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ABSTRACT
We introduce the problem of learning mixtures of k subcubes over

{0,1}n , which contains many classic learning theory problems as

a special case (and is itself a special case of others). We give a

surprising nO (logk )
-time learning algorithm based on higher-order

multilinear moments. It is not possible to learn the parameters

because the same distribution can be represented by quite different

models. Instead, we develop a framework for reasoning about how

multilinear moments can pinpoint essential features of the mixture,

like the number of components.

We also give applications of our algorithm to learning decision

trees with stochastic transitions (which also capture interesting sce-

narios where the transitions are deterministic but there are latent

variables). Using our algorithm for learning mixtures of subcubes,

we can approximate the Bayes optimal classifier within additive

error ϵ on k-leaf decision trees with at most s stochastic transi-
tions on any root-to-leaf path in nO (s+logk ) · poly(1/ϵ ) time. In this

stochastic setting, the classic nO (logk ) · poly(1/ϵ )-time algorithms

of Rivest, Blum, and Ehrenfreucht-Haussler for learning decision

trees with zero stochastic transitions break down because they

are fundamentally Occam algorithms. The low-degree algorithm of

Linial-Mansour-Nisan is able to get a constant factor approximation

to the optimal error (again within an additive ϵ) and runs in time

nO (s+log(k/ϵ ))
. The quasipolynomial dependence on 1/ϵ is inherent

to the low-degree approach because the degree needs to grow as

the target accuracy decreases, which is undesirable when ϵ is small.

In contrast, as we will show, mixtures of k subcubes are uniquely

determined by their 2 logk order moments and hence provide a

useful abstraction for simultaneously achieving the polynomial

dependence on 1/ϵ of the classic Occam algorithms for decision

trees and the flexibility of the low-degree algorithm in being able to

accommodate stochastic transitions. Using our multilinear moment

techniques, we also give the first improved upper and lower bounds
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since the work of Feldman-O’Donnell-Servedio for the related but

harder problem of learning mixtures of binary product distributions.
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1 INTRODUCTION
1.1 Background
In this paper, we introduce and study the following natural problem:

A mixture of subcubes is a distribution on the Boolean hypercube

where each sample is drawn as follows:

(1) There are k mixing weights π 1,π 2, · · · ,πk corresponding to

k centers µ1,µ2, · · · ,µk ∈ {0,1/2,1}n .
(2) We choose a center proportional to its mixing weight and

sample a point uniformly at random from its corresponding

subcube. More precisely, if we choose the ith center, each

coordinate is independent and the jth has expectation µ
j
i .

Our goal is to give efficient algorithms for estimating the distri-

bution in the PAC-style model of Kearns et al. [16]. It is not always

possible to learn the parameters because two mixtures of subcubes
1

can give rise to identical distributions. Instead, the goal is to output

a distribution close to the true one in total variation distance.

The problem of learning mixtures of subcubes contains various

classic problems in computational learning theory as a special case,

and is itself a special case of others. For example, for any k-leaf
decision tree, the uniform distribution on assignments that satisfy

it is a mixture of k subcubes. Likewise, for any function that de-

pends on just j variables (a j-junta), the uniform distribution on

assignments that satisfy it is a mixture of 2
j
-subcubes. And when

we allow the centers µi to instead be in the set [0,1]n it becomes

the problem of learning mixtures of binary product distributions.

1
Even with different numbers of components.
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These problems all have a long history of study. Ehrenfeucht and

Haussler [8] gave an nO (logk )
time algorithm for learning k-leaf

decision trees. Blum [3] showed that k-leaf decision trees can be

represented as logk-width decision lists and Rivest [21] gave an

algorithm for learning ℓ-width decision lists in time nO (ℓ)
. Mossel,

O’Donnell and Servedio [20] gave an nj
ω
ω+1 time algorithm for

learning j-juntas where ω is the matrix multiplication constant,

and Valiant [23] improved this to nj
ω
4 time. Freund and Mansour

[11] gave the first algorithm for learning mixtures of two product

distributions. Feldman, O’Donnell and Servedio [9] gave an nO (k3 )

time algorithm for learning mixtures of k product distributions.

What makes the problem of learning mixtures of subcubes an

interesting compromise between expressive power and structure is

that it admits surprisingly efficient learning algorithms. The main

result in our paper is an nO (logk )
time algorithm for learning mix-

tures of subcubes. We also give applications of our algorithm to

learning k-leaf decision trees with at most s stochastic transitions
on any root-to-leaf path (which also capture interesting scenarios

where the transitions are deterministic but there are latent vari-

ables). Using our algorithm for learning mixtures of subcubes, we

can approximate the error of the Bayes optimal classifier within an

additive ϵ in nO (s+logk ) ·poly(1/ϵ ) time with an inverse polynomial

dependence on the accuracy parameter ϵ . The classic algorithms of

[3, 8, 21] for learning decision trees with zero stochastic transitions

achieve this runtime, but because they are Occam algorithms, they

break down in the presence of stochastic transitions. Alternatively,

the low-degree algorithm [18] is able to get a constant factor ap-

proximation to the optimal error (again within an additive ϵ), while

running in time nO (s+log(k/ϵ ))
. The quasipolynomial dependence

on 1/ϵ is inherent to the low-degree approach because the degree

needs to grow as the target accuracy decreases, which is undesirable

when ϵ is small as a function of k .
In contrast, we show that mixtures of k subcubes are uniquely

identified by their 2 logk order moments. Ultimately our algorithm

for learning mixtures of subcubes will allow us to simultaneously

match the polynomial dependence on 1/ϵ of Occam algorithms and

achieve the flexibility of the low-degree algorithm in being able to

accommodate stochastic transitions. We emphasize that proving

identifiability from 2 logk order moments is only a first step in a

much more technical argument: There are many subtleties about

how we can algorithmically exploit the structure of these moments

to solve our learning problem.

1.2 Our Results and Techniques
Our main result is annO (logk )

poly(1/ϵ ) time algorithm for learning

mixtures of subcubes.

Theorem 1.1. Let ϵ ,δ > 0 be given and let D be a mixture of

k subcubes. There is an algorithm that given samples from D runs

in time Ok (n
O (logk ) (1/ϵ )O (1)

log 1/δ ) and outputs a mixture D ′ of

f (k ) subcubes that satisfiesdTV (D,D ′) ≤ ϵ with probability at least

1− δ . Moreover the sample complexity isOk ((logn/ϵ )
O (1)

log 1/δ ).2

2
Throughout, the hidden constant depending on k will be O (kk

3

), which we have

made no attempt to optimize.

The starting point for our algorithm is the following simple but

powerful identifiability result:

Lemma 1.1 (Informal). A mixture of k subcubes is uniquely de-

termined by its 2 logk order moments.

In contrast, for many sorts of mixture models with k components,

typically one needs Θ(k ) moments to establish identifiability [19]

and this translates to algorithms with running time at least nΩ(k )

and sometimes even much larger than that. In part, this is because

the notion of identifiability we are aiming for needs to be weaker

and as a result is more subtle. We cannot hope to learn the subcubes

and their mixing weights because there are mixtures of subcubes

that can be represented in many different ways, sometimes with

the same number of subcubes. But as distributions, two mixtures of

subcubes are the same if they match on their first 2 logk moments.

It turns out that proving this is equivalent to the following basic

problem in linear algebra:

Question 1.1. Given a matrix M ∈ {0,1/2,1}n×k , what is the
minimum d for which the set of all entrywise products of at most d
rows ofM spans the set of all entrywise products of rows ofM?

We show that d can be at most 2 logk , which is easily shown to

be tight up to constant factors. We will return to a variant of this

question later when we discuss why learning mixtures of product

distributions requires much higher-order moments.

Unsurprisingly, our algorithm for learning mixtures of subcubes

is based on themethod ofmoments. But there is an essential subtlety.

For any distribution on the hypercube, x2i = xi . From a technical

standpoint, this means that when we compute moments, there is

never any reason to take a power of xi larger than one. We call

thesemultilinear moments, and characterizing the way that the mul-

tilinear moments determine the distribution (but cannot determine

its parameters) is the central challenge. Note that multilinearity

makes our problem quite different from typical settings where ten-

sor decompositions can be applied.

Now collect the centers µ1,µ2, · · · ,µk into an×k size matrix that

we call the marginals matrix and denote by m. The key step in our

algorithm is constructing a basis for the entrywise products of rows

from this matrix. However we cannot afford to simply brute-force

search for this basis among all sets of at most k entrywise products

of up to 2 logk rows of m because the resulting algorithm would

run in time nO (k logk )
. Instead we construct a basis incrementally.

