

√
s∗αn
ℓ

)ℓ
≤ U15,s*(ℓ).

The lemma below bounds transfer of mass from low weights to low weights:

Lemma 7.3 (Mass transfer from low weights to low weights) For every n, s∗, every ℓ ∈ [1 : s∗], if pa-

rameters C,α, s∗, n satisfy

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

then
100s∗∑

k=1

UC,s*(k) ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i

 ≤ U108C,s*(ℓ).

Remark 7.4 We note that the contribution of ‘low’ to ‘low’ weights, bounded by Lemma 7.3 is the dominant

one in the application in Lemma 7.1. The calculations in this lemma are quite similar to those provided in

the overview of the analysis for the component growing protocol in Section 5 (see Section 5.3.2).

Proof of Lemma 7.3: Note that for k ≤ 100s∗ we have by definition of UC,s*(k) (see (5))

UC,s*(k) ≤ max

{(
C
√
s∗n
k

)k

,

(
C2n

k

)k/2
}

= max





(
C
√
s∗n
k

)k

,

(
C
√
s∗n ·

√
k/s∗

k

)k




≤
(
10C

√
s∗n

k

)k

.

We now define, as in (43),

S1 :=

100s∗∑

k=1

UC,s*(k) ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i



38



We now get, using the fact that q(k, i, n) =
(αn

i

)(n−2αn
2(k−i)

)( n
2k

)−1
by Lemma 3.13,

S1 ≤
100s∗∑

k=1

(
10C

√
s∗n

k

)k k∑

i=|k−ℓ|+
q(k, i, n)

(
15
√
αs∗n

ℓ+ i− k

)ℓ+i−k

=

100s∗∑

k=1

k∑

i=|k−ℓ|+

(
10C

√
s∗n

k

)k (
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1(15
√
αs∗n

ℓ+ i− k

)ℓ+i−k

≤
(
10C

√
s∗n

ℓ

)ℓ 100s∗∑

k=1

k∑

i=|k−ℓ|+
(10C)k−ℓ

(√
s∗n
)i

ni+2(k−i)−2kαi+(ℓ+i−k)/2 · Γ,

where

Γ :=
ℓℓ(2k)!

i!(2k − 2i)!kk(ℓ+ i− k)ℓ+i−k
22k15ℓ+i−k ≤ 103(ℓ+k+i)

by Lemma D.5. Indeed, we first apply Lemma D.5 with m = 2, a1 = ℓ, a2 = 2k to get ℓℓ · 2k! ≤
(2k + ℓ)2k+ℓ, and then apply Lemma D.5 with m = 4, a1 = i, a2 = 2k − 2i, a3 = k, a4 = ℓ + i − k,

obtaining i!(2k − 2i)!kk(ℓ + i − k)ℓ+i−k ≥ ((2k + ℓ)/12)2k+ℓ. This yields an upper bound of Γ ≤
122k+ℓ · 22k · 15ℓ+i−k ≤ 103(ℓ+k+i).

The exponent of n is −i which together with the (
√
s∗n)i factor gives us (s∗/n)i/2. So we have

S1 ·
(
10C

√
s∗n

ℓ

)−ℓ

≤
100s∗∑

k=1

k∑

i=|k−ℓ|+
10iCk−ℓ (s∗/n)i/2 103(ℓ+k+i)αi+(ℓ+i−k)/2

≤
100s∗∑

k=1

k∑

i=|k−ℓ|+
10iCk−ℓ−i

(
C
√
s∗/n

)i
106ℓ+6iαi+(ℓ+i−k)/2

≤ 106ℓ
∞∑

i=0

i+ℓ∑

k=i

(
√
α/C)ℓ+i−k

(
107Cα

√
s∗/n

)i

≤ 106ℓ
∞∑

i=0

(
107Cα

√
s∗/n

)i i+ℓ∑

k=i

(
√
α/C)ℓ+i−k

≤ 106ℓ
∞∑

i=0

2
(
107Cα

√
s∗/n

)i

≤ 107ℓ

In going from line 4 to line 5 we used the fact that
√
α/C < 1/2 by assumptions (P1) and (P2). Similarly,

in going from line 5 to line 6 we used the fact that 107Cα
√

s∗/n < 1/2 by assumptions (P1), (P2), (P3).

The next lemma bounds transfer of mass from intermediate weights to low weights:

Lemma 7.5 (Mass transfer from intermediate to low weights) For every n, s∗, every ℓ ∈ [1 : s∗], if

C,α, s∗, n satisfy

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

then
n/C2∑

k=100s∗+1

UC,s*(k) ·
(

k∑

i=k−ℓ

q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
)

≤ U107C,s*(ℓ).

39



Remark 7.6 A careful inspection of the proof of Lemma 7.5 reveals that the upper bound is in fact somewhat

stronger than what Lemma 7.1 needs. This is mostly due to the fact that Lemma 7.5 analyzes contribution of

weights k starting at 100s∗ to weights ℓ ≤ s∗. Since the strengthening is not consequential for the analysis,

we prefer to keep the bound in the present form for simplicity. However, it is interesting to note that the ‘low

weight’ regime (i.e. the regime of Lemma 7.3), for which the component growing protocol from Section 5 is

a reasonable illustration, provides the dominant contribution to the Fourier spectrum.

Proof of Lemma 7.3: Since in this sum we have k > 100s∗ we must have i ≥ k − ℓ > 99s∗ and also

i ≥ k − ℓ > k/2. For k ∈ [100s∗, n/C2] we have by (5)

UC,s*(k) ≤
(
C2n

k

)k/2

=

(√
k

s∗

)k (
C
√
s∗n
k

)k

. (46)

We now define, as in (44),

S2 :=

n/C2∑

k=100s∗+1

UC,s*(k) ·
(

k∑

i=k−ℓ

q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
)
.

Putting this together with (46), we get

S2 ≤
n/C2∑

k=100s∗+1

(√
k

s∗

)k (
C
√
s∗n
k

)k k∑

i=k−ℓ

q(k, i, n)

(
15
√
αs∗n

ℓ+ i− k

)ℓ+i−k

=

n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(√
k

s∗

)k (
C
√
s∗n
k

)k (
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1(15
√
αs∗n

ℓ+ i− k

)ℓ+i−k

≤
(
C
√
s∗n
ℓ

)ℓ n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(√
k

s∗

)k

Ck−ℓ
(√

s∗n
)i

ni+2(k−i)−2kαi+(ℓ+i−k)/2 · Γ

where

Γ :=
ℓℓ(2k)!

i!(2k − 2i)!kk(ℓ+ i− k)ℓ+i−k
22k15ℓ+i−k ≤ 103(ℓ+k+i)

by Lemma D.5. Indeed, we first apply Lemma D.5 with m = 2, a1 = ℓ, a2 = 2k to get ℓℓ · 2k! ≤
(2k + ℓ)2k+ℓ, and then apply Lemma D.5 with m = 4, a1 = i, a2 = 2k − 2i, a3 = k, a4 = ℓ + i − k,

obtaining i!(2k − 2i)!kk(ℓ + i − k)ℓ+i−k ≥ ((2k + ℓ)/12)2k+ℓ. This yields an upper bound of Γ ≤
122k+ℓ · 22k · 15ℓ+i−k ≤ 103(ℓ+k+i).

The exponent of n is −i which together with the (
√
s∗n)i factor gives us (s∗/n)i/2. So we have

S2 ·
(
C
√
s∗n
ℓ

)−ℓ

≤
n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(√
k

s∗

)k

Ck−ℓ
(√

s∗/n
)i

103(ℓ+k+i)αi+(ℓ+i−k)/2

≤
n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(√
k

s∗

)k

Ck−ℓ−i
(
C
√

s∗/n
)i

106ℓ+6iαi+(ℓ+i−k)/2

≤ 106ℓ
n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(√
k

s∗

)k

(C/
√
α)k−ℓ−i

(
104Cα

√
s∗/n

)i

≤ 106ℓ
n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(
104Cα

√
k/n

)i
(√

k

s∗

)k−i

(47)
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We used the fact that C/
√
α > 1 and k − ℓ − i ≤ 0 for i in the range of summation in going from line 3

to line 4 above. We now note that 104Cα
√

k/n ≤ 104α since k ≤ n/C2 in the range of summation, and(√
k
s∗

)k−i

≤
(√

k
s∗

)ℓ

≤
(√

k
s∗

)s∗

for i in the range of summation, since ℓ ≤ s∗ by assumption of the

lemma. We thus get that, substituting these bounds into (47),

S2 ·
(
C
√
s∗n
ℓ

)−ℓ

≤ 106ℓ
n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(
104α

)i
(√

k

s∗

)s∗

≤ 106ℓ
n/C2∑

k=100s∗+1

k∑

i=k−ℓ

(
104α

)i
ek/2e

≤ 106ℓ
n/C2∑

i=99s∗+1

i+ℓ∑

k=i

(
104α

)i
ek/2e

(P1) ≤ 106ℓ
n/C2∑

i=99s∗+1

i+ℓ∑

k=i

10−i

≤ 106ℓ
n/C2∑

i=99s∗+1

2ℓ · 10−i

≤ 107ℓ

We used the fact that (
√

k/s∗)s = (k/s∗)s
∗/2 ≤ ek/(2e) in going from line 1 to line 2 above (this follows

since (k/s∗)s
∗

is maximized when s∗ = k/e). The transition from line 3 to line 4 follows since i ≥ k− ℓ ≥
k/2 (as ℓ ≤ s∗ and k ≥ 100s∗), and hence

(
104α

)i
ek/2e ≤

(
104α

)i
ei/e =

(
104e1/eα

)i
≤ 10−i,

since α < 10−6 by assumption (P1). The transition from line 5 to line 6 follows since ℓ ≤ s∗ by assumption.

