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Abstract

Vizing [Viz64] showed that it suffices to color the edges of a simple graph using ∆ + 1 colors,
where ∆ is the maximum degree of the graph. However, up to this date, no efficient distributed
edge-coloring algorithm is known for obtaining such coloring, even for constant degree graphs. The
current algorithms that get closest to this number of colors are the randomized (∆ + Θ̃(

√
∆))-

edge-coloring algorithm that runs in polylog(n) rounds by [CHL+18] and the deterministic (∆ +
polylog(n))-edge-coloring algorithm that runs in poly(∆, log n) rounds by [GKMU18].

We present two distributed edge-coloring algorithms that run in poly(∆, log n) rounds. The first
algorithm, with randomization, uses only ∆ + 2 colors. The second algorithm is a deterministic
algorithm that uses ∆ + O(log n/ log log n) colors. Our approach is to reduce the distributed
edge-coloring problem into an online and restricted version of balls-into-bins problem. If ` is the
maximum load of the bins, our algorithm uses ∆ + 2` − 1 colors. We show how to achieve ` = 1
with randomization and ` = O(log n/ log log n) without randomization.

ar
X

iv
:1

90
1.

00
47

9v
2 

 [
cs

.D
S]

  1
0 

A
pr

 2
01

9



1 Introduction

Problem description: Given a simple graph G = (V,E), a k-edge-coloring is a mapping φ : E →
{1, . . . , k} that maps each edge to a color where no two adjacent edges are mapped to the same color.

We study the edge-coloring problem in the distributed LOCAL model. In this model, vertices host
processors and operate in synchronized rounds. In each round, each vertex sends a message of arbitrary
size to each of its neighbors, receives messages from its neighbors, and performs local computations.
The time complexity of an algorithm is defined to be the number of rounds used. In the end, each
vertex produces its own answer. In the edge-coloring problem, the coloring of an edge uv can either
be computed by vertex u or vertex v.

The LOCAL model aims to investigate the locality of a problem. An r-round local algorithm in
the LOCAL model implies that each vertex only uses information in its r-neighborhood to compute
the answer, and vice versa. Therefore, a faster algorithm in the LOCAL model would mean that each
vertex uses less local information to compute the answer.

Computing edge-coloring in the distributed setting has applications in scheduling problems of
wireless networks [Ram99, GDP08]. It is usually the case that the quality of the solution in these
applications depends on the number of colors being used. Therefore, we hope to minimize the number
of colors while keeping the coloring to be locally computable.

Let ∆ denote the maximum degree of G. It takes at least ∆ colors to color the edges of G, since
the incident edges to a vertex must be colored with distinct colors. Vizing showed that the edges in
every simple graph G can be colored with ∆ + 1 colors [Viz64]. The best sequential algorithm for
obtaining such a coloring runs in O(min(∆m log n,m

√
n log n)) time [Arj82, GNK+85]. However, in

order to obtain a (∆ + 1)-edge-coloring in the LOCAL model, the only known method up to this date
is a O(diameter(G)) solution – a leader collects the topology of the whole graph and then computes
the answer.

“How close can we get to this [Vizing’s edge-coloring], while remaining in polylogarithmic-
time?”

This is an open problem raised in [FGK17]. The followings are the thresholds on the number of
colors that have been encountered or tackled by existing algorithms.

2∆−1 Threshold: (2∆−1) is a natural threshold to be investigated because (2∆−1) is the minimum
number of colors that can be obtained by the greedy algorithm. Panconesi and Rizzi [PR01] gave a
deterministic (2∆− 1)-edge-coloring algorithm that runs in O(∆ + log∗ n) rounds.

The (2∆ − 1)-edge coloring problem translates to the (∆̂ + 1)-vertex-coloring problem on its line
graph, L(G), where ∆̂ = 2∆−2 is an upper bound on the maximum degree of L(G). There have been
extensive studies on the (∆ + 1)-vertex-coloring problem [Lub86, ABI86, Joh99, GP87, GPS88, Lin92,
PS92, KW06, BEK14, Bar15, BEPS16, FHK16, HSS18, CLP18, BEG18]. All the results can be applied
to obtain a (2∆− 1)-edge-coloring.

Getting a polylog(n)-rounds deterministic algorithm for (2∆− 1)-edge-coloring had been a major
open problem. After the progress made in [GS17,GHK+17] for (2+o(1))∆-edge-coloring, the problem
was settled recently by [FGK17] and later improved in [GHK18].