The first challenge that we need to overcome is that we can-

not directly observe the entrywise product of a set of rows of the

marginals matrix. But we can observe its weighted inner-product

with various other vectors. More precisely, if u,v are respectively

the entrywise products of subsets S andT of rows of somemarginals

matrixm that realizes the distribution and π is the associated vector

of mixing weights, then the relation

k∑
i=1

π iuivi = E


∏
i ∈S∪T

xi


holds if S and T are disjoint. When S and T intersect, this relation

is no longer true because in order to express the left hand side in

terms of the xi ’s we would need to take some powers to be larger

than one, which no longer correspond to multilinear moments that

can be estimated from samples.
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Now suppose we are given a collection B = {T1,T2, · · · ,Tk } of
subsets of rows of m and we want to check whether the vectors

{v1,v2, · · · ,vk } (where vi is the entrywise product of the rows in
Ti ) are linearly independent. Set J = ∪iTi . We can define a helper

matrix whose columns are indexed by the Ti ’s and whose rows

are indexed by subsets of [n]\J . The entry in column i , row S is

E[
∏

j ∈S∪Ti x j ] and it is easy to show that if this helper matrix has

full row rank then the vectors {v1,v2, · · · ,vk } are indeed linearly

independent.

The second challenge is that this is an imperfect test. Even if

the helper matrix is not full rank, {v1,v2, · · · ,vk } might still be

linearly independent. Even worse, we can encounter situations

where our current collection B is not yet a basis, and yet for any

set we try to add, we cannot certify that the associated entrywise

product of rows is outside the span of the vectors we have so far.

Our algorithm is based on a win-win analysis. We show that when

we get stuck in this way, it is because there is some S ⊆ [n] with
|S | ≤ 2 logk where the order 2 logk entrywise products of subets

of rows from [n]\(J ∪ S ) do not span the full k-dimensional space.

We show how to identify such an S by repeatedly solving systems

of linear equations. Once we identify such an S it turns out that

for any string s ∈ {0,1} | J∪S | we can condition on x J∪S = s and the

resulting conditional distribution will be a mixture of strictly fewer

subcubes, which we can then recurse on.

1.3 Applications
We demonstrate the power of our nO (logk )

time algorithm for learn-

ing mixtures of subcubes by applying it to learning decision trees

with stochastic transitions. Specifically suppose we are given a sam-

ple x that is uniform on the hypercube, but instead of computing

its label based on a k-leaf decision tree with deterministic transi-

tions, some of the transitions are stochastic — they read a bit and

based on its value proceed down either the left or right subtree with

some unknown probabilities. Such models are popular in medicine

[13] and finance [14] when features of the system are partially or

completely unobserved and the transitions that depend on these

features appear to an outside observer to be stochastic. Thus we

can also think about decision trees with deterministic transitions

but with latent variables as having stochastic transitions when we

marginalize on the observed variables.

With stochastic transitions, it is no longer possible to perfectly

predict the label even if you know the stochastic decision tree. This

rules out many forms of learning like Occam algorithms such as

[3, 8, 21] that are based on succinctly explaining a large portion of

the observed samples. It turns out that by accurately estimating the

distribution on positive examples — via our algorithm for learning

mixtures of subcubes — it is possible to approach the Bayes optimal

classifier in nO (logk )
time and with only a polylogarithmic number

of samples:

Theorem 1.2. Let ϵ ,δ > 0 be given and let D be a distribution on

labelled examples from a stochastic decision tree under the uniform

distribution. Suppose further that the stochastic decision tree has k
leaves and along any root-to-leaf path there are at most s stochastic
transitions. There is an algorithm that given samples from D runs

in time Ok,s (n
O (s+logk ) (1/ϵ )O (1)

log 1/δ ) and with probability at

least 1 − δ outputs a classifier whose probability of error is at most

opt+ ϵ where opt is the error of the Bayes optimal classifier. Moreover

the sample complexity is Ok,s ((logn/ϵ )
O (1)

log 1/δ ).

Recall that the low-degree algorithm [18] is able to learn k-

leaf decision trees in time nO (log(k/ϵ ))
by approximating them by

O (log(k/ϵ )) degree polynomials. These results also generalize to

stochastic settings [1]. Recently, Hazan, Klivans and Yuan [12]

were able to improve the sample complexity even in the presence

of adversarial noise using the low-degree Fourier approximation

approach together with ideas from compressed sensing for learning

low-degree, sparse Boolean functions [22]. Although our algorithm

is tailored to handle stochastic rather than adversarial noise, our

algorithm has a much tamer dependence on ϵ which yields much

faster algorithms when ϵ is small as a function of k . Moreover we

achieve a considerably stronger (and nearly optimal) error guaran-

tee of opt+ϵ rather than c ·opt+ϵ for some constant c . Our algorithm
even works in the natural variations of the problem [5, 6, 17] where

it is only given positive examples.

Lastly, we remark that [5] studied a similar setting where the

learner is given samples from the uniform distribution D over

satisfying assignments of some Boolean function f and the goal is

to output a distribution close to D. Their techniques seem quite

different from ours and also the low-degree algorithm. Among their

results, the one most relevant to ours is the incomparable result

that there is an nO (log(k/ϵ ))
-time learning algorithm for when f is

a k-term DNF formula.

1.4 More Results
As we discussed earlier, mixtures of subcubes are a special case of

mixtures of binary product distributions. The best known algorithm

for learning mixtures of k product distributions is due to Feldman,

O’Donnell and Servedio [9] and runs in time nO (k3 )
. A natural

question which a number of researchers have thought about is

whether the dependence on k can be improved, perhaps to nO (logk )
.

This wouldmatch the best known statistical query (SQ) lower bound

for learning mixtures of product distributions, which follows from

the fact that the uniform distribution over inputs accepted by a

decision tree is a mixture of product distributions and therefore

from Blum et al.’s nO (logk )
SQ lower bound [4].

As we will show, it turns out that mixtures of product distribu-

tions require much higher-order moments even to distinguish a

mixture of k product distributions from the uniform distribution

on {0,1}n . As before, this turns out to be related to a basic problem

in linear algebra:

Question 1.2. For a given k , what is the largest possible collection

of vectors v1,v2, · · · ,vm ∈ R
k
for which (1) the entries in the entry-

wise product of any t < m vectors sum to zero and (2) the entries in
the entrywise product of allm vectors do not sum to zero?

3

We show a rather surprising construction that achievesm = c
√
k .

An obvious upper bound form is k . It is not clear what the correct
answer ought to be. In any case, we show that this translates to the

following negative result:

3
In Section 4 we discuss the relationship between Questions 1.1 and 1.2.
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Lemma 1.2 (Informal). There is a family of mixtures of product

distributions that are all different as distributions but which match

on all c
√
k order moments.

Given a construction for Question 1.2, the idea for building this

family is the same idea that goes into the nΩ(s )
SQ lower bound for

s-sparse parity [15] and the nΩ(k )
SQ lower bound for density esti-

mation of mixtures of k Gaussians [7], namely that of hiding a low-

dimensional moment-matching example inside a high-dimensional

product measure. We leverage Lemma 1.2 to show an SQ lower

bound for learning mixtures of product distributions that holds for

small values of ϵ , which is exactly the scenario we are interested

in, particularly in applications to learning stochastic decision trees.

Theorem 1.3 (Informal). Any algorithm with statistical query

access to a mixture D of k binary product distributions to within

accuracy Ω(n−
√
k/3) which outputs a distribution D ′ satisfying

dTV (D,D ′) ≤ ϵ for ϵ ≤ k−c
√
k
must make at least nc

′
√
k
queries.

This improves upon the previously best known SQ lower bound of

nΩ(logk )
, although for larger values of ϵ our construction breaks

down. In any case, in a natural dimension-independent range of pa-

rameters, mixtures of product distributions are substantially harder

to learn using SQ algorithms than the special case of mixtures of

subcubes.

Finally, we leverage the insights we developed for reasoning

about higher-order multilinear moments to give improved algo-

rithms for learning mixtures of binary product distributions:

Theorem 1.4. Let ϵ ,δ > 0 be given and let D be a mixture of k
binary product distributions. There is an algorithm that given samples

from D runs in time Ok ((n/ϵ )
O (k2 )

log 1/δ ) and outputs a mixture

D ′ of f (k ) binary product distributions that satisfies dTV (D,D ′) ≤
ϵ with probability at least 1 − δ .