Lemma 7.7 (Mass transfer from high weights to low weights) For every n, s∗, every ℓ ∈ [1 : s∗], if pa-

rameters C,α, s∗, n satisfy

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

n/100∑

k=n/C2

√
2s∗
(
n

2k

)
·
(

k∑

i=k−ℓ

q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
)

≤ 1.

Remark 7.8 We note that the bound of Lemma 7.7 is much stronger than what Lemma 7.1 needs. Indeed, a

much weaker bound of ≈ (
√
s∗n/ℓ)ℓ would have been sufficient for our purposes. The contribution of high

weights to low weights is significantly lower than the dominant terms (ℓ ∈ [1 : s∗] and ℓ ∈ [s∗, n/(2C2)],
see Lemma 7.3 and Lemma 7.5) provide, and hence we choose (rather arbitrarily) to prove the upper bound

of 1.
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Proof of Lemma 7.7: We first define, as in (45),

S3 :=

n/100∑

k=n/C2+1

UC,s*(k) ·
(

k∑

i=k−ℓ

q(k, i, n)

(
15
√
s∗αn

ℓ− k + i

)ℓ−k+i
)
.

This allows us to write

S3 ≤
n/10∑

k=n/C2+1

k∑

i=k−ℓ

√
2s

∗

(
n

2k

)
· q(k, i, n)

(
15
√
αs∗n

ℓ+ i− k

)ℓ+i−k

≤
n/10∑

k=n/C2+1

k∑

i=k−ℓ

4s
∗

(
n

2k

)1/2(αn
i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1( n

ℓ+ i− k

)

≤
n/10∑

k=n/C2+1

k∑

i=k−ℓ

4s
∗

(
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1/2( n

ℓ+ i− k

)

The transition from line 1 to line 2 follows since 15
√
αs∗n ≤ n and k ≤ n/10 ≤ n/2 in the range of

summation. Since ℓ+ i−k ≤ ℓ ≤ s∗ and s∗ ≤ n/4 by assumptions (P2) and (P3), we have
(

n
ℓ+i−k

)
≤
(
n
s∗

)
.

At the same time, since k − i ≤ ℓ ≤ s∗, we also have
(n−2αn
2(k−i)

)
≤
( n
2s∗

)
. Using the bounds above as well as

the fact that (a/b)b ≤
(
a
b

)
≤ (ea/b)b for all integer a, b ≥ 0, we get

S3 ≤
n/10∑

k=n/C2+1

k∑

i=k−ℓ

4s
∗
(eαn

i

)i ( n

2k

)−k
(
n

s∗

)(
n

2s∗

)

≤
n/10∑

k=n/C2+1

k∑

i=k−ℓ

4i
(eαn

i

)i ( n

2i

)−i
(
n

s∗

)3

(since i ≥ s∗)

≤
n/10∑

k=n/C2+1

k∑

i=k−ℓ

(22α)ie3H(s∗/n)·n (since

(
n

s∗

)
≤ eH(s∗/n)n by Lemma D.3)

≤
n/10∑

k=n/C2+1

2(22α)k−ℓe3H(s∗/n)·n (summing geometric series)

≤ 4(22α)n/C
2−s∗e3H(s∗/n)·n (summing geometric series and using ℓ ≤ s∗)

(P3) ≤ 4(22α)n/(2C
2)e3H(1/C3)·n (since ℓ ≤ s∗ ≤ n/C3)

(P1,P2) ≤ n2e−n/(4C2)

(P4) ≤ 1

7.2 Bounding mass transfer to intermediate weight Fourier coefficients

The goal of this subsection is to prove Lemma 7.9 below.
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Proof outline. The proof of the lemma is similar to that of Lemma 7.1, with different supporting combi-

natorial lemmas (Lemma 7.10 and Lemma 7.12 from Section 7.2.1). Unlike the proof of Lemma 7.1, which

mostly deals with low weight coefficients, Lemma 7.9 analyzes high weight coefficients, which are zero for

the simple component growing protocol from Section 5.

Lemma 7.9 For every n, s∗, C, α ∈ (0, 1) that satisfy conditions

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

if B ⊆ {0, 1}n is (C, s∗)-bounded and M is a uniformly random matching on [n] of size αn, the following

conditions hold. For every Areduced ⊆ {0, 1}M , if A = {x ∈ {0, 1}n : Mx ∈ Areduced} and f is the

indicator of A, if |A|/2n ≥ 2−s∗ , then for all ℓ ∈ [s∗, n/(2C2)] we have

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣


 ≤

(
(109C)2n

ℓ

)ℓ/2

.

Proof: We start similarly to the proof of Lemma 7.1.

We first note that f̃(z) 6= 0 only if z = Mw for w ∈ {0, 1}M , and thus for every v ∈ {0, 1}n one has

EM

[
∑

w∈{0,1}n
|v⊕w|=2ℓ

∣∣∣f̃(w)
∣∣∣
]
= EM

[
∑

z∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣
]

. We also note that for any w ∈ {0, 1}M one has

|v| ≤ |v⊕Mw|+ |Mw| ≤ ℓ+αn ≤ n/(2C2)+αn ≤ n/200 since n/(2C2) ≤ n/400 and α < 1/400 by

assumptions (P1), (P2) and (P3). Thus, the only terms with a nonzero contribution to the sum that we need

to bound are v ∈ {0, 1}n with |v| = 2k ≤ n/200. Thus, it suffices to bound, for a parameter k ∈ [0 : n/100]
and v ∈ {0, 1}n with |v| = 2k, the quantity

EM




∑

w∈{0,1}n
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 . (48)

We will later (see (53) below) combine our bounds over all k ∈ [0 : n/100] to obtain the result of the lemma.

Let IntM (v) = {eint1 , eint2 , . . . } be the set of edges e = (a, b) ∈ M that match points of v, i.e. with

a, b ∈ v. Let ∂M (v) = {ebound1 , ebound2 , . . . } be the set of boundary edges, i.e. edges e = (a, b) ∈ M with

a, b ∈ v. Let ExtM (v) = {eext1 , eext2 , . . . } be the set of external edges, i.e. edges e = (a, b) ∈ M with

a, b ∈ [n] \ v.

We decompose the sum (48) according to the number of boundary edges in Mw:

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 = EM


 ∑

S⊆∂M (v)

∑

w∈{0,1}M
1{w∩∂M (v)=S}1{|v⊕Mw|=2ℓ}

∣∣∣f̃(Mw)
∣∣∣


 . (49)

We now rewrite the latter indicator function. For a subset S ⊆ ∂M (v) define wS ∈ {0, 1}M as the set of

all internal edges IntM (v) and all edges in S. We then have |v ⊕MwS | = 2k − 2|IntM (v)|, since adding a

boundary edge to v does not change the Hamming weight, and adding an internal edge reduces it by 2. Also

note that |w ⊕ wS | = ℓ− (k − |IntM (v)|). Indeed, |v ⊕MwS | = 2k − 2IntM (v), |v ⊕ w| = 2ℓ, w can be
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obtained from wS be removing internal edges and adding external edges and both of these changes increase

|Mw ⊕Mws| by 2. These observations together with (49) yield the following upper bound on (48):

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤ EM




∑

S⊆∂M (v)

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

1{wS=S} ·
∣∣∣f̃(Mw)

∣∣∣




≤ EM




∑

S⊆∂M (v)

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

∣∣∣f̃(Mw)
∣∣∣




(50)

where we dropped the indicator function in going from the first line to the second line above. This in turn

can be bounded by Cauchy-Schwarz (Lemma D.2) given that the sum of squares of all normalized Fourier

ciefficient is 2αn/Areduced = 2n/|A| ≤ 2s
∗

by assumption:

∑

w∈{0,1}M
|w⊕wS|=ℓ−(k−|IntM (v)|)

∣∣∣f̃(Mw)
∣∣∣ ≤

√
2s∗
(

αn

ℓ− k + |IntM (v)|

)
.

Summing over all possible subsets S ⊂ ∂M (v) we then infer

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤ EM


 ∑

S⊆∂M (v)

√
2s

∗

(
αn

ℓ− k + |IntM (v)|

)
 .

Note that the bound is independent of the set S so we can replace the summation with the multiplication by

2|∂M (v)| to obtain

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤ EM

[
2|∂M (v)|

√
2s∗
(

αn

ℓ− k + |IntM (v)|

)]
.

We now bound the sum on the last line above. We have

EM


2|∂M (v)|

√(
αn

ℓ− k + |IntM (v)|

)(
64s∗

ℓ− k + |IntM (v)|

)ℓ−k+|IntM (v)|



= EM

[
k∑

i=0

2k∑

b=0

2b1{|∂M (v)|=b and |IntM (v)|=i}

√
2s

∗

(
αn

ℓ− k + i

)]

=
k∑

i=|k−ℓ|+

2k∑

b=0

2bq(k, i, b, n)

√
2s∗
(

αn

ℓ− k + i

)

(51)

In going from line 2 to line 3 above we used the fact that by Definition 3.10 for every v ∈ {0, 1}n with

|v| = 2k one has EM [1{|∂M (v)|=b and |IntM (v)|=i}] = q(k, i, b, n), i.e. q(k, i, b, n) is the probability that a
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uniformly random matching M of size αn is such that i edges of M match points of v (i.e. |IntM (v)| = i)
and b edges of M are boundary edges (i.e. |∂M (v)| = b). Note that we sum over b between 0 and 2k, as

the number of boundary edges of v with respect to M is bounded by its Hamming weight 2k. Similarly,

the number of internal edges i cannot be larger than |v|/2 = k, and must be at least k − ℓ in order for the

binomial coefficient
(

αn
ℓ−k+i

)
on the first line above to be nonzero (combinatorially, this means that in order

for v + Mw to have weight 2ℓ for some w ∈ {0, 1}M one must have |IntM (v)| ≥ k − ℓ). Recall that

|k − ℓ|+ = max{0, k − ℓ}.