∆+Θ̃(
√

∆) Threshold: Based on a randomized approach, Panconesi and Srinivasan [PS97] first gave
an algorithm that uses 1.6∆ + O(log1+δ n) colors and runs in O(log n) rounds w.h.p. 1, where δ > 0
is a constant. Later, Dubhashi, Grable, and Panconesi [DGP98] gave an algorithm that uses (1 + ε)∆
colors and runs in O(log n) rounds w.h.p. for constant ε and ∆ > log1+δ n. Later, Elkin, Pettie, and
Su [EPS15] removed the requirement that ∆ ≥ log1+δ n and showed that for constant ε, there exists
∆ε such that for all ∆ ≥ ∆ε, a (1 + ε)∆-edge-coloring can be obtained w.h.p. by solving O(log∗∆)

1W.h.p. denotes with high probability, which means with probability at least 1− 1/nc for some constant c.
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Lovasz Local Lemma (LLL) instances in the distributed setting. An LLL instance can be computed
in polylog(n) rounds in the distributed setting [CPS14]. This line of research culminated in the work
of Chang et al. [CHL+18], who showed that for any ε = Ω̃(1/

√
∆) (not necessarily a constant), it is

possible to obtain a (1 + ε)∆-edge-coloring w.h.p. by O(log(1/ε)) invocations of distributed LLL with
an additive poly(log log n) rounds.

The algorithm of [CHL+18] allows one to find a ∆ + Õ(
√

∆)-edge-coloring in polylog(n) rounds.
However, this number of colors seems to be the limit of such randomized approach. An intuitive reason
is because in these coloring algorithms, each edge is colored with a (almost) random color out of the
(1 + ε)∆ colors. Once an edge is assigned a color, it is permanently colored. Consider a stage of the
algorithm where an edge uv is still uncolored but all the incident edges are colored. Let M(x) denote
the colors that are not assigned to any incident edges of x. The size of M(u) and M(v) are about ε∆.
Note that M(u) ∩M(v) must be non-empty in order to color uv. The ε∆ colors in M(u) and M(v)
are likely to be “randomly” sampled out of the (1 + ε)∆ colors. Therefore, the expected number of
colors in M(u) ∩M(v) is O(ε2∆). This implies ε has to be at least Ω(1/

√
∆).

Very recently, in the dynamic setting, Duan et al. [DHZ19] gave a randomized (1+ε)∆-edge-coloring
algorithm with O(poly(1/ε, log n)) amortized update time when ε = Ω(

√
∆/ log n). Incidentally, the

number of colors they are able to obtain is also capped at the ∆ + Θ(
√

∆) threshold.

∆ + poly log(n) Threshold: Recently, Ghaffari et al. [GKMU18] gave a poly((1/ε), log n)-round de-
terministic algorithm that uses (1 + ε)∆ rounds provided that ε

log(1/ε) = Ω(log n/∆). A corollary of

the result is that it is possible to obtain ∆ +O(log n · log
(

2 + ∆
logn

)
) colors in poly(∆, log n) rounds.

This breaks the ∆+Θ̃(
√

∆) barrier, provided that ∆ = ω(logc n) for a large enough c. However, when
∆ is small, say in a constant degree graph, it is still unclear what the minimum possible number of
colors is to color the graph in polylog(n) rounds.

1.1 Our Results

We show that by using poly(∆, log n) rounds, the number of colors can be pushed down to ∆ + 2,
which is merely just one more color than that in Vizing’s Theorem.

Theorem 1.1. There exists a randomized distributed (∆ + 2)-edge-coloring algorithm that runs in
poly(∆, log n) rounds w.h.p. Furthermore, for any ε ≥ (2/∆), this can be turned into a randomized
distributed (1 + ε)∆-edge-coloring algorithm that runs in poly((1/ε), log n) rounds w.h.p.

Chang et al. [CHL+18] showed that any algorithm for (∆ + c)-edge-coloring based on “extending
partial colorings by recoloring subgraphs” needs Ω(∆

c log cn
∆ ) rounds. Our algorithms belongs to such

category and so a polynomial dependency on ∆ and log n is necessary.
Since the edge-coloring problem is locally-checkable, by using the derandomization result from

[GHK18], we can convert the randomized algorithm to a deterministic algorithm with a 2O(
√

logn)

factor blow-up.

Corollary 1.2. For any ε ≥ (2/∆), there exists a deterministic distributed (1 + ε)∆-edge-coloring

algorithm that runs in poly((1/ε)) · 2O(
√

logn) time.