Here we can afford to brute-force search for a basis. However a

different issue arises. In the case of mixtures of subcubes, when a

collection of vectors that come from entrywise products of rows

are linearly independent we can also upper bound their condition

number, which allows us to get a handle on the fact that we only

have access to the moments of the distribution up to some sampling

noise. But when the centers are allowed to take on arbitrary values

in [0,1]n there is no a priori upper bound on the condition number.

To handle sampling noise, instead of finding just any basis, we find a

barycentric spanner.
4
We proceed via a similar win-win analysis as

for mixtures of subcubes: in the case that condition number poses an

issue for learning the distribution, we argue that after conditioning

on the coordinates of the barycentric spanner, the distribution is

close to a mixture of fewer product distributions. A key step in

showing this is to prove the following robust identifiability result

that may be of independent interest:

Lemma 1.3 (Informal). Two mixtures of k product distributions

are ϵ-far in statistical distance if and only if they differ on some

moment of order at most 2k by an additive poly(n,1/ϵ ,2k )−O (k )

amount.

4
Specifically, we find a barycentric spanner for just the rows of the marginals matrix,

rather than for the set of entrywise products of rows of the marginals matrix.

In fact this is tight in the sense that o(k )-order moments are

insufficient to distinguish between some mixtures of k product

distributions (see the discussion in Section 4). Another important

point is that in the case of mixtures of subcubes, exact identifia-

bility by O (logk )-order moments (Lemma 1.1) is non-obvious but,

once proven, can be bootstrapped in a black-box fashion to robust

identifiability using the abovementioned condition number bound.

On the other hand, for mixtures of product distributions, exact iden-

tifiability byO (k )-order moments is straightforward, but without a

condition number bound, it is much more challenging to turn this

into a result about robust identifiability.

1.5 Organization
The rest of this paper is organized as follows:

• Section 2 — we set up basic definitions, notation, and facts

about mixtures of product distributions and give an overview

of our techniques.

• Section 3 — we describe our algorithm for learning mixtures

of subcubes and give the main ingredients in the proof of

Theorem 1.1.

• Section 4 — we sketch a proof of the statistical query lower

bound of Theorem 1.3.

• Section 5 — we describe our algorithm for learning general

mixtures of product distributions, give the main ingredients

in the proof of Theorem 1.4, and conclude in Section 5.1 with

a comparison of our techniques to those of [9].

• Appendix A — we make precise the connection between

mixtures of subcubes and various classical learning theory

problems, including stochastic decision trees, juntas, and

sparse parity with noise, and prove Theorem 1.2.

2 PRELIMINARIES
2.1 Notation and Definitions
Given a matrix A, we denote by A

j
i the entry in A in row i and

column j. For a set S , we denote A|S as the restriction of A to rows

in S . And similarly A|T is the restriction of A to columns in T . We

will let ∥A∥
max

denote the maximum absolute value of any entry

in A and ∥A∥∞ denote the induced L∞ operator norm of A, that is,
the maximum absolute row sum. We will also make frequent use of

entrywise products of vectors and their relation to the multilinear

moments of the mixture model.

Definition 2.1. The entrywise product

⊙
j ∈S v

j
of a collection

of vectors {v j }j ∈S is the vector whose ith coordinate is

∏
j ∈S v

j
i .

When S = ∅,
⊙

j ∈S vi is the all ones vector.

Given a set J , we use 2J to denote the powerset of J . LetUn be

the uniform distribution over {0,1}n . Also let R (J ) = 2
[n]\J

for

convenience. Let D (x ) denote the density of D at x . Let 1n be the

all ones string of length n.

Definition 2.2. For S ⊆ [n], the S-moment of D is PrD[xS =
1
|S |

]. We will sometimes use the shorthand ED[xS ].

There can be many choices of mixing weights and centers that

yield the same mixture of product distributions D. We will refer to

any valid choice of parameters as a realization of D.
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Definition 2.3. A mixture of k product distributions D is a

mixture of k subcubes if there is a realization of D with mixing

weights π 1,π 2, · · · ,πk and centers µ1,µ2, · · · ,µk for which each

center has only {0,1/2,1} values.

In this paper, when referring to mixing weights, our superscript

notation is only for indexing and never for powering.

There are three main matrices we will be concerned with.

Definition 2.4. The marginals matrix m is a n × k matrix ob-

tained by concatenating the centers µ1,µ2, · · · ,µk , for some real-

ization. The moment matrix M is a 2
n × k matrix whose rows are

indexed by sets S ⊆ [n] and

MS =
⊙
i ∈S

mi

Finally the cross-check matrix C is a 2
n × 2

n
matrix whose rows

and columns are indexed by sets S ,T ⊆ [n] and whose entries are

in [0,1] ∪ {?} where

CTS =



ED[xS∪T ] if S ∩T = ∅

? otherwise

We say that an entry of C is accessible if it is not equal to ?.

It is important to note that m andM depend on the choice of a

particular realization of D, but that C does not because its entries

are defined through the moments of D. The starting point for

our algorithms is the following observation about the relationship

between M and C:

Observation 2.1. For any realization of D with mixing weights

π and centers µ1,µ2, · · · ,µk . Then

(1) For any set S ⊆ [n] we haveMS · π = ED[xS ]
(2) For any pair of sets S ,T ⊆ [n] with S ∩T = ∅ we have

CTS =
(
M · diag(π ) ·M⊤

)T
S

The idea behind our algorithms are to find a basis for the rows

ofM or failing that to find some coordinates to condition on which

result in a mixture of fewer product distributions. The major compli-

cations come from the fact that we can only estimate the accessible

entries of C from samples from our distribution. If we had access

to all of them, it would be straightforward to use the above rela-

tionship between M and C to find a set of rows of M that span the

row space.

2.2 Rank of the Moment Matrix and
Conditioning

First we will show that without loss of generality we can assume

that the moment matrixM has full column rank. If it does not, we

will be able to find a new realization of D as a mixture of strictly

fewer product distributions.

Definition 2.5. A realization of D is a full rank realization if

M has full column rank and all the mixing weights are nonzero.

Furthermore if rank(M) = k we will say D has rank k .

Lemma 2.1. Fix a realization of D with mixing weights π and

centers µ1,µ2, · · · ,µk and letM be the moment matrix. If rank(M) =
r < k then there are new mixing weights π ′ such that:

(1) π ′ has r nonzeros
(2) π ′ and µ1,µ2, · · · ,µk also realize D.

Moreover the submatrix M′ consisting of the columns of M with

nonzero mixing weight in π ′ has rank r .

Proof. We will proceed by induction on r . When r = k −1 there
is a vector v ∈ ker(M). The sum of the entries in v must be zero

because the first row ofM is the all ones vector. Now if we take the

line π +tv as we increase t , there is a first time t0 when a coordinate
becomes zero. Let π ′ = π + t0v . By construction, π ′ is nonnegative
and its entries sum to one and it has at most k − 1 nonzeros. We

can continue in this fashion until the columns corresponding to

the support of π ′ in M are linearly independent. Note that as we

change the mixing weights, the moment matrixM stays the same.

Also the resulting matrix M′ that we get must have rank r because
each time we update π we are adding a multiple of a vector in the

kernel ofM so the columns whose mixing weight is changing are

linearly dependent. □

Thus when we fix an (unknown) realization ofD in our analysis,

we may as well assume that it is a full rank realization. This is true

even if we restrict our attention to mixtures of subcubes where the

above lemma shows that ifM does not have full column rank, there

is a mixture of r < k subcubes that realizes D. Next we show that

mixtures of product distributions behave nicely under conditioning:

Lemma 2.2. Fix a realization of D with mixing weights π and

centers µ1,µ2, · · · ,µk . Let S ⊆ [n] and s ∈ {0,1} |S | . Then D|xS=s
can be realized as a mixture of k product distributions with mixing

weights π ′ and centers µ1 |
[n]\S ,µ

2 |
[n]\S , · · · ,µ

k |
[n]\S .