We thus get by (51), using the bound q(k, i, b, n) ≤ q(k, i, n)4k−i20−b (Lemma 3.13)

EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣


 ≤

k∑

i=|k−ℓ|+

2k∑

b=0

q(k, i, b, n)2b
(

αn

ℓ− k + i

)1/2

2s
∗/2

≤ 2s
∗/2

k∑

i=|k−ℓ|+

2k∑

b=0

4k−iq(k, i, n)2−b

(
αn

ℓ− k + i

)1/2

≤ 2s
∗

k∑

i=|k−ℓ|+
4k−iq(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2

≤ 16ℓ
k∑

i=|k−ℓ|+
q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2

.

(52)

We used the bound
(
a
b

)
≤ (ea/b)b ≤ (3a/b)b in going from line 2 to line 3, and the fact that s∗ ≤ ℓ by

assumption and k− i ≤ k− |k − ℓ|+ ≤ ℓ for i in the range of the summation in going from line 3 to line 4.

Summing (52) over all possible v, we get

∑

v∈{0,1}n

∣∣∣h̃(v)
∣∣∣EM




∑

w∈{0,1}M
|v⊕Mw|=2ℓ

∣∣∣f̃(Mw)
∣∣∣




≤ 16ℓ
n/100∑

k=0




∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣


 ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2



= 16ℓ
n/100∑

k=0




∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣


 ·




k∑

i=|k−ℓ|+
q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2

 ,

(53)

where we used the fact that k ≤ n/100 by assumptions of the lemma that we established earlier.

We now split the sum into two parts and derive upper bounds on
∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ in the two regimes.
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Upper bounding
∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ for k ∈ [1 : n/C2]. We show that for every k ∈ [1 : n/C2]

∑

v∈{0,1}
|v|=2k

∣∣∣h̃(v)
∣∣∣ ≤ 2s

∗

(
C2n

k

)k/2

. (54)

Indeed, for k ∈ [s∗ : n/C2] one this follows directly from the assumption that h is (C, s∗)-bounded, whereas

for k ∈ [0 : s∗] this follows by

∑

v∈{0,1}
|v|=2k

∣∣∣h̃(v)
∣∣∣ ≤

(
C
√
s∗n
k

)k

(since h is (C, s∗)-bounded)

=

(
C2n

k

)k/2(
s∗

k

)k/2

≤
(
C2n

k

)k/2

e
s∗

2e ,

and the claim follows as e1/2e < 2.

Upper bounding
∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ for k ∈ [n/C2 + 1 : n/100]. We have, using the assumption that

|B|/2n ≥ 2−s∗ , Parseval’s equality and Cauchy-Schwarz, that

∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ ≤

√√√√√√√




∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣
2


 ·

(
n

2k

)
≤
√

2s∗
(
n

2k

)
. (55)

Putting it together. We bound the contribution of k ∈ [1 : n/C2] and k ∈ [n/C2+1 : n/100] separately.

First, substituting (54) into (53) and restricting the summation to k ∈ [1 : n/C2], we get

n/C2∑

k=1

∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ ≤

n/C2∑

k=1

2s
∗

(
C2n

k

)k/2

·




k∑

i=|k−ℓ|+
q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2



:= T1

(56)

Similarly, we get, substituting (55) into (53) and restricting the summation to k ∈ [n/C2 + 1 : n/100],

n/100∑

k=n/C2+1

∑

v∈{0,1}n
|v|=2k

∣∣∣h̃(v)
∣∣∣ ≤

n/10∑

k=n/C2+1

√
2s∗
(
n

2k

)
·
(

k∑

i=k−ℓ

q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2
)

=: T2.

(57)

Lemma 7.10 and Lemma 7.12 below show that T1 ≤ U107C,s*(ℓ), T2 ≤ U107C,s*(ℓ) which concludes

the proof since in the double sum (53) the only summand corresponding to k = 0 is q(0, 0, n)
(
3αn
ℓ

)ℓ/2

46



which is at most U√
3,s*(ℓ) since q(0, 0, n) = 1; and we clearly have

16ℓ
(
U√

3,s*(ℓ) +U107C,s*(ℓ) +U107C,s*(ℓ)
)
= 16ℓ

(
(
√
3/C)ℓ + 108ℓ + 107ℓ

)(C2n

ℓ

)ℓ/2

≤
((

109C
)2

n

ℓ

)ℓ/2

.

7.2.1 Bounding T1 and T2 (technical lemmas)

The following two lemmas deal with sum T1 and T2 defined in the proof of Lemma 7.9.

Lemma 7.10 Suppose parameters C,α, s∗, n satisfy

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

then for every ℓ ∈ [s∗, n/(2C2)]

n/C2∑

k=1

2s
∗

(
C2n

k

)k/2

·




k∑

i=|k−ℓ|+
q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2

 ≤ U107C,s*(ℓ)

Remark 7.11 We note that Lemma 7.10 provides the dominant contribution in the application in Lemma 7.9

(which is natural, since it bounds the transfer from a range of weights that overlaps with the target range of

coefficient weights).

Proof of Lemma 7.10: Define, similarly to (56),

T1 :=

n/C2∑

k=1

2s
∗

(
C2n

k

)k/2

·




k∑

i=|k−ℓ|+
q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2



≤ 2ℓ
n/C2∑

k=1

k∑

i=|k−ℓ|+

(
C2n

k

)k/2(
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1( 3αn

ℓ+ i− k

)(ℓ+i−k)/2

,

where in going from line 1 to line 2 we used the fact that ℓ ≥ s∗ by assumption of the lemma, as well as the

fact that by Lemma 3.13 for every 0 ≤ i ≤ k ≤ n/2 one has

q(k, i, n) =

(
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1

.

We now get, using the fact that
(αn

i

)
≤ (αn)i/i!,

(n−2αn
2(k−i)

)
≤ n2(k−i)/(2(k − i))! and

( n
2k

)−1 ≥
22kn2k/(2k)! for k ≤ n/4 (which is satisfied since k ≤ n/100 in our setting),

T1 ≤
(
4C2n

ℓ/2

)ℓ/2 n/C2∑

k=1

k∑

i=|k−ℓ|+
Ck−ℓnk/2+(ℓ+i−k)/2−ℓ/2ni+2(k−i)−2kαi+(ℓ+i−k)/2 · Γ, (58)
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where

Γ =
(ℓ/2)ℓ/2(2k)!

i!(2k − 2i)!(k/2)k/2(ℓ+ i− k)(ℓ+i−k)/2
22k2ℓ+i−k.

We now bound Γ using Lemma D.5. First, applying the lemma to the numerator with m = 2, a1 = ℓ/2
and a2 = 2k, getting that the numerator is upper bounded by (2k + ℓ/2)2k+ℓ/2. Next, applying the lemma

to the denominator with m = 4, a1 = i, a2 = 2k − 2i, a3 = k/2 (we lower bound kk/2 by (k/2)k/2) and

a4 = (ℓ + i − k)/2 (we lower bound (ℓ+ i − k)(ℓ+i−k)/2 by (ℓ+ i − k/2)(ℓ+i−k)/2). By Lemma D.5 we

get that the denominator is lower bounded by

((2k + ℓ/2 + i/2)/12)2k+ℓ/2+i/2 ≥ 12−(2k+ℓ/2+i/2)((2k + ℓ/2)2k+ℓ/2(i/2)i/2,

where we used the fact that (a + b)a+b ≥ aabb for all integer a, b ≥ 0. Putting the above bounds together,

we get that Γ ≤ ii/2103(ℓ+k+i).

Gathering the powers of n and powers of α in the inner summation in (58), we get that the exponent of

n is −i and that the exponent of α is at least i. This, together with our upper bound on Γ gives

T1 ·
(
4C2n

ℓ

)−ℓ/2

≤
n/C2∑

k=1

k∑

i=|k−ℓ|+
Ck−ℓ (i/n)i/2 103(ℓ+k+i)αi

≤ 103ℓ
n/C2∑

k=1

k∑

i=|k−ℓ|+
Ck−ℓ−i

(
108C2α2i

n

)i

Since k ≤ n/(2C2) for all k in the range of the summation, and i ≤ k, one has
(
108C2α2i

n

)i
≤ (108α)i ≤

2−i by (P1). Substituting into the equation above, we get

T1 ·
(
4C2n

ℓ

)−ℓ/2

≤ 103ℓ
ℓ∑

k=1

k∑

i=0

Ck−ℓ−i2−i +

n/(2C2)∑

k=ℓ+1

k∑

i=k−ℓ

Ck−ℓ−i2−i

≤ 103ℓ
ℓ∑

k=1

Ck−ℓ
k∑

i=0

C−i2−i +

n/(2C2)∑

k=ℓ+1

2−(k−ℓ)
k−ℓ∑

i=0

C−i2−i

≤ 4 · 103ℓ ≤ 4 · 106ℓ,

where in going from line 2 to line 3 we used assumption (P2). This implies

T1 ≤
(
4 · 16 · 1012C2n

ℓ

)ℓ/2

≤
(
(107C)2n

ℓ

)ℓ/2

.