For deterministic algorithms, we also show that it is possible to obtain a ∆ + O(log n/ log log n)
coloring in O(∆6 · logO(1) n) rounds.

Theorem 1.3. For any λ > 1, there exists a deterministic distributed ∆+O(log n/(log λ+log log n))-
edge-coloring algorithm that runs in O(λ ·∆6 · logO(1) n) rounds. Furthermore, this can be turned into
a deterministic distributed (1+ε)∆-edge-coloring algorithm that runs in O(λ ·(1/ε)6 · logO(1) n) rounds,
provided ε ≥ K log n/(∆(log λ+ log log n)) for some constant K > 0.
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Table 1: Minimum number of colors that can be obtained in poly(∆, log n) rounds. The deterministic
result on the fourth row is obtained by setting λ = ∆γ for some constant γ > 0 in Theorem 1.3.

Previous New Range of ∆

Randomized
∆ + Õ(

√
∆) [CHL+18]

∆ + 2 Thm. 1.1
O(logc n)

∆ +O(log n · log(2 + ∆
logn))

[GKMU18]
Ω(logc n)

Deterministic
1.5∆ [GKMU18]

O( logn
log logn)

∆ +O( logn
log logn) Thm. 1.3 [Ω( logn

log logn), O(log n)]

∆ +O(log n · log(2 + ∆
logn))

[GKMU18]

∆ +O(log∆ n) Thm. 1.3 [Ω(log n), 2O(
√

logn)]

∆ + 2 Cor. 1.2 2Ω(
√

logn)

Comparing Theorem 1.3 (with λ = O(1)) to the deterministic algorithms in [GKMU18], we are
using fewer colors (∆+O(log n/ log logn) v.s. ∆+O(log n · log(2+ ∆

logn))) and fewer number of rounds

(Õ(∆6) v.s. Õ(∆9)). For bipartite graphs, we show that it is possible to further improve the number
of rounds to just Õ(∆4). We summarize what coloring can be obtained in poly(∆, log n) in Table 1.

The second statements of Theorem 1.1 and Theorem 1.3 can be obtained by applying the degree
splitting algorithm of [GHK+17] to recursively split the edges into subgraphs whose maximum degrees
are upper bounded by O(1/ε) (see Lemma 3.4). Then we can apply the algorithm on each subgraph
to obtain a poly((1/ε), log n) algorithm.

1.2 A High-Level Description of Our Method

To get a poly(∆, log n)-round algorithm, we employ the construction of Vizing’s coloring in the dis-
tributed setting. In Vizing’s Theorem, it was shown that it is possible to align the endpoints of an
uncolored edge with the same missing color. Thus, the edge can be colored with the missing color.
The alignment can be done by shifting a fan and augmenting along an alternating path. The edges
can be colored by this method one after another in a sequential manner.

However, in the distributed setting, there are two challenges. First, we have to color a large fraction
of uncolored edges simultaneously. The difficulties arise when we color the edges together since there
are dependencies among the coloring processes. Second, the number of rounds needed to augment
along an alternating path must be at least proportional to its length. It is unclear if short alternating
paths always exist (potentially the length of an alternating path can be Ω(n)).

While the first challenge can be resolved by decomposing the coloring process into different phases
and applying symmetry breaking techniques carefully, overcoming the second challenge relies on the
fact all alternating paths are short. Instead of showing this is true, we chop up long alternating paths
to stop the augmentation from propagating. This can be done by placing a blocking edge on it and
augment on the portion of the path only from the starting vertex to the blocking edge. In the end, if
each vertex is adjacent to at most ` blocking edges, then the remaining blocking edges can be colored
with additional 2`− 1 colors, because the maximum degree graph induced by the blocking edges is at
most `. Therefore, the problem reduces to the following load-balancing problem.

Balls into Bins v.s. Paths into Vertices: Consider the following version of balls-into-bins problem.
Suppose there are n bins. The balls arrive in an online fashion. When a ball x arrives, it is given a
size-T subset of the bins, Bx. We have to decide which bin in Bx to place x into. Each bin can only
be the potential choice of at most t balls. The question is how to minimize the maximum load of the
bins.

The problem of minimizing the maximum number of incident blocking edges per vertex can be
thought as a balls-into-bins problem. In particular, each alternating path of length at least T is a ball
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and each vertex is a bin. Choosing the blocking edge on the first T edges is equivalent to choosing the
bin (thus each ball occupies two bins, but we ignore this fact for now). We will show that each vertex
can be passed by at most t alternating paths throughout the algorithm.