Proof. Using Bayes’ rule we can write out the mixing weights

π ′ explicitly as

π ′ =
π
⊙ (⊙

i ∈S γ
i
)

PrD[xS = s]

where we have abused notation and used

⊙
as an infix operator

and whereγ i = µi + (1−si ) · (⃗1−2µi ). This follows because the map

x 7→ x + (1 − s ) · (1 − 2x ) is the identity when s = 1 and x 7→ 1 − x
when s = 0 □

We can straightforwardly combine Lemma 2.1 and Lemma 2.2 to

conclude that if rank(M|
2
[n]\S ) = r then for any s ∈ {0,1} |S | there

is a realization of D|xS=s as a mixture of r product distributions.
Moreover if D was a mixture of subcubes then so too would the

realization of D|xS=s be.

2.3 Linear Algebraic Relations betweenM and
C

Even though not all of the entries of C are accessible (i.e. can be

estimated from samples fromD) we can still use it to deduce linear

algebraic properties among the rows of M. All of the results in this

subsection are elementary consequences of Observation 2.1.

Lemma 2.3. Let T1,T2, · · · ,Tr ⊆ [n] and set J = ∪iTi . If the
columns

CT1 |R (J ) ,C
T2 |R (J ) , · · · ,C

Tr |R (J )

are linearly independent then for any realization of D the rows

MT1 ,MT2 , · · · ,MTr are also linearly independent.
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Proof. Fix any realization of D. Using Observation 2.1, we can

write:

C|T1, ...,Tr
R (J ) = M|R (J ) · diag(π ) ·

(
M⊤
)
|T1, ...,Tr

Now suppose for the sake of contradiction that the rows ofM|T1, ...,Tr
are not linearly independent. Then there is a nonzero vector u so

that (M⊤) |T1, ...,Tru = 0 which by the above equation immediately

implies that the columns of C|T1, ...,Tr
R (J ) are not linearly independent,

which yields our contradiction. □

Next we prove a partial converse to the above lemma:

Lemma 2.4. Fix a realization of D and let D have rank k . Let
T1,T2, · · · ,Tr ⊆ [n] and set J = ∪iTi . If rank(M|R (J ) ) = k and there

are coefficients α1,α2, · · · ,αr so that

r∑
i=1

αiCTi |R (J ) = 0

then the corresponding rows of M are linearly dependent too — i.e.∑r
i=1 αiMTi = 0.

Proof. By the assumptions of the lemma, we have that

M|R (J ) · diag(π ) ·
(
M⊤
)
|T1, ...,Tr α = 0

Now rank(M|R (J ) ) = k and the fact that the mixing weights are

nonzero implies that M|R (J ) · diag(π ) is invertible. Hence we con-

clude that

(
M⊤
)
|T1, ...,Tr α = 0 as desired. □

Of course, we don’t actually have exact estimates of the moments

of D. In Section 3.4 we discuss how to handle sampling noise to

get an actual learning algorithm.

3 MIXTURES OF SUBCUBES
With these basic linear algebraic relations in hand, we can explain

the intuition behind our algorithms. Our starting point is the obser-

vation that if we know a collection of sets T1, ...,Tk ⊂ [n] indexing

a row basis of M, then we can guess one of the 3
k · |T1∪···∪Tk | possi-

bilities for the entries of m|T1∪···∪Tk . Using a correct guess, we can

solve for the mixing weights using (1) from Observation 2.1. The

point is that because T1, ...,Tk index a row basis ofM, the system

of equations

MTj · π⃗ = ED[xTj ], j = 1, ...,k (1)

has a unique solution which thus must be the true mixing weights

in the realization (π⃗ ,m). We can then solve for the remaining rows

of m using part 2 of Observation 2.1, i.e. for every i < T1 ∪ · · · ∪Tk
we can solve

MTj · diag(π ) ·m
⊤
i = ED[xTj∪{i }] ∀j = 1, ...,k . (2)

Again, because the rows MTi are linearly independent and π has

no zero entries, we conclude that the true value ofmi is the unique

solution.

There are three main challenges to implementing this strategy:

A Identifiability. How do we know whether a given guess for

m|T1∪···∪Tk is correct? More generally, how do we efficiently test

whether a given distribution is close to the underlying mixture

of subcubes?

B Building a Basis. How do we produce a row basis forM with-

out knowing M, let alone one for which T1 ∪ · · · ∪Tk is small

enough that we can actually try all 3
k · |T1∪···∪Tk | possibilities for

m|T1∪···∪Tk ?
C Sampling Noise. Technically we only have approximate ac-

cess to the moments of D, so even from a correct guess for

m|T1∪···∪Tk we only obtain approximations to π⃗ and the remain-

ing rows of m. How does sampling noise affect the quality of

these approximations?

3.1 Identifiability
As our algorithms will be based on the method of moments, an

essential first question to answer is that of identifiability: what

is the minimum d for which mixtures of k subcubes are uniquely

identified by their moments of degree at most d? As alluded to

in Section 1.2, it is enough to answer Question 1.1, which we can

restate in our current notation as:

Question 3.1. Given a matrix m ∈ {0,1/2,1}n×k with associated

2
n ×k moment matrixM, what is the minimum d for which the rows

{MS } |S | ≤d span all rows ofM?

Let d (k ) be the largest d for Question 3.1 among all possible

m ∈ {0,1/2,1}n×k . Note that d (k ) = Ω(logk ) just from considering

a O (logk )-sparse parity with noise instance as a mixture of k sub-

cubes. The reason getting upper bounds on d (k ) is directly related

to identifiability is that k subcubes are uniquely identified by their

moments of degree at most d (2k ). Indeed, if (π⃗1,m1) and (π⃗2,m2)
realize different distributions D1 and D2 , then there must exist

S ⊆ [n] for which

(M1)S · π⃗1 = ED1
[xS ] , ED2

[xS ] = (M2)S · π⃗2.

In other words, the vector (π⃗1 | − π⃗2) ∈ R
2k

does not lie in the

right kernel of the matrix 2
n × 2k matrix (M1 |M2). But because

N ≜ (M1 |M2) is the moment matrix of the matrix (m1 |m2) ∈
{0,1/2,1}n×2k , its rows are spanned by the rows (NS ) |S | ≤d (2k ) , so
there in fact exists S ′ of size at most d (2k ) for which ED1

[xS ′] ,
ED2

[xS ′]. Finally, note also that the reverse direction of this argu-

ment holds, that is, if mixtures of k subcubes D1 and D2 agree

on all moments of degree at most d (2k ), then they are identical as

distributions.

We now show that d (k ) = Θ(logk ). The idea is that there is a
natural correspondence between (1) linear relations among the rows

ofMS for |S | ≤ d and (2) multilinear polynomials of degree at most

d which vanish on the rows of m. The bound on d (k ) then follows

from carefully constructing an appropriate low-degree multilinear

polynomial.

Lemma 3.1. LetD be a mixture of k subcubes and fix a realization

where the centers are {0,1/2,1}-valued. LetM be the corresponding

moment matrix. Then {
MT

����|T | < 2 logk
}

span the rows ofM.

Proof. Fix any set S ⊆ [n] of sizem = 2 logk . Without loss of

generality suppose that S = {1,2, · · · ,m}. We want to show that

874



Beyond the Low-Degree Algorithm: Mixtures of Subcubes and... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

MS lies in the span of MT for all T ⊊ S . Our goal is to show that

there are coefficients αT so that∑
T ⊆S

αTMT = 0

and that αS is nonzero. If we can do this, then we will be done. First

we construct a multilinear polynomial

p (x ) =
m∏
i=1

(
xi − λi

)
where each λi ∈ {0,1/2,1} and with the property that for any j,
p (mj |S ) = 0. If we had such a polynomial, we could expand

p (x ) =
∑
T ⊆S

αT
∏
i ∈T

xi

By construction αS = 1. And now for any j we can see that the

jth coordinate of

∑
T ⊆S αTMT is exactly p (mj |S ), which yields the

desired linear dependence.

All that remains is to construct the polynomial p. We will do this

by induction. Suppose we have constructed a polynomial pt (x ) =∏t
i=1 (xi − λi ) and let

Rt =
{
j
����pt (m

j |S ) , 0

}
In particular Rt ⊆ [k] is the set of surviving columns. By the pi-

geonhole principle we can choose λt+1 ∈ {0,1/2,1} so that |Rt+1 | ≤
⌊(2/3) |Rt |⌋. For some ℓ ≤ m we have that Rℓ = ∅ at which point

we can choose

p (x ) =
( ℓ∏
i=1

(xi − λi )
)
·

m∏
i=ℓ+1

xi

which completes the proof. □

Note that the above discussion only pertains to exact identifia-

bility. For the purposes of our learning algorithm, we want robust

identifiability, i.e. there is some d ′(k ) such that D1 and D2 are far

in statistical distance if and only if they differ noticeably on some

moment of degree at most d ′(k ). It turns out that it suffices to take

d ′(k ) to be the same Θ(logk ), and in Section 3.4 below, we sketch

how we achieve this.