Lemma 7.12 Suppose parameters C,α, s∗, n satisfy

(P1)α < 10−10 (P2)C > 106 (P3) s∗ <
n

109C3
(P4)n > 109C4,

then for every ℓ ∈ [s∗, n/2C2]

n/100∑

k=n/C2+1

√
2s∗
(
n

2k

)
·
(

k∑

i=k−ℓ

q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2
)

≤
(
(108C)2n

ℓ

)ℓ/2

.
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Remark 7.13 A close inspection of the proof of Lemma 7.12 reveals that a stronger bound than is needed

by the application in Lemma 7.9 holds. However, we prefer to keep the bound in present form to simplify

presentation.

Proof of Lemma 7.12: Note that we have ℓ ≤ n/2C2 and k > n/C2, so we must have i > n/2C2. This

allows us to write

T2 :=

n/100∑

k=n/C2+1

√
2s

∗

(
n

2k

)
·
(

k∑

i=k−ℓ

q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2
)

≤
n/100∑

k=n/C2+1

k∑

i=k−ℓ

√
2s∗
(
n

2k

)
q(k, i, n)

(
3αn

ℓ− k + i

)(ℓ−k+i)/2

Substituting the expression for q(k, i, n) from Lemma 3.13 and using the assumption that ℓ ≥ s∗ to upper

bound 2s
∗

by 2ℓ, we get

T2 ≤ 2ℓ
n/100∑

k=n/C2+1

k∑

i=k−ℓ

(
n

2k

)1/2(αn
i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1( 3αn

ℓ+ i− k

)(ℓ+i−k)/2

= 2ℓ
n/100∑

k=n/C2+1

k∑

i=k−ℓ

(
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1/2( 3αn

ℓ+ i− k

)(ℓ+i−k)/2

≤
(
16C2n

ℓ

)ℓ/2 n/100∑

k=n/C2+1

k∑

i=k−ℓ

C−ℓn(ℓ+i−k)/2−ℓ/2ni+2(k−i)−2k/2αi+(ℓ+i−k)/2 · Γ,

(59)

where

Γ =
(ℓ/2)ℓ/2kk

i!(2k − 2i)!((ℓ + i− k)/2)(ℓ+i−k)/2
22k2ℓ+i−k.

In (59) we used the bounds
(αn

i

)
≤ (αn)i/i!,

(n−2αn
2(k−i)

)
≤ n2(k−i)/(2(k − i))! and

( n
2k

)
≥ 2−2knk/(2k)!

when going from line 2 to line 3. We also upper bounded
√

(2k!) by 2kkk to simplify the expression for Γ.

We now show using Lemma D.5 that Γ ≤
(
k−i
2

)− k−i
2 103(ℓ+k+i). We first apply the lemma to the

numerator of Γ with m = 2, a1 = ℓ/2, a2 = k, obtaining an upper bound of (k + ℓ/2)k+ℓ/2. Applying the

lemma to the denominator of Γ with m = 3, a1 = i, a2 = 2k − 2i, a3 = (ℓ+ i − k)/2, we obtain a lower

bound of ((k+ ℓ/2)/9)k+ℓ/2. Putting the bounds above together, we get that Γ ≤
(
k−i
2

)− k−i
2 103(ℓ+k+i), as

required.

Gathering the powers of n in (59), we obtain n(k−i)/2 so this together with factor of
(
k−i
2

)− k−i
2 from

the upper bound on Γ gives us
(

2n
k−i

)k−i
2

. Finally the power of α is at least i. Putting these bounds together,

we get
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T2 ·
(
16C2n

ℓ

)−ℓ/2

≤
n/100∑

k=n/C2+1

k∑

i=k−ℓ

C−ℓ

(
2n

k − i

) k−i
2

αi103(ℓ+k+i)

≤ 106ℓC−ℓ

(
2n

ℓ

)ℓ/2 n/100∑

k=n/C2+1

k∑

i=k−ℓ

αi106i10k−ℓ−i

≤ 106ℓ
(
2n/C2

ℓ

)ℓ/2 n/100∑

k=n/C2+1

k∑

i=k−ℓ

(
106α

)i

≤ 106ℓen/C
2

n/100∑

k=n/C2+1

k∑

i=k−ℓ

(
106α

)i

≤ 106ℓen/C
2

n/100∑

k=n/C2+1

2 ·
(
106α

)k−ℓ

≤ 4 · 106ℓen/C2 (
106α

)n/(2C2)

≤ 106ℓ.

We used the fact that k − i ≤ ℓ ≤ n/2 by (P3) and (P2) in going from line 1 to line 2, and the fact that

k− ℓ− i ≤ 0 for all i in the range of summation in going from line 2 to line 3. In going from line 3 to line 4

we used the fact that
(
2n/C2

ℓ

)ℓ/2
≤ 4n/(2C

2) ≤ en/C
2

for ℓ ∈ [s∗, n/(2C2)]. In going from line 4 to line 5

we used the fact that
∑k

i=k−ℓ

(
106α

)i ≤ 2
(
106α

)k−ℓ
by (P1). In going from line 5 to line 6 we used the

fact that
∑n/100

k=n/C2+1

(
106α

)k−ℓ ≤ 2 ·
(
106α

)n/C2−ℓ ≤ 2 ·
(
106α

)n/(2C2)
by (P1) as well as the assumption

that ℓ ≤ n/(2C2) and k ≥ n/C2. In going from line 6 to line 7 we used assumption (P1).

Putting the bounds above together, we get

T2 ≤ 106ℓ
(
16C2n

ℓ

)ℓ/2

≤
((

108C
)2

n

ℓ

)ℓ/2

,

as required.
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A Proof of Lemma 4.7

Proof of Lemma 4.7: The claim of the lemma is equivalent to saying that with probability at least 1 − δ
over the choice of the matching M we have, for any z0 ∈ {0, 1}M , the following inequality

1− δ ≤ 2|M |
Px∼Uniform(B) [Mx = z0] ≤ 1 + δ,

which would in turn follow by Markov inequality from the following fact:

EM

[
max

z0∈{0,1}M

∣∣∣2|M |
Px∼Uniform(B) [Mx = z0]− 1

∣∣∣
]
≤ δ2.

In order to prove this we express the LHS in terms of the Fourier transform of h = 1B. Define gz0(x) :=
1{x:Mx=z0}. We have

2|M |
Px∼Uniform(B)[Mx = z0]− 1 =

2|M | |B ∩ {x : Mx = z0}| − |B|
|B|

=
2|M |2nĥgz0(0)− 2nĥ(0)

|B|

=
2n+|M |

|B|
∑

v∈{0,1}n
v 6=0

ĥ(v)ĝz0(v).

Note that in order for ĝz0(v) to be non-zero, |v| must be even. We then use a triangle inequality to obtain

EM

[
max

z0∈{0,1}M

∣∣∣2|M |
Px∼Uniform(B) [Mx = z0]− 1

∣∣∣
]
≤

n/2∑

ℓ=1

EM


 max
z0∈{0,1}M

∣∣∣∣∣∣∣∣

2n+|M |

|B|
∑

v∈{0,1}n
|v|=2ℓ

ĥ(v)ĝz0(v)

∣∣∣∣∣∣∣∣


 .
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Recall that pα(ℓ, n) stands for the probability that fixed 2ℓ points are matched by a uniformly random

matching of size αn. For v ∈ {0, 1}n which is perfectly matched by M (i.e. M restricted to v is a perfect

matching) let e(v) ∈ {0, 1}M denote the set of edges induced by v. Using explicit structure of ĝz0 we find

that

2n+|M |

|B|
∑

v∈{0,1}n
|v|=2ℓ

ĥ(v)ĝz0(v) =
2n+|M |

|B|
∑

v∈{0,1}n
|v|=2ℓ

v is matched by M

ĥ(v) · 2−|M |(−1)z0·e(v)

≤ 2n

|B|
∑

v∈{0,1}n
|v|=2ℓ

v is matched by M

∣∣∣ĥ(v)
∣∣∣ ,

(60)

where we used the fact that ĝz0(v) is zero for v’s that are not perfectly matched by M . The bound is

independent of z0 which allows us to write, after taking expectation over M ,

EM

[
max

z0∈{0,1}M

∣∣∣2|M |
Px∼Uniform(B) [Mx = z0]− 1

∣∣∣
]

≤
n/2∑

ℓ=1

p(ℓ, n)
2n

|B|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ(v)
∣∣∣

≤
αn∑

ℓ=1

p(ℓ, n)
2n

|B|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ(ℓ)
∣∣∣

≤
s∗∑

ℓ=1

p(ℓ, n)UC,s*(ℓ) +

n/2∑

ℓ=s∗+1

p(ℓ, n)

√
2s
(
n

2ℓ

)
.

(61)

In going from line 2 to line 3 we used the fact that ĥ(v) = 0 for any v that is not perfectly matched by M ,

as well as the assumption that M is a matching of size αn. In going from line 3 to line 4 we used the fact

that 2n

|B|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ(ℓ)
∣∣∣ ≤ UC,s*(ℓ) for ℓ between 1 and s∗ (since B is (C, s∗)-bounded by assumption, as

well as the fact that for every ℓ between 0 and n/2

2n

|B|
∑

v∈{0,1}n
|v|=2ℓ

∣∣∣ĥ(ℓ)
∣∣∣ ≤

√(
n

2ℓ

)
2n

|B|

√√√√√
∑

v∈{0,1}n
|v|=2ℓ

ĥ(ℓ)2 ≤
√

2s∗
(
n

2ℓ

)
.

The latter bound holds for any subset B of the cube with |B|/2n ≥ 2−s∗ by Parseval’s equality ((2) and

Remark 3.1) together with Cauchy-Schwarz.