Once we have robust identifiability in hand, we have a way to

resolve Challenge A above: to check whether a given guess for

m|T1∪···∪Tk is correct, compute the moments of degree at most

Θ(logk ) of the corresponding candidate mixture of subcubes and

compare them to empirical estimates of the moments of the under-

lying mixture. If they are close, then the mixture of subcubes we

have learned is close to the true distribution.

As we will see below though, while the bound of d (k ) = Θ(logk )
is a necessary first step to achieving a quasipolynomial running

time for our learning algorithm, there will be many more steps and

subtleties along the way to getting an actual algorithm.

3.2 Building a Basis
We now describe how we address Challenge B. The key issue is that

we do not have access to the entries of M (and M itself depends on

the choice of a particular realization). Given the preceding discus-

sion about Question 3.1, a naive way to circumvent this is simply

to guess a basis from among all combinations of at most k rows

from {MS } |S | ≤d (k ) , but this would take time nΘ(k logk )
.

As we hinted at in Section 1.2, we will overcome the issue of

not having access to M by using the accessible entries of C, which
we can easily estimate by drawing samples from D, as a surrogate

forM (see Lemmas 2.3 and 2.4). To this end, one might first try to

use C to find a row basis for M by looking at the submatrix of C
consisting of entries {CTS }S,T : |S |, |T | ≤d (k ) and simply picking out a

column basis {T1, ...,Tm } for this submatrix. Of course, the crucial

issue is that we can only use the accessible entries of C.
Instead, we will incrementally build up a row basis. Suppose

at some point we have found a list of subsets T1, ...,Tm indexing

linearly independent rows ofM for some realization of D and are

decidingwhether to add some setT to this list. Recall that Lemma 2.3

and Lemma 2.4 give us a way to efficiently certify whether we

should do so. Motivated by this, we introduce the following key

definitions:

Definition 3.1. Given a collection B = {T1,T2, · · · ,Tm } of sub-

sets we say that B is certified full rank if C|T1,T2, · · · ,Tm
R′ (J ) has full col-

umn rank, where J = ∪iTi and R
′(J ) = {T ⊆ [n]\J : |T | < 2 logk }.

Definition 3.2. Let B = {T1,T2, · · · ,Tm } be certified full rank.

Let J = ∪iTi . Suppose there is no

(1) T ′ ⊆ J or
(2) T ′ = Ti ∪ {j} for j < J

for which C|T1,T2, · · · ,Tm,T ′
R′ (J ′) has full column rank, where J ′ = J ∪T ′.

Then we say that B is locally maximal.

We will show that any certified full rank and locally maximal B

spans a particular subset of the rows ofM and then give a simple

algorithm for producing such a B. First we will show the following

helper lemma:

Lemma 3.2. Let B = {T1,T2, · · · ,Tm } and J = ∪iTi as usual.
Suppose that

(1) the rows of M|B are a basis for the rows ofM|
2
J and

(2) for any Ti and any j < J , the rowMTi∪{j } is in the row span

ofM|B
Then the rows ofM|B are a basis for the rows ofM.

Proof. We will proceed by induction. Suppose that the rows of

M|B are a basis for the rows of M|
2
J ′ for some J ′ ⊇ J . Consider

any j < J ′. Then the rows

MT1 ,MT2 , · · · ,MTm andMT1∪{j } ,MT2∪{j } , · · · ,MTm∪{j }

are a basis for the rows of M|
2
J ′∪{j } . But by assumption each row

MTi∪{j } is in the row span of M|B . Thus the rows of M|B are also

a basis for the rows ofM|
2
J ′∪{j } , as desired. □

Now we are ready to prove the main lemma in this subsection:

Lemma 3.3. LetD have rank k and fix a full rank realization ofD.

Let B = {T1,T2, · · · ,Tm } be certified full rank and locally maximal.

Let J = ∪iTi and

K =
{
i
����i < J and rank(M|R′ (J∪{i }) ) = k

}
If K , ∅ then the rows ofM|B are a basis for the rows ofM|

2
J∪K .
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Proof. Our strategy is to apply Lemma 3.2 to the set J∪K which

will give the desired conclusion. To do this we just need to verify

that the conditions in Lemma 3.2 hold. We will need to pay special

attention to the distinction between R (J ) and R ′(J ). First take any
i ∈ K . Then

k = rank(M|R′ (J∪{i }) ) = rank(M|R (J∪{i }) ) = rank(M|R (J ) )

The first equality follows from how we constructed K . The second
equality follows from Lemma 3.1 when applied to the set [n]\J ∪{i}.
The third equality follows because the rows of M|R (J∪{i }) are a

subset of the rows ofM|R (J ) andM has rank k .
Now the first condition of local maximality implies that there is

no T ′ ⊆ J where C|T1,T2, · · · ,Tm,T ′
R′ (J ) has full column rank. Lemma 3.1

implies that C|T1,T2, · · · ,Tm,T ′
R (J ) also does not have full column rank

because the additional rows of the latter can be obtained as lin-

ear combinations of the rows in the former. Now we can invoke

Lemma 2.4 which implies that MT ′ is in the span of M|B . Thus the
rows ofM|B are indeed a basis for the rows ofM|

2
J , which is the

first condition we needed to check.

For the second condition, the chain of reasoning is similar. Con-

sider any i ∈ K and any Ti′ ∈ B. Set T
′ = Ti′ ∪ {i} and J ′ = J ∪ {i}.

Then rank(M|R′ (J ′) ) = k . Now the second condition of local maxi-

mality implies that C|T1,T2, · · · ,Tm,T ′
R′ (J ′) does not have full column rank.

Lemma 3.1 implies that C|T1,T2, · · · ,Tm,T ′
R (J ′) does not have full column

rank either. We can once again invoke Lemma 2.4 which implies

thatMT ′ is in the span ofM|B , which is the second condition we

needed to verify. This completes the proof. □

The algorithm for producing such a certified full rank and locally

maximal B, which we call GrowByOne, is simple. Given T1, ...,Tm
which have already been added to B, consider all subsets of the

form Tj ∪ {i} for 1 ≤ j ≤ m and i < T1 ∪ · · · ∪ Tm . If T1, ...,Tm
have up to this point been constructed in this incremental fashion,

we can use ideas from the proof of Lemma 3.3 to prove that if no

such Tj ∪ {i} can be added to our list and moreover we have that

rank(M|R (J ) ) = rank(M|R (T1∪···∪Tm∪{i }) ) = k for every i , then
T1, ...,Tm indexes a row basis for M. We refer the reader to the full

version for the details of this.

3.3 Making Progress When Basis-Building Fails
The main subtlety is that the set K in Lemma 3.3 need not be all

of [n]. In particular, we may run into a point where for any new

candidate subset T we are trying to add to B = {T1, ...,Tm }, we

have that CT
R (J ) lies in the span of CT1

R (J ) , ...,C
Tm
R (J ) . In this case we

cannot definitively conclude whether any MT lies in the span of

MT1 , ...,MTm and therefore decide to add nothing more to B.

The key idea is that if this is the case, then there must have been

some candidateT = Tj∪{i} such that rank(M|R (T1∪···∪Tm∪{i }) ) < k .
We call the set of all such i the set of impostors. Note that the com-

plement of this set in [n]\J is precisely the set K in Lemma 3.3.

By Lemma 2.1, if i is an impostor, the conditional distribution

(D|xT1∪···∪Tm∪{i } = s ) can be realized as a mixture of strictly

fewer than k subcubes for any bitstring s . The upshot is that even
if the list T1, ...,Tm output by GrowByOne does not correspond

to a row basis ofM, we can make progress by conditioning on the

coordinates T1 ∪ · · · ∪Tm ∪ {i} for an impostor i and recursively

learning mixtures of fewer subcubes.

On the other hand, the issue of actually identifying an impostor

i < T1 ∪ · · · ∪ Tm is quite delicate. Because there may be up to k
levels of recursion, we cannot afford to simply brute force over all

n − |T1 ∪ · · · ∪Tm | possible coordinates. Instead, the idea will be
to pretend that T1, ...,Tm actually corresponds to a row basis ofM
and use this to attempt to learn the parameters of the mixture. It

turns out that either the resulting mixture will be close to D on

all low-degree moments and robust identifiability will imply we

have successfully learnedD, or it will disagree on some low-degree

moment, and we show that this low-degree moment must contain

an impostor i:

Lemma 3.4. Let D have rank k and fix a full rank realization

of D. Let B = {T1,T2, · · · ,Tm } be certified full rank and locally

maximal. Let J = ∪iTi . Let I be the set of impostors and K be the set

of non-impostors.

There is a guess m′ |J ∈ {0,1/2,1} | J |×m so that if we solve (1) and

solve (2) for each i ∈ K we get parameters that generate a mixture

of subcubes D ′ on J ∪ K that satisfy ED′[xS ] = ED[xS ] for all
S ⊆ J ∪ K .

Proof. For any i ∈ K we have rank(M|R′ (J∪{i }) ) = k . By
Lemma 3.3 we know that MB is a row basis for M

2
J∪K . In par-

ticular rank(M
2
J∪K ) = m. Thus using Lemma 2.1 there is a mix-

ture ofm subcubes with mixing weights π ′ and marginals matrix

m′ ∈ {0,1/2,1} | J∪K |×m that realizes the same distribution as pro-

jecting D onto coordinates in J ∪ K (i.e. without conditioning on

any coordinates outside of this set).

Let M′ be the corresponding moment matrix. Then by construc-

tion M′ consists of a subset of the columns of M
2
J∪K . Thus the

rows of M′
B
still span the rows of M′. Also by construction M′

has rankm and hence the rows of M′
B
are linearly independent.

Now if we take our guess to be m′ |J where m′ is as above, (1) has
a unique solution, namely π ′. Also for each i ∈ K , (2) has a unique
solution namelym′i . Now if we take our learned parameters we get

a mixture of subcubesD ′ on J ∪K that satisfies ED′[xS ] = ED[xS ]
for all S ⊆ J ∪K because D ′ and projecting D onto coordinates in

J ∪ K realize the same distribution. This completes the proof. □

So once we have a certified full rank and locally maximal B =

{T1, ...,Tm } with J = ∪Ti , we can guess m′ |J ∈ {0,1/2,1} | J |×m and

solve (1) and solve (2) for each i ∈ [n]\J (because we do not know

the set of impostors). We can then check whether the parameters

we get generate a mixture of subcubes D ′ that satisfies

ED′[xS ] = ED[xS ]

for all S with |S | ≤ c logk . If it does, thenD ′ = D and we are done.

But if there is an S where the equation above is violated (and our

guess was correct) then S cannot be a subset of J ∪K which means

that it contains an impostor. Thus the fact that we can check the

equation above only up to logarithmic sized moments gives us a

way to trace an impostor down to a logarithmic sized set, so that

we can condition on S ∪ J and make progress without needing to

fix too many coordinates.
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3.4 Sampling Noise
The above discussion assumed exact access to the entries of C,
but obviously we only have access to empirical estimates of the

entries of C. So for instance, instead of checking whether a column

of C lies in the span of other columns of C, we must look at the

corresponding L∞ regression problem. In this setting, the above

arguments still carry over provided that the submatrices of M and

C used are well-conditioned. In the full version, we show that

the former are well-conditioned by Cramer’s, as they are matrices

whose entries are low-degree powers of 1/2, and this on its own can

already be used to show robust identifiability. By Observation 2.1,

the submatrices of C used in the above arguments are also well-

conditioned provided that π has no small entries. But if π has

small entries, intuitively we might as well ignore these entries

and only attempt to learn the subcubes of the mixture which have

non-negligible mixing weight.

We refer the reader to the full version for further details on the

subtleties that go into dealing with these issues of sampling noise.

4 A STATISTICAL QUERY LOWER BOUND
In this section we sketch our argument for exhibiting a lower bound

against learning mixtures of general product distributions over

{0,1}n under the powerful statistical query (SQ) model, first intro-

duced in [15].

Definition 4.1. Fix a distribution D over {0,1}n . For toler-

ance parameter τ > 0, the STAT(τ ) oracle answers any query

h : {0,1}n → [−1,1] with a value v such that

|Ex∼D[h(x )] −v | ≤ τ .

We show that learning mixtures of product distributions requires

many calls to STAT by bounding the SQ dimension, first defined in

[4] for learning Boolean functions and subsequently extended by

[10] to learning distributions. To do so, it turns out that it suffices

to construct a family of mixtures of k product distributions such

that each mixtures matchesUn up to some large number d∗ (k ) − 1
of moments and differs noticably on exactly one degree-(d∗ (k ) + 1)
moment. We refer the reader to the full version of our paper for

a proof that this suffices and proceed to sketch how to construct

such a family.

We first emphasize that constructing such a family is strictly

harder than simply constructing a pair of mixtures of product dis-

tributions which match on a large number of moments. To answer

the latter, one could start by asking Question 3.1 more generally for

arbitrary matricesm ∈ Rn×k . It is not hard to see that the minimum

d for which the rows {MS } |S | ≤d span all rows ofM can be as high as

k − 1. Simply take m to have identical rows, each of which consists

of k distinct entries z1, ...,zk ∈ [0,1]. Then MS = (z |S |
1
, ...,z |S |k ), so

by usual properties of Vandermonde matrices, the rows {MS } |S | ≤d
will not span the rows ofM until d ≥ k − 1.5

From such an m, we immediately get a pair of mixtures (µ⃗1,m1)
and (µ⃗2,m2) that agree on all moments of degree at most k − 2 but
differ on moments of degree k − 1: let µ⃗1 and −µ⃗2 up to scaling

be the positive and negative parts of an element in the kernel of

5
Note that by the connection between linear relations among rows ofMS and multilin-

ear polynomials vanishing on the rows ofm, this example is also tight, i.e. {MS }|S |≤k−1

will span the rows ofM for anym ∈ Rn×k .

{MS } |S |<k−1, and let m1 and m2 be the corresponding disjoint

submatrices of m.

We now turn to the more difficult task of constructing a family of

mixtures which matchUn on many moments. The SQ lower bound

given in [9] essentially stems from the SQ lower bound for learn-

ing logk-sparse parities (an example of a mixture of k subcubes),

where the idea is thatUn and the uniform distribution over positive

examples of a logk-sparse parity agree on all moments of degree

less than logk and differ on exactly one moment of degree logk + 1,
corresponding to the coordinates of the parity. The observation

that leads to our SQ lower bound is that for general mixtures of k
product distributions, we can come up with much harder instances

which agree withUn even on moments of degree at most O (
√
k ).

Our general approach is to construct a mixture A of product

distributions over {0,1}d
∗ (k )

whose top-degree moment differs no-

ticeably from 2
−d∗ (k )

but whose other moments agree with that of

Ud∗ (k ) . The collection C of mixtures will then consist of all product

measures given by A in some d∗ (k ) coordinates S and Un−d∗ (k )
in the remaining coordinates [n]\S . This general strategy of em-

bedding a low-dimensional moment-matching distribution A in

some hidden set of coordinates is the same principle behind SQ

lower bounds for learning sparse parity [15], robust estimation and

density estimation of mixtures of Gaussians [7], etc.

4.1 A Moment Matching Example
The main challenge is to actually construct the mixture A. Here

we reduce this problem to Question 1.2.

Definition 4.2. Givenπ ∈ ∆k , a collection of vectorsv1, ...,vm ∈
Rk is d-wise superorthogonal with respect to π if for any S ⊆ [m] of

size at most d , ⟨
⊙

i ∈S vi ,π ⟩ = 0. Note that if π = 1

k · 1⃗ and d = 2,

this is just the usual notion of orthogonality.

Lemma 4.1. Let d ≤ m and suppose A is a mixture of product

distributions with mixing weights π and marginals matrix m. Then

A and Um agree on moments of degree at most d if and only if the

rows of m − 1

2
· Jm×k are d-wise superorthogonal with respect to π ,

where Jm×k is them × k all-ones matrix.

Proof. For any S ⊆ [m] of size at most d ,〈⊙
i ∈S

(
mi −

1

2

· 1⃗
)
,π

〉
=
∑
T ⊆S

(−1/2) |S |− |T |⟨MT ,π ⟩. (3)

So if A and Um agree on moments of degree at most d so that

⟨MT ,π ⟩ = 1/2 |T | for all |T | ≤ d , this is equal to

(1/2) |S | ·
∑
T ⊆S

(−1) |S |− |T | = 0.