We now upper bound individual terms in the summation over ℓ in (61) above. We use the expression

p(ℓ, n) =

(
αn

ℓ

)(
n

2ℓ

)−1

(62)

provided by Lemma 3.12.
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Upper bounding the contribution from low weights (1 ≤ ℓ ≤ s∗). For low weights (ℓ ≤ s∗) we have

by the assumption that h is (C, s∗)-bounded

p(ℓ, n)UC,s*(ℓ) =

(
αn

ℓ

)(
n

2ℓ

)−1(C
√
s∗n
ℓ

)ℓ

≤
(eαn

ℓ

)ℓ
· (2ℓ)!

(n/2)2ℓ
·
(
C
√
s∗n
ℓ

)ℓ

≤
(
44αC

√
s∗/n

)ℓ

≤ (44α)ℓ δ2ℓ.

(63)

In going from line 1 to line 2 above we used the lower bound
(n
2ℓ

)
≥ (n/2)2ℓ/(2ℓ)!, since ℓ ≤ s∗ ≤

n/C2 ≤ n/4 (as C ≥ 100 by assumption), as well as the bound
(
αn
ℓ

)
≤ (eαn/ℓ)ℓ. We used the assumption

s∗ ≤ δ4n/C2 to from line 3 to line 4.

Upper bounding the contribution from high weights (s∗ < ℓ ≤ αn). We have, using (62),

p(ℓ, n)

√
2s∗
(
n

2ℓ

)
=

(
αn

ℓ

)(
n

2ℓ

)−1/2

2s
∗/2

≤ (αn)ℓ

ℓ!

(
(n/2)2ℓ

(2ℓ)!

)−1/2

2ℓ/2

= (2
√
2α)ℓ

√(
2ℓ

ℓ

)

≤ (4
√
2α)ℓ

≤ e−2s∗ .

(64)

In going from line 1 to line 2 we used the fact that
(n
2ℓ

)
≥ (n/2)2ℓ/(2ℓ)! for any ℓ ≤ αn ≤ n/4. In going

from line 4 to line 5 we used the assumption that α ≤ 1/100.

Putting (63) together with (64) and summing over all ℓ ∈ [1 : αn], we get using (61)

EM

[
max

z0∈{0,1}M

∣∣∣2|M |
Px∼Uniform(B) [Mx = z0]− 1

∣∣∣
]

≤
s∗∑

ℓ=1

(44α)ℓ δ2ℓ +

n/2∑

ℓ=s∗+1

e−2s∗

≤ 88α · δ2 + n−10

≤ δ2.

In going from line 2 to line 3 we used the assumption that s∗ ≥ 10 ln(n + 1), and in going from line 3 to

line 4 we used the assumption that α < 1/100 and δ ∈ (1/n, 1/2). An application of Markov’s inequality

now gives the result.

B Proof of Lemma 6.3

We will use some basic properties of total variation distance, which we now state.
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Lemma B.1 Let µ, ν be two probability distributions on the same finite sample space Ω, and consider

independent random variables X, X̃ ∼ µ, Y ∼ ν taking values in Ω. Then one has

2 · ‖µ− ν‖tvd = EX [|1− PrY [Y = X]/Pr
X̃
[X̃ = X]|].

Proof: Identify Ω with {1, 2, . . . , n} and let pk = Pr[X = k], qk = Pr[Y = k]. Then we have

EX [|1− PrY [Y = X]/Pr
X̃
[X̃ = X]|] =

n∑

k=1

pk · |1− qk/pk| =
n∑

k=1

|pk − qk| = 2 · ‖µ − ν‖tvd.

Lemma B.2 (Substitution lemma) Let X1,X2 be random variables taking values on finite sample space

Ω1. Let Z1, Z2 be random variables taking values on samples space Ω2, and suppose that Z2 is independent

of X1,X2. Let f : Ω1 × Ω2 → Ω3 be a function. Then

||(X1, f(X1, Z1))− (X2, f(X2, Z2))||tvd ≤ ||(X1, f(X1, Z1))− (X1, f(X1, Z2))||tvd+ ||X1−X2||tvd.

Proof: By triangle inequality the left hand side is at most

||(X1, f(X1, Z1))− (X1, f(X1, Z2))||tvd + ||(X1, f(X1, Z2))− (X2, f(X2, Z2))||tvd.

It remains to note that the second summand is at most ||X1 −X2||tvd by Claim 3.7.

The next lemma also follows easily from the definition of total variation distance (see, e.g. Claim 6.5

in [KKS15] for a proof):

Lemma B.3 For any random variables X,Y taking values on finite sample space Ω1, independent random

variable Z taking values on finite sample space Ω2 and any function f : Ω1×Ω2 → Ω3 one has ||f(X,Z)−
f(Y,Z)||tvd ≤ ||X − Y ||tvd.

Proof of Lemma 6.3: The proof is by induction on t = 1, . . . , T . We prove that for all t one has

||(M1:t, S
Y
1:t)− (M1:t, S

N
1:t)||tvd ≤ γt/T +

t∑

j=1

Pr[Ēj |Ej−1].

Base:t = 1 We have, conditional on the event E1,

||(M1, S
Y
1 )− (M1, S

N
1 )||tvd = ||(M1, S

Y
1 )− (M1, r1(M1, U1, S

N
0 ))||tvd,E1

= ||(M1, S
Y
1 )− (M1, r1(M1, U1, S

Y
0 ))||tvd,E1

where we used the fact that SY
0 = SN

0 . By assumption Eq. (*) of the lemma and the fact that total

variation distance is bounded by 1 we have

||(M1, S
Y
1 )− (M1, r1(M1, U1, S

N
0 ))||tvd,E1 ≤ γ/T + Pr[Ē1] = γ/T

as required. This proves the base of the induction.
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Inductive step: t− 1 → t We condition on Et in what follows, and write || · ||tvd,Et to denote the total

variation distance between conditional distributions. We have

||(M1:t, S
Y
1:t)− (M1:t, S

N
1:t)||tvd,Et

=||(M1:t−1, S
Y
1:t−1,Mt, rt(M1:t−1, S

Y
1:t−1,Mt,MtX

∗))− (M1:t−1, S
N
1:t−1, rt(M1:t−1, S

N
1:t−1,Mt, Ut))||tvd,Et

We would like to apply Lemma B.2 to the expression above. To that effect we define

QY
t−1 = (M1:t−1, S

Y
1:t−1) and QN

t−1 = (M1:t−1, S
N
1:t−1).

With this notation in place we have

||(M1:t−1, S
Y
1:t−1,Mt, rt(M1:t−1, S

Y
1:t−1,Mt,MtX

∗))− (M1:t−1, S
N
1:t−1, rt(M1:t−1, S

N
1:t−1,Mt, Ut))||tvd,Et

=||(QY
t−1,Mt, rt(Q

Y
t−1,Mt,MtX

∗))− (QN
t−1,Mt, rt(Q

N
t−1,Mt, Ut))||tvd,Et .

(65)

We now apply the substitution lemma (Lemma B.2) to Eq. (65). The parameters are as follows. We let

X1 = QY
t−1 and X2 = QN

t−1. The variables Z1 and Z2 are set as Z1 = (Mt,MtX
∗) (recall that X∗

is the hidden bipartition) and Z2 = (Mt, Ut). Note that this setting of Z2 satisfies the preconditions

of Lemma B.2: Z2 = (Mt, Ut) is independent of X1,X2, as required.

In order to apply Lemma B.2, it remains to define the function f that maps tuples (X,Z) to some

universe so that

(X1, f(X1, Z1)) = (QY
t−1, f(Q

Y
t−1, (Mt,MtX

∗)))

equals (QY
t−1,Mt, rt(Q

Y
t−1,Mt,MtX

∗)) and

(X2, f(X2, Z2)) = (QN
t−1, f(Q

N
t−1, (Mt, Ut)))

equals (QN
t−1,Mt, rt(Q

N
t−1,Mt, Ut)). For that, it is sufficient to let f be the function that maps input

tuple (X, (B,C)) to (B, rt(X,B,C)).

Applying Lemma B.2 with these settings, we get

||(QY
t−1,Mt, rt(Q

Y
t−1,Mt,MtX

∗))− (QN
t−1, rt(Q

N
t−1,Mt, Ut))||tvd,Et

≤||QY
t−1 −QN

t−1||tvd + ||(Mt, rt(Q
Y
t−1,Mt,Mtx))− (Mt, Q

Y
t−1, rt(Q

Y
t−1,Mt, Ut))||tvd,Et

The first term is bounded by γ(t− 1)/T +
∑t−1

j=1 Pr[Ēj|Ej−1] by the inductive hypothesis. Using the

assumption Eq. (*) of the lemma, we get

||(Mt, rt(Q
Y
t−1,Mt,MtX

∗))− (Mt, Q
Y
t−1, rt(Q

Y
t−1,Mt, Ut))||tvd,Et

= E(Mt,QY
t−1)∈Et

[
||(Mt, rt(Q

Y
t−1,Mt,MtX

∗))− (Mt, Q
Y
t−1, rt(Q

Y
t−1,Mt, Ut))||tvd

]

≤ γ/T,

where the total variation distance in the second line is over X∗ ∼ UNIF (SY
t−1). Putting the two

bounds together yields

||(M1:t, S
Y
1:t)− (M1:t, S

N
1:t)||tvd ≤ γt/T +

t∑

j=1

Pr[Ēj |Ej−1]
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as required. Substituting t = T we get

||(M1:T , S
Y
1:T )− (M1:T , S

N
1:T )||tvd ≤ γ +

T∑

j=1

Pr[Ēj |Ej−1] ≤ γ + T · γ/T = 2γ,

thus proving the lemma.

C Details omitted from Section 5

Here we formally prove that if s ≪ n/BT for large enough B then with high probability we will have

‖FT ‖ ≪ n. We start by the following Lemma.