Conversely, if the rows of m − 1

2
· Jm×k are indeed d-wise super-

orthogonal with respect to π , then by induction on degree, the fact

that (3) vanishes forces ⟨MS ,π ⟩ to be 2
|S |

. □

Because we insist that A and Um agree on their moments of

degree less thanm and differ on theirm-th moment, Lemma 4.1

reduces the task of constructing A to that of constructing a collec-

tion of vectors that is (m− 1)-wise but notm-wise superorthogonal

with respect to π .
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Definition 4.3. A collection of vectors v1, ...,vℓ ∈ R
k
is non-

top-degree-vanishing if v1 ⊙ · · · ⊙ vℓ does not lie in the span of

{⊙i ∈Svi }S⊊[ℓ].

Observation 4.1. Supposev1, ...,vm−1 ∈ R
k
are (m−1)-wise su-

perorthogonal with respect to π and non-top-degree-vanishing. Denote

the span of {⊙i ∈Svi }S⊊[m−1] by V . If vm ∈ R
k
satisfies

vm · diag(π ) · v
⊤ = 0 ∀ v ∈ V (4)

vm · diag(π ) · (v1 ⊙ · · · ⊙ vm−1)
⊤ , 0, (5)

then v1, ...,vm are (m − 1)- but not m-wise superorthogonal with

respect to π .

Note that any collection of vectors that are (m − 1)-wise but not
m-wise superorthogonal with respect to π must arise in this way.

By Observation 4.1, we can focus on finding the largest ℓ for which

there exist vectors v1, ...,vℓ which are ℓ-wise superorthogonal and

non-top-degree-vanishing.

Construction. Let k = (ℓ+1)2 and π = 1

k 1⃗, and fix any distinct
scalars x1, ...,xℓ+1 ∈ R. Define matrices

a =
*.....
,

x1 x2 · · · xℓ+1
x1 x2 · · · xℓ+1
...

...
. . .

...

x1 x2 · · · xℓ+1

+/////
-

bi =

*........
,

−xi 0 0 · · · 0

xi −2xi 0 · · · 0

xi xi −3xi · · · 0

...
...

...
. . .

...

xi xi xi · · · −ℓxi

+////////
-

with ℓ rows each. Define the ℓ × k matrix

E (x1, ...,xℓ+1) := (a∥b1∥ · · · ∥bℓ+1).

We refer the reader to the full version for an analysis of this

construction.

5 MIXTURES OF PRODUCT DISTRIBUTIONS
The main difficulty with learning mixtures of general product distri-

butions is that moment matrices can be arbitrarily ill-conditioned,

which makes it far more difficult to handle sampling noise. Indeed,

with exact access to the accessible entries of C, one can in fact show

there exists a nO (d∗ (k ))
algorithm for learning mixtures of general

product distributions, where d∗ (k ) is the answer to Question 1.2,

though we omit the proof of this in this work. In the presence

of sampling noise, it is not immediately clear how to adapt the

approach from Section 3. The three main challenges are:

A Robust Identifiability. For mixtures of subcubes, robust iden-

tifiability essentially followed from exact identifiability and a

condition number bound on M. Now that M can be arbitrarily

ill-conditioned, how do we still show that two mixtures of prod-

uct distributions that are far in statistical distance must differ

noticeably on some low-degree moment?

B Using C as a Proxy forM. Without a condition number bound,

can approximate access to C still be useful for deducing (approx-

imate) linear algebraic relations among the rows ofM?

C Guessing Entries of m. Entries of m are arbitrary scalars now,

rather than numbers from {0,1/2,1}. We can still try discretizing

by guessing integer multiples 0,η,2η, ...,1 of some small scalar

η, but how small must η be for this to work?

For Challenge A, we show that if two mixtures of k product dis-

tributions are far in statistical distance, they must differ noticeably

on some moment of degree at most 2k . Specifically, we prove the
following:

Lemma 5.1. Let D1,D2 respectively be mixtures of k1 and k2
product distributions in {0,1}n for k1,k2. If dTV (D1,D2) > ϵ , there is
some S for which |S | < k1+k2 and |ED1

[xS ]−ED2
[xS ]| > η for some

η = η(n,k1 + k2,ϵ ) ≜ exp(−O (k1 + k2)
2) · poly(k1 + k2,n,ϵ )

−k1−k2
.

Roughly, the proof is by induction on the total number of prod-

uct distributions in the two mixtures; the inductive step is rather

involved and we refer the reader to the full version.

Next, we make Challenges B and C more manageable by shifting

our goal: instead of a row basis forM, we would like a row basis for

m that is well-conditioned in an appropriate sense. Specifically, we

want a row basis J ⊂ [n] for m such that if we express any other

row of m as a linear combination of this basis, the corresponding

coefficients are small. This is precisely the notion of barycentric

spanner introduced in [2], where it was shown that any collection

of vectors has a barycentric spanner. We can find a barycentric

spanner for the rows of m by simply guessing all

(n
k

)
possibilities.

We then show that if J = {i1, ...,ir } is a barycentric spanner and
M|R (J∪i j ) is well-conditioned in an L∞ sense for all 1 ≤ j ≤ r , then

in analogy with Lemma 2.4, one can learn good approximations to

the true coefficients expressing the remaining rows of m in terms

ofmi1 , ...,mir . Concretely, for every remaining row i ofm, we may

solve the regression problem

α̃i := argmin

α ∈[−1,1]r

C̃|
{i1 }, ..., {ir }
R′ (J∪{i }) α − C̃| {i }

R′ (J∪{i })
∞
. (6)

and compute an approximation mi = α̃i ·m|J to mi . Furthermore,

this approximation is good enough that it suffices to pick the dis-

cretization parameter in Challenge C to be η = poly(ϵ/n), in which

case the k2 entries of m|J can be guessed in time (n/ϵ )O (k2 )
.

As usual, one complication is that it could be the case that

rank(M|R′ (J∪{i }) ) < k for some realization of D, but as in our

algorithm for learning mixtures of subcubes, we can handle this by

conditioning on J ∪ {i} and recursing. The more problematic issue

that comes up here but not in the subcube setting is thatM|R′ (J∪{i })
might be full rank but very badly conditioned, in which case we

cannot ensure that mi defined above is close to the true mi .

It turns out this issue is not so different from the situation where

rank(M|R′ (J∪{i }) ) < k for some realization of D, and we can effec-

tively treat ill-conditioned moment matrices as degenerate-rank

moment matrices. As we only insist on a runtime of nO (k2 )
, we

can afford now to simply brute-force search for the impostor, but

we cannot appeal to Lemma 2.1 to argue as before that each of

the conditional distributions (D|x J∪{i j } = s ) is a mixture of fewer

than k product distributions, becauseM|R (J∪{i j }) might still have

rank k . Instead, we show that robust identifiability implies that

these conditional distributions are close to mixtures of at most k − 1
product distributions, and this is enough for us to make progress

and recursively learn:

Lemma 5.2. The following holds for any η > 0. LetD be a mixture

of k product distributions realized by mixing weights π and marginals
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matrix m such that

σ∞
min

(M) ≤
η ·
√
2

3k2
.

Then there exists D ′ a mixture of at most k − 1 product distributions
realized by mixing weights π ′ and marginals matrix m′ such that

|ED[xS ] − ED′[xS ]| ≤ η for all |S | ≤ k . In particular, if we take

η = η(n,2k ,ϵ ), then by Lemma 5.1, dTV (D,D
′) ≤ ϵ .

5.1 Comparison to Feldman et al.’s Algorithm
The algorithm of Feldman, O’Donnell and Servedio [9] also uses

brute-force search to find a basis for the rows of m. However in-

stead of constructing a barycentric spanner they construct a basis

that is approximately as well-conditioned as m. Their algorithm

proceeds by gridding the entries m|J . The key difference between

their approach and ours is that their gridding requires granularity

O ((ϵ/n)k ) while ours requires onlyO (ϵ/n). The reason is that they

try to solve for the other rows ofm in the same way that we do in (2)

when learning mixtures of subcubes, that is, by solving a system of

equations for each i < J with coefficients given by rowmi . They re-

quire granularity O ((ϵ/n)k ) to account for m being ill-conditioned.