Lemma C.1 Let m,T be positive integers and let {Xk}k∈[mT ] be a sequence of positive random variables

satisfying X0 < m/100T , and for k ∈ [mT ] we have

E[Xk|Xk−1] ≤ Xk−1 ·
(
1 +

1

m
+

Xk−1

m2

)
.

Then Pr[maxi∈[mT ]Xi > n/2T ] < 2−T .

Proof: Consider stopping time τ := inf{t : Xt > m/2T }, if XmT ≤ m/2T we define τ := mT . Note that

for k ≤ τ we have

1 +
1

m
+

Xk−1

m2
< 1 +

2

m
,

which means that the process Yk := Xk/(1+2/m)k stopped at time τ is a supermartingale (i.e. E[Yk|Yk−1] ≤
Yk−1). By Markov’s inequality applied to Yτ we have

Pr[ max
i∈[mT ]

Xi > n/2T ] = Pr[Xτ > n/2T ] ≤ Pr

[
Yτ >

m

2T · (1 + 2/m)mT

]
≤ E[Yτ ](

m
2T ·(1+2/m)mT

) .

Optional stopping theorem implies that E[Yτ ] ≤ E[Y0] = E[X0] < m/100T . So we have

Pr[ max
i∈[mT ]

Xi > n/2T ] ≤ m/100T(
m

2T ·(1+2/m)mT

) ≤ m/100T

m/(2e2)T
< 6−T .

We then deduce the following lemma

Lemma C.2 Suppose the communication budget is s < n/800T , then with probability at least 1− 2−T the

forest FT formed by all edges revealed by players satisfies ‖FT ‖ ≤ n/2T .

Proof: Recall that we consider forests Fk, k ∈ [0 . . . T ] formed by edges revealed by first k players. We

also define F i
t for i ∈ [0 . . . αn] inductively as

F j
t :=

{
F j−1
t ∪ {ej} if ej intersects with a nontrivial component in F j−1

t

F j−1
t o.w.
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We then deduced that (see (13))

Eei

[
‖F i

t ‖
∣∣e[1:i−1]

]
≤ ‖F i−1

t ‖ ·
(
1 +

12

n
+

8‖F i−1
t ‖
n2

)
. (66)

We refer to Section 5.2 for more details. Let m = αn + 1 and define a sequence of random variables

Xk, k ∈ [0 . . . mT ] by

Xk := ‖F i
t+1‖ · 2T−t,

where i = 0 . . . m − 1 and k = m · t + i. We now check that Xk satisfies the assumption of Lemma C.1.

For k not divisible by m this trivially follows from (66) since m < n/12 and Xk ≥ ‖F i
t+1‖. For k = m · t

we have Xk = ‖F 0
t ‖ · 2T−t = ‖Ft−1‖ · 2T−t = (‖Fαn

t−1‖+4s) · 2T−t and Xk−1 = Fαn
t−1 · 2T−t+1. Since we

definitely have ‖Fαn
t−1‖ ≥ ‖F0‖ = 4s, this implies that Xk ≤ Xk−1 deterministically, and so the condition

of Lemma C.1 is satisfied in this case as well. Note also that X0 = 4s · 2T < n/100T . Lemma C.1 then

implies that Pr[XmT > n/2T ] < 2−T . So we infer

Pr[‖FT ‖ > n/2T ] = Pr[XmT > n/2T ] < 2−T .

D Useful facts

D.1 Concentration inequalities

We prove Lemma 2.5, restated here for convenience of the reader:

Lemma 2.5 Let X =
∑n

i=1Xi, where Xi are Bernoulli 0/1 random variables satisfying, for every k ∈ [n],
E[Xk|X1, . . . ,Xk−1] ≤ p for some p ∈ (0, 1). Let µ = np. Then for all ∆ > 0

Pr[X ≥ µ+∆] ≤ exp

(
− ∆2

2µ+ 2∆

)
.

Proof: Note that for any u > 0 we have

E
[
euX

]
= E

[
n∏

k=1

euXk

]
≤ (1− p+ p · eu) · E

[
n−1∏

k=1

euXk

]
≤ . . . ≤ (1− p+ p · eu)n.

By Markov inequality we then have

Pr[X ≥ µ+∆] ≤ min
u>0

(1− p+ p · eu)n
eu(µ+∆)

= min
v>0

(1 + pv)µ/p

(1 + v)µ+∆
,

where in the last equality we made a substitution v = eu − 1. Using the fact that ex−x2/2 ≤ 1 + x ≤ ex for

all positive x we then infer

Pr[X ≥ µ+∆] ≤ min
v>0

epv·µ/p

e(v−v2/2)·(µ+∆)
= min

v>0
exp

(
−v ·∆+ v2/2 · (µ+∆)

)
.

The minimum is achieved at v = ∆
µ+∆ and equals − ∆2

2(µ+∆) , as desired.

We also prove Lemma 2.6, restated here for convenience of the reader:
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Lemma 2.6 Let G be a miltigraph with n vertices and m edges (counted with multiplicities) in which each

edge has multiplicity at most k. Let S ⊂ [n] be a uniformly random subset of vertices and X be the number

of edges crossing (S, S̄). Then for any δ > 0 we have

Pr[X < m/2 · (1− δ)] ≤ k

δ2m
.

Proof: Let m1,m2, . . . ,ms be multiplicities of edges of G and let {pi}i∈[s] be 0/1 random variables

indicating if the corresponding edge crosses the cut or not. Note that E[pi] = 1/2 and E[pipj] = 1/4 for

i 6= j. We then infer that

E[X] =

s∑

i=1

mi · E[pi] = m/2, E[X2] =

s∑

i=1

s∑

j=1

mimj · E[pipj] = m2/4 +
1

4

s∑

i=1

m2
i .

By Chebyshev inequality we then have

Pr[X < m/2 · (1− δ)] ≤
(∑

m2
i

)
/4

(δm/2)2
≤ k ·m

δ2m2
=

k

δ2m
.

We now prove Lemma 2.4 restated here for convenience of the reader:

Lemma 2.4 For every ǫ, α ∈ (n−1/10, 1), α < 1/4 and T = 512/(αǫ2) if G′
T = (V,E′

T ), |V | = n, |E′| =
m be generated according to the process above, then for sufficiently large n there exists m0 = m0(n, α, T )
such that in the YES case the MAX-CUT value is at least m0, and in the NO case the MAX-CUT value is at

most m0/(2− ǫ), both with probability at least 1− 1/
√
n.

Proof: We let m0 = αnT
2 · (1 − δ) with δ = ǫ/100. In the YES case the graph is bipartite so the value

of MAX-CUT is equal to the number of edges in the graph. Since in the YES case we only keep those

edges of the matchings which cross a fixed random bipartition, and in the union of matchings every edge

has multiplicity at most T , Lemma 2.6 ensures that the probability that the number of edges if smaller than

m0 is at most
T

δ2αnT
=

1

δ2αn
≤ 1/

√
n,

since ǫ, α > n−1/10 by assumption of the lemma.

We now consider the NO case. Since every edge of the matchings is kept with probability 1/2 inde-

pendently of the others, by Lemma 2.5 with probability at least 1− exp
(
− δ2αnT

4(1+δ)

)
(we invoke Lemma 2.5

with µ = αnT/2 and ∆ = δµ) the number m of edges in the graph will be at most αnT
2 · (1 + δ). In the

following we assume that m ≤ αnT
2 · (1 + δ).

Fix a cut (S, S̄) where S ⊆ V . Let k := |S|. Consider the edges in Et, that is the matching generated at

step t. Consider an arbitrary order of the edges in Et. Conditioned on all previous edges, an edge e in Et is

a uniformly random edge with endpoints in a set V of vertices not covered by the previous edges. Clearly,

|V | ≥ n− 2αn > n/2. The probability that the edge e crosses the cut (S, S̄) is

|S ∩ V | · |S̄ ∩ V |(|V |
2

) ≤ |V |2/4
|V | · (|V | − 1)/2

=
1

2
· |V |
|V | − 1

≤ 1 + 3/n

2
.

We then use Lemma 2.5 with p = 1+3/n
2 and µ = p ·m applied to the random variables indexed by edges of

the graph and equal 1 if the edge crosses the cut (S, S̄) and 0 otherwise. Then for the random variable YS

which is the number of edges crossing the cut (S, S̄), Lemma 2.5 gives

Pr

[
YS >

m0

2− ǫ

]
≤ exp

(
−
( m0
2−ǫ − p ·m)2

2m0/(2 − ǫ)

)
.
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We have

m0

2− ǫ
− p ·m ≥ αnT · (1− δ)

2 · (2− ǫ)
− 1 + 3/n

2
· αnT

2
· (1 + δ) ≥ αnT

4
·
(

1− δ

1− ǫ/2
− (1 + δ)2

)
≥ αnTǫ/16,

and

2m0/(2 − ǫ) =
αnT · (1− δ)

2− ǫ
≤ αnT.

Putting this together we get

Pr

[
YS >

m0

2− ǫ

]
≤ exp

(
−(αnTǫ/16)2

αnT

)
= exp

(
−αnTǫ2/256

)
≤ exp (−2n).

where we used the assumption that T = 512/(αǫ2). Taking a union bound over all 2n possible cuts com-

pletes the proof.

D.2 Combinatorics

Lemma D.1 Let P1 ∪P2 · · · ∪Pm be a partition of the cube {0, 1}n . For x ∈ {0, 1}n let Px be the unique

part Pi which contains x. Then

Ex∼Uniform({0,1}n)[1/|Px|] = m/2n.

Proof: Indeed, by the definition of the expectation we have

Ex∼Uniform({0,1}n)[1/|Px|] =
m∑

i=1

Px∼Uniform({0,1}n)[x ∈ Pi]/|Pi| =
m∑

i=1

|Pi| · 2−n/|Pi| = m/2n.

We now give proof of Lemmas from Section 3.3 which we restate for the convinience of the reader.

Lemma 3.12 For every integer n and every 0 ≤ ℓ ≤ n/2

p(ℓ, n) =

(
αn

ℓ

)(
n

2ℓ

)−1

.

Proof: Let M be a random matching of size αn. The expected number of sets of size 2ℓ which are matched

by M is
(αn

ℓ

)
(in fact, it is always equal to

(αn
ℓ

)
). The statement of the lemma easily follows.

Lemma 3.13 For every integer n and every 0 ≤ i ≤ k ≤ n/2

q(k, i, n) =

(
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1

.

Proof: For any fixed matching M of size αn the number of sets A of cardinality 2k for which exactly 2i
points are matched and there are no boundary edges is

(αn
i

)(n−2αn
2(k−i)

)
. Indeed, to construct such a set A we

need to choose i edges of M which match points of A and also choose 2(k − i) points of A which are not

matched by M . The statement of the lemma easily follows.

Lemma 3.14 For all non-negative integers n, i, k, b satisfying k ≤ n/2 and 2i+ b ≤ 2k

q(k, i, b, n) =

(
αn

i

)(
αn− i

b

)
2b
(

n− 2αn

2(k − i)− b

)(
n

2k

)−1

.
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Proof: For any fixed matching M of size αn the number of sets A of size with b boundary edges and i
inner edges is (

αn

i

)(
αn− i

b

)
2b
(

n− 2αn

2(k − i)− b

)
.

Indeed, we need to choose i inner edges, then chose b boundary edges, then for each boundary edge decide

which of its end-points belongs to A, and choose remaining 2k − 2i− b points of A which are not matched

by M . The statement of the lemma easily follows.

Lemma 3.15 Suppose we have k < n/10, α < 1/100, and 2i+ b ≤ 2k then

q(k, i, b, n) ≤ q(k, i, n)20−b4k−i.

Proof: By Lemma 3.14 and Lemma 3.13 we have

q(k, i, b, n) =

(
αn

i

)(
αn− i

b

)
2b
(

n− 2αn

2(k − i)− b

)(
n

2k

)−1

, q(k, i, n) =

(
αn

i

)(
n− 2αn

2(k − i)

)(
n

2k

)−1

.

Consequently, we have

q(k, i, b, n)

q(k, i, n)
= 2b

(
αn− i

b

)( n−2αn
2(k−i)−b

)
(n−2αn
2(k−i)

) . (67)

Since we have

( n−2αn
2(k−i)−b

)
(
n−2αn
2(k−i)

) =
(2k − 2i)!(n − 2αn − 2(k − i))!

(2(k − i)− b)!(n − 2αn− 2(k − i) + b)!
=

(2k−2i
b

)
(n−2αn−2(k−i)+b

b

) ,

we can rewrite (67) as

q(k, i, b, n)

q(k, i, n)
= 2b

(αn−i
b

)(2k−2i
b

)
(n−2αn−2(k−i)+b

b

) .

We then use the following bounds to handle factors in the numerator:

(
αn− i

b

)
≤ (αn− i)b

b!
≤ (αn)b

b!
,

(
2k − 2i

b

)
≤ 22k−2i.

To lower bound the denominator we note that n− 2αn− 2(k − i) ≥ n− n/50− n/5 > n/2 and so

(
n− 2αn − 2(k − i) + b

b

)
≥ (n− 2αn− 2(k − i))b

b!
≥ (n/2)b

b!
.

Putting this together we obtain

q(k, i, b, n)

q(k, i, n)
≤ (αn)b

b!
2b

22(k−i)

(n/2)b/b!
= (4α)b4k−i ≤ 20−b4k−i,

which completes the proof.
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D.3 Inequalities

Since we deal with sums when we know much more about sum of squares, we repeatedly use the following

fact.

Lemma D.2 Let a1, a2, . . . , am be real numbers. Then

m∑

i=1

|ai| ≤

√√√√m

m∑

i=1

a2i .

Proof: Indeed, we have

(
m∑

i=1

|ai|
)2

= m ·
m∑

i=1

a2i −
∑

1≤i<j≤m

(ai − aj)
2 ≤ m ·

m∑

i=1

a2i .

We also need the following inequality for binomial coefficients in terms of the entropy function.

Lemma D.3 Let H(x) = −x log x− (1 − x) log (1− x) be the entropy function. Then for all 0 ≤ k ≤ n
we have

enH(k/n)

n+ 1
≤
(
n

k

)
≤ enH(k/n).

Proof: For the lower bound note that for every t > 1 we have

I(t) :=

∫ 1

0
(xt+ (1− x))n dx =

∫ 1

0
(1 + x(t− 1))n dx =

tn+1 − 1

(n+ 1)(t− 1)
=

1 + t+ · · ·+ tn

n+ 1
.

On the other hand,

I(t) =

n∑

i=0

ti
(
n

i

)∫ 1

0
xi(1− x)n−i dx.

Comparing coefficients at tk we get

∫ 1

0
xk(1− x)n−k dx =

1

(n+ 1)
(n
k

) .

Apply AM-GM inequality to x1 = x2 = · · · = xk = x/k, xk+1 = · · · = xn = (1− x)/(n − k) to get

xk(1− x)n−k

kk · (n − k)n−k
=

n∏

i=1

xi ≤
(
x1 + x2 + · · ·+ xn

n

)n

= 1/nn.

This implies

1

(n+ 1)
(n
k

) =

∫ 1

0
xk(1− x)n−k dx ≤ max

x∈[0,1]
xk(1− x)n−k ≤ kk · (n− k)n−k

nn
= e−nH(k/n),

thus showing the lower bound.

For the upper bound let X be a uniformly random subset of {1, 2, . . . , n} of size k. We view X as a bit

string (x1, x2, . . . , xn) where xi = 1i∈X . Note that Pr[xi = 1] = k/n. We then have

log

(
n

k

)
= H(X) ≤ H(x1) + · · · +H(xn) = n ·H(x1) = n ·H(k/n),
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which implies the upper bound.

We frequently deal with the expressions of the form (m/x)x or (m/x)x/2. The following lemma gives an

upper bound.

Lemma D.4 For any m > 0 and any x > 0 the following inequalities hold true

(m
x

)x
≤ em/e,

(m
x

)x/2
≤ e

m
2e .

Proof: The second inequality follows from the first one by taking a square root. To prove the first inequality

note that for f(t) = log t
t we have

f ′(t) =
1− log t

t2
,

which means that f(t) is increasing on (0, e) and decreasing on (e,∞). Thus, f(t) ≤ f(e) for every t > 0
and so (m

x

)x
=
(
(m/x)x/m

)m
=
(
ef(m/x)

)m
≤
(
ef(e)

)m
= em/e.

We also deal with factorials and functions of the form ℓℓ. The following lemma says that up to exponentially

large factors they are the same and enjoy the property f(x+ y) ≈ f(x)f(y).

Lemma D.5 Let a1, . . . am be positive integers and S =
∑

ai. Let f1, . . . , fm be functions, each of them

is either x 7→ xx or x 7→ x!. Then (
S

3m

)S

≤
m∏

i=1

fi(ai) ≤ SS .

Proof: For the upper bound note that

m∏

i=1

fi(ai) ≤
m∏

i=1

aaii ≤
m∏

i=1

Sai = SS.

For the lower bound we have

m∏

i=1

fi(ai) ≥
m∏

i=1

ai! ≥
m∏

i=1

(ai
e

)ai
= e−S

m∏

i=1

aaii .

Consider a multiset of S integers where each ak appears ak times. Sum of reciprocals of numbers in this

set is then m, which means that the harmonic mean is S/m. The geometric mean is at least as large as the

harmonic mean so

S

√√√√
m∏

i=1

aaii ≥ S

m
.

This implies that
m∏

i=1

fi(ai) ≥ e−S

(
S

m

)S

>

(
S

3m

)S

.

Remark 1 In all the applications we have m ≤ 4. We also frequently apply the lemma for a quotient of two

products, in which case what remains (up to exponential factor) is f(
∑

ai −
∑

bj) where ai’s are in the

numerator and bj’s are on the denominator.

Remark 2 If applying the lemma we have expression of the form ℓℓ/2 it should be replaced with (ℓ/2)ℓ/2 ·
2ℓ/2 = f(ℓ/2) · 2ℓ/2.
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E Fourier spectrum of the component growing protocol from section 5.1

Suppose that the players use the component growing protocol described in section 5.1. For each t = 1, . . . , T
let E∗

t denote the set of edges of the forest Ft. In that case the set of possible values of X∗ consistent with

the players’ knowledge at time t can be defined quite easily:

Bt = {x ∈ {0, 1}n : ∀e = (a, b) ∈ E∗
t , xa + xb = we}.

Thus, Bt is simply a linear subspace of {0, 1}n, where the constraints are given by the edges in E∗
t .

Recall that we denote the indicator of Bt by ht. We now derive a characterization of ĥt. We call a coefficient

v ∈ {0, 1}n admissible if it has an even intersection with every connected component in E∗
t (see Fig. 1(a),

where the elements of an admissible v are marked red). For each admissible v let Q(v) denote the unique

pairing of vertices of v via edge-disjoint paths in E∗
t (we associate Qv with the set of edges on these paths).

This is illustrated in Fig. 1, where the vertices of v ∈ {0, 1}n are marked red, and the edges of Q(v) are

the green dashed edges. Note that since edges of E∗
t form a forest, this pairing is indeed unique for every

admissible v.