Just as we showed we could assume in our algorithm for mixtures

of subcubes that the mixture weights had a gap of ρ = 2
−O (k2 )

, [9]

showed they can assume that m has a spectral gap of O (ϵ/n) by
brute-forcing singular vectors of m and appending them to m to

make it better conditioned. Such a spectral gap corresponds in the

worst case to an m that is O ((ϵ/n)k )-well-conditioned, which in

turn ends up as the granularity in their gridding procedure. As a

result, the bottleneck in the algorithm of [9] is the (n/ϵ )O (k3 )
time

spent just to grid the entries of m|J .
In comparison, we save a factor of k in the exponent of the run-

ning time by onlyO (ϵ/n)-gridding the entries ofm|J . The reason is

that we solve for the remaining rows ofm not by solving systems of

equations with coefficients in the rows mi for i < J , but by express-

ing these rowsmi as linear combinations of the rows ofm|J , where
the linear combinations have bounded coefficients. This leverages

higher order multilinear moments to make the linear system better

conditioned. We estimate these coefficients by solving the regres-

sion problem (6), and the coefficients are accurate so long as the

sampling error isO (ϵ/n) times the condition number ofM|R′ (J∪{i })
for J the barycentric spanner of the rows of m and any i < J . So
in our algorithm, the bottlenecks leading to a k2 dependence in
the exponent are (1) O (ϵ/n)-gridding all O (k2) entries of m|J , (2)
brute-forcingO (k ) coordinates to condition in every one of the ≤ k
recursive steps, (3) using degree-O (k2) subsets in R ′(J ∪ {i}) to
ensure that when we condition on each of at most k subsequent

subsets J ∪ {i}, the resulting mixtures are all close in low-order

moments to mixtures of fewer components.

A APPLICATION: LEARNING STOCHASTIC
DECISION TREES

In this section, we prove Theorem 1.2. We begin with a warmup:

Example A.1 (Parity and juntas). The uniform distribution

D over the positive examples of a k-junta f : {0,1}n → {0,1} is

a mixture of at most 2
k
subcubes in {0,1}n . Let I ⊆ [n] be the k

coordinates that f depends. Every s ∈ {0,1} |I | for which f (x ) = 1

for all x satisfying xI = s corresponds to a subcube with mixture

weight 1/N , where N ≤ 2
k
is the number of such s (e.g. when f is

a parity, N = 2
k−1

). In the same way we can show that the uniform

distribution over the negative examples is also a mixture of at most

2
k
subcubes.

So given access to examples (x , f (x )) where x is uniformly dis-

tributed over {0,1}n , we can learn f as follows. With high probability,

we can determine b∗ ∈ {0,1} for which f outputs b∗ on at least 1/3

of the inputs. As we have shown in this work, our algorithm can

then learn some D ′ that is ϵ-close to the uniform distribution over

{x : f (x ) = b∗}. We then output the hypothesis д given by д(x ) = b∗

if D ′(x ) ≤ 1/2n+1 and д(x ) = 1 − b∗ otherwise. It is easy to see that

д is ϵ-accurate.
This approach can handle mild random classification noise γ : if

we take the distribution over examples (x ,b) where x is drawn from

the uniform distribution over {0,1}n and b is labeled by f (x ) with
probability 1 − γ and 1 − f (x ) with probability γ , and we condition
on b = 1, the resulting distribution is still a mixture of subcubes:

every s for which f (x ) = 1 for all xI = s corresponds to a subcube

of weight (1 − γ )/N , and every other s corresponds to a subcube of
weight γ/N . This mixture is O (γ )-far from the uniform distribution

over {x : f (x ) = 1}, so in the above analysis, our algorithm would

give an (ϵ +O (γ ))-accurate hypothesis.
Finally, note that if mixing weights π and marginals matrix m

realize D, then mi ∈ {0,1}
k
if f depends on coordinate k , and

mi = (1/2, ...,1/2) otherwise, meaning the rows ofM are spanned by

all entrywise products of degree less than log
2
(N ) ≤ k , rather than

2 log(N ) as is required in general by N-List. So the algorithm we de-

scribed above has the same performance as the brute-force algorithm.

The above example serves simply to suggest the naturality of the

problem of learning mixtures of subcubes, but because there are

strong SQ lower bounds against learning sparse noisy parity [4],

it’s inevitable that our algorithm gives no new improvements over

such problems. We now describe an application of N-List which

does achieve a new result on a classical learning theory problem.

Definition A.1. A stochastic decision tree T on n bits is a tree

with leaves labeled by 0 or 1 and with internal nodes of two types:

decision nodes and stochastic nodes. Each decision node is labeled

with some i ∈ [n] and has two outgoing edges, one labeled with 0

and the other with 1. Each stochastic node u has some number of

outgoing edges uv each labeled with a probability puv such that∑
v puv = 1.

T defines a joint probability distribution DT on {0,1}n × {0,1}.

The x ∈ {0,1}n is sampled uniformly at random. Then given x , the
conditional distribution can be sampled from by walking down the

tree as follows. At a decision node labeled with i , traverse along
the edge labeled by xi . At a stochastic node u with outgoing edges

labeled puv , pick edge uv with probability puv and traverse along

that edge. When we reach a leaf node, output its value b. In this

case we say that x evaluates to b along this path.

IfT hasm decision nodes and some stochastic nodes u each with

some outdegree du , then T hasm +
∑
u (du − 1) leaves.

Lemma A.1. For any k-leaf stochastic decision treeT on n bits, the

distribution of (x ,b) ∼ DT conditioned on b = 1 is a mixture of k
subcubes.
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Proof. Consider any path p in T from the root to a leaf labeled

with 1. If along this path there arem decision nodes corresponding

to some variables i1, ...,im ∈ [n] and with outgoing edges b1, ...,bm ,

then any x ∈ {0,1}n from the subcube corresponding to the con-

junction (xi1 = b1)∧· · ·∧ (xim = bm ) evaluates to 1 along this path
with probability equal to the product µp of the edge weights along

this path which emanate from stochastic nodes. So the distribution

of (x ,b) ∼ DT conditioned on b = 1 is a mixture of k such subcubes,

where the p-th subcube has mixture weight proportional to µp/2
dp

,

where dp is the number of decision nodes along path p. □

The following immediately implies our algorithm for learning

stochastic decision trees (Theorem 1.2).

Lemma A.2. Let T be any k-leaf stochastic decision tree corre-

sponding to a joint probability distribution DT on {0,1}n × {0,1}.

Given access to samples from DT , DT can be learned to within total

variation distance ϵ with probability at least 1 − δ in time

Ok,s (n
O (s+logk ) (1/ϵ )O (1)

log 1/δ )

and with sample complexity Ok,s ((logn/ϵ )
O (1)

log 1/δ )

Proof. Denote by A our algorithm for learning mixtures of sub-

cubes, given by Theorem 1.1. To learn DT , by a Chernoff bound

we can first estimate π (b) := Pr(x,b′)∼DT [b
′ = b] ≥ 1/3 for each

b ∈ {0,1} to within accuracy ϵ and confidence 1 − α/3 by draw-

ing O ((1/ϵ )2 log(1/α )) samples. We pick b∗ ∈ {0,1} for which
Pr(x,b )∼DT [b = b∗] ≥ 1/3 and denote our estimate for π (b∗) by
π ′(b∗).

By Lemma A.1, D is a mixture of k subcubes, so we can run A
with error parameter ϵ/2 and confidence parameter α/3 on D and

get a distribution D ′ for which dTV (D,D
′) ≤ ϵ/4. Our algorithm

outputs the distribution D ′ given by D ′(x ,b∗) = π ′(b∗) · D (x ) and
D ′(x ,1 − b∗) = 1 − π ′(b∗) · D (x ).

Now because DT (x ,b
∗) = πb∗ · D (x ), we have that∑

x ∈{0,1}n
|DT (x ,b

∗) − D ′(x ,b∗) | ≤
ϵ

2

∑
x ∈{0,1}n

D (x )

+ π ′(b∗) ·
∑

x ∈{0,1}n
|D (x ) − D ′(x ) | ≤

ϵ

2

+ 2 ·
ϵ

4

= ϵ .

We thus also get that

∑
x ∈{0,1}n |DT (x ,1 − b

∗) − D ′(x ,1 − b∗) | =∑
x ∈{0,1}n |DT (x ,b

∗) − D ′(x ,b∗) | ≤ ϵ , so dTV (DT ,D
′) ≤ O (ϵ ) as

claimed. □
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