We show that ĥt(v) has the following simple form:

ĥt(v) =

{ |Bt|
2n · (−1)

∑
e∈Q(v) we if v is admissible

0 o.w..
(68)

Recall that we are the labels on the edges of the graph Gt formed by first t matchings.

We now prove Eq. (68). We first prove that ĥt(v) = 0 for any inadmissible v. By definition of the

Fourier transform

ĥt(v) =
1

2n

∑

w∈{0,1}n
ht(w)(−1)v·w =

1

2n

∑

w∈Bt

(−1)v·w

=
|{w ∈ Bt : v · w is even}| − |{w ∈ Bt : v · w is odd}|

2n
.

Now suppose that v ∈ {0, 1}n has an odd intersection with at least one of the connected components in

E∗
t . Denote the set of vertices in this component by C∗ ⊆ [n], and let 1C∗ ∈ {0, 1}n denote the indicator

vector of vertices in C∗. We now note that for any w ∈ Bt one necessarily has that w + 1C∗ ∈ Bt. Indeed,

adding 1 to every vertex in C∗ could only violate those constraints (edges) that have exactly one endpoint

in C∗. But there are no such edges since C∗ is a connected component by definition, so w + 1C∗ ∈ Bt as

required. On the other hand, v has an odd intersection with C∗, we have v · 1C∗ = 1, so for any w ∈ {0, 1}n

v · (w + 1C∗) = v · w + 1.

This means that |{w ∈ Bt : v · w is even}| = |{w ∈ Bt : v · w is odd}, since the map w → w + 1C∗ is an

involution on Bt, and hence ĥt(v) = 0 as required.

Now suppose that v is admissible. To derive the equation for ĥt given in Eq. (68), we note that Bt can be

alternatively characterized as follows. Pick any element w∗ ∈ Bt, and let C1, . . . , Ck denote the connected

components in E∗
t (so that each singleton node is a connected component of its own). Then

Bt = {w∗ +
k∑

i=1

λi1Ci : λ ∈ {0, 1}k}.

Noting that v · 1Ci = 0 for all i = 1, . . . , k, we note that for any w ∈ {0, 1}n

v · w = v · (w∗ +
k∑

i=1

λi1Ci) = v · w∗.
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We thus have

ĥt(v) =
1

2n

∑

w∈Bt

(−1)v·w =
|Bt|
2n

(−1)v·w
∗

.

Let Λ be the the unique pairing of vertices of v by edge disjoint paths in Ft. For any pair {i, j} ∈ Λ let Pi,j

denote the path from i to j in Ft. Note that

∑

e∈Pi,j

we =
∑

e=(a,b)∈Pi,j

(X∗
a +X∗

b ) = X∗
i +X∗

j .

To complete the proof, it suffices to note that

v · w∗ =
∑

{i,j}∈Λ
X∗

i +X∗
j =

∑

{i,j}∈Λ

∑

e∈Pi,j

we =
∑

e∈Q(v)

we

as required.

We now turn to the Fourier transform of ft for the component growing protocol. Let M∗
t := Mt ∩ E∗

t

denote the set of edges of Mt whose bits are revealed by the t-th player. We have E∗
t = E∗

t−1 ∪M∗
t for all

t = 1, . . . , T . Note that the simple rule that defines M∗
t immediately specifies the set At for our component

growing protocol (recall that At was defined in Definition 4.1). For completeness, we instantiate both the

definitions of At,reduced and At for our component growing protocol. The set At,reduced is simply

Areduced,t = {z ∈ {0, 1}Mt : ze = (wt)e for all e ∈ M∗
t }.

Thus, Areduced,t is a subcube of the boolean hypercube {0, 1}Mt obtained by fixing coordinates in M∗
t to

their specified values. The set At is defined as At = {x ∈ {0, 1}n : Mtx ∈ At,reduced} (see Definition 4.1),

and in our case is a linear subspace of {0, 1}n:

At = {x ∈ {0, 1}n : for all e = (a, b) ∈ M∗
t xa + xb = (wt)e}.

Recall that the function ft is defined as the indicator of At (see Definition 4.1). Since At is a linear subspace

just like Bt, the Fourier transform of ft is also quite easy to understand. We note that the same derivation

as for ht shows that the Fourier transform of f̂t is supported on edges of Mt. We now say that v ∈ {0, 1}n
is admissible if it has even intersection with every connected component in M∗

t . But this can only happen

when v is a union of edges of M∗
t , as required.

F Proof of Lemmas 3.3 and 3.4

F.1 General bound for the L1 mass of the Fourier transform

Here we prove Lemma 3.3. The starting point is the following Lemma which can be found in [KKL88].

Lemma F.1 Let f be a function f : {0, 1}m → {−1, 0, 1} and let A = f−1({−1, 1}). Let |s| denote the

Hamming weight of s ∈ {0, 1}m. Then for every δ ∈ [0, 1]

∑

s∈{0,1}m
δ|s|f̂2(s) ≤

( |A|
2m

) 2
1+δ

.

We then deduce
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Lemma F.2 Let f be a function on {0, 1}m taking values in {−1, 0, 1}. Define a set A = f−1({−1, 1}).
Then if |A| ≥ 2m−d and q ≤ d then

(
2m

|A|

)2 ∑

x∈{0,1}m
|x|=q

f̂2(x) ≤
(
4d

q

)q

.

Proof: By the Lemma above, for every δ ∈ [0, 1] we have

(
2m

|A|

)2 ∑

x∈{0,1}m
|x|=q

f̂2(x) ≤ 22m

|A|2 δ
−q

( |A|
2m

) 2
1+δ

= δ−q

(
2m

|A|

) 2δ
1+δ

≤ δ−q

(
2m

|A|

)2δ

≤ 22δd

δq
.

Plugging in δ = λq/d with λ ∈ [0, 1] (which ensures that δ ∈ [0, 1]) we obtain

(
2m

|A|

)2 ∑

x∈{0,1}m
|x|=q

f̂2(x) ≤ 22δd

δq
=

(
22λd

λq

)q

.

It remains to note that for λ = 1
2 log 2 we have 22λ/λ = 2e log 2 < 4.

Lemma F.3 Let A ⊂ {0, 1}m be a set of cardinality at least 2m−d with indicator function f . Then for every

y ∈ {0, 1}m and every q ≤ d one has

∑

x∈{0,1}m
|x⊕y|=q

f̃2(x) ≤
(
4d

q

)q

.

Proof: Recall that f̃(x) := 2m

|A| · f̂(x), see definition 3.2. So the statement is equivalent to the following

inequality: (
2m

|A|

)2 ∑

x∈{0,1}m
|x⊕y|=q

f̂2(x) ≤
(
4d

q

)q

.

Consider a function g(z) := f(z)(−1)z·y . For this function we have

ĝ(x) = 2−m
∑

z∈{0,1}m
g(z)(−1)z·x = 2−m

∑

z∈{0,1}m
f(z)(−1)z·(x⊕y) = f̂(x⊕ y).

It remains to apply the previous lemma to the function g(z).
Since there are exactly

(m
q

)
different x ∈ {0, 1}m for which |x ⊕ y| = q, the above Lemma together with

Lemma D.2 imply Lemma 3.3.

F.2 Structure of the Fourier transform of a single player’s message

Here we prove Lemma 3.4.

Proof: We compute the Fourier transform of f(x). For z ∈ {0, 1}αn let x(z) ∈ {0, 1}n be defined by

setting, for each edge (u, v) ∈ M ,

x(z)u = ze and x(z)v = 0
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and x(z)w = 0 if w is not matched by M . Note that x(z) is a particular solution of Mx = z and the set of

solutions is given by

{x(z) +Ns : s ∈ {0, 1}n−αn}, (69)

where N is a basis for the kernel of M . Without loss of generality suppose that M contains the edges

(2i− 1, 2i), i = 1, . . . , αn. Then the matrix N ∈ {0, 1}n×(n−αn) may be taken as




1 0 0 . . . 0 0 . . . 0
1 0 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...

0 0 1 . . . 0 0 0 0
0 0 1 . . . 0 0 0 0
0 0 0 . . . 1 0 0 0
0 0 0 . . . 0 1 0 0

0 0 0 . . . 0 0
. . . 0

0 0 0 . . . 0 0 0 1




,

where first αn columns form MT , the bottom right submatrix is the (n− 2αn)× (n− 2αn) identity, all the

other entries are zero.

The Fourier transform of f at v ∈ {0, 1}n is given by

f̂(v) =
1

2n

∑

x∈{0,1}n
f(x) · (−1)x·v

=
1

2n

∑

z∈Areduced

∑

s∈{0,1}n−αn

(−1)(x(z)+Ns)·v

=
1

2n

∑

z∈Areduced

(−1)x(z)·v
∑

s∈{0,1}n−αn

(−1)(v
T N)·s

First note that ∑

s∈{0,1}n−αn

(−1)(v
T N)·s = 1vTN=0 · 2n−αn,

so f̂(v) = 0 unless vTN = 0. Note that all such v are of the form v = MT r for some r ∈ {0, 1}αn .

Thus,

f̂(MT r) =
2n−αn

2n

∑

z∈Areduced

(−1)x(z)·M
T r =

2n−αn

2n

∑

z∈Areduced

(−1)z·r = q̂(r)

and f̂(v) = 0 for all v not of the form MT r. Here we use the fact that x(z) ·MT r = z · r for all z and r.

Note that Fourier coefficients of f only have even weight, and weight k Fourier coefficients of q are in

direct correspondence with weight 2k coefficients of f (since |MT r| = 2|r| for all r ∈ {0, 1}αn).
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