If t ≤ T/λ, then by placing each ball into a random bin, we can show that w.h.p. the maximum load
is O(log n/(log λ+ log log n)). Moreover, such randomized algorithm can be derandomized by letting
each ball go to the bin with the smallest cost (we will specify the cost function later), breaking ties
arbitrarily. This is how we obtain our deterministic algorithm that uses additional O(log n/(log λ +
log log n)) colors in Theorem 1.3. Note that the Θ(log n/(log λ + log log n)) bound is tight for the
balls-into-bins problem. Additional constraints must be considered in order to further reduce the
load.

To achieve maximum load of 1, we modify our algorithm such that we place the ball into one of
the non-empty bins randomly. If there is always at least one non-empty bin in Bx for every ball x, it
guarantees a maximum load of one. Recall that each ball is a path in our scenario. There are at most
n∆T−1 different paths of length T . If T is large enough (T = poly(∆, log n) · t), we can show that
w.h.p. for every path, at most a constant fraction of the bins on the path are occupied (throughout
the algorithm) by taking a union bound over all possible paths of length T . Since there are at least a
constant fraction of empty bins, each ball is always guaranteed to land in an empty bin. In the end of
the algorithm, the blocking edges induce a matching. After recoloring the matching with a new color,
we obtain a (∆ + 2)-edge-coloring.

2 Notation and Vizing’s Theorem

Consider a partial edge coloring φ : E → {⊥, 1, 2, . . . ,∆ + 1, ?} of a graph G. A partial coloring is
proper if the subgraph induced by each color i ∈ {1, 2, . . . ,∆ + 1} is a matching. We say an edge e
is uncolored if φ(e) = ⊥. The color ? is a special color that denotes the color of blocking edges. Let
M(v) ⊆ {1, 2, . . . ,∆ + 1} denote the missing colors of v (i.e. the colors that are not assigned to the
incident edges of v). Note that M(v) is always non-empty. Fix m(v) to be any missing color of v.

Fix a partial edge-coloring φ. Suppose that v is missing α, i.e. α ∈ M(v), and there is at least
one uncolored edge that is incident to v. The fan Fv with respect to φ is constructed as follow. Let
e1 = vx1 be an uncolored edge incident to v. Our goal is to color the edge vx1. If m(x1) /∈M(v), then
there must be an edge vx2 with the color m(x1). In particular, we construct vxi as the edge with the
color m(xi−1). We stop this process if for some i, we have that m(xi) ∈ M(v) or some previous edge
vxj currently has color m(xi).

More formally, given ei = vxi, we construct edge ei+1 if both of the following two conditions do
not occur: (i) m(xi) ∈M(v). (ii) m(xi) ∈ {m(x1), . . . ,m(xi−1)}. Furthermore, ei+1 is constructed as
the edge that is incident to v and colored in m(xi). We repeatedly construct edges e1 . . . ek for some
k ≥ 1 until it is not possible to do it further. The vertex set of Fv consists of the center v and the
leaves x1, . . . , xk. The edge set of Fv is {e1, . . . ek}. We say k is the degree of Fv, deg(Fv). A fan Fv is
an αβ-fan if α ∈ M(v) and m(xdeg(Fv)) = β. We again note that this procedure is well-defined since
with ∆ + 1 colors in the palette, m(xi) is always non-empty.

We emphasize that when we use Fv to refer to a fan, that is a shorthand to say that it has v as
the center. The notation Fv alone however does not uniquely define a fan since we may grow multiple
fans centering at v throughout the algorithm.

The operation shift(Fv, i) recolors the edges of Fv as follow. For each 1 ≤ j ≤ i− 1, color edge ej
with m(xj). We leave the color of ei to be the same. An αβ-alternating path is a path whose edges
are colored in α and β alternatively and it is maximal of such paths. That is, no path whose edges
are alternating between α and β contains it properly. Given an αβ-alternating path P , the operation
augment(P ) switches the colors from α to β and from β to α for each edge on P . Note that two
αβ-alternating paths cannot possibly intersect with each other.
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Figure 1

2.1 Vizing’s Theorem and Fan Repair

Vizing’s Theorem shows that the uncolored edge in a fan can be properly colored if one recolors some
other edges. This is done by using an augment operation and a shift operation. We call such a
procedure repairing the fan. We adopt a version of the proof from [MG92], where it only uses one
alternating path instead of potentially two. Given a fan Fv with edges vx1, . . . , vxk. If m(xk) ∈M(v),
perform shift(Fv, k) and color vxk with m(xk) then every edge in Fv is now colored. Otherwise, it
must be the case that there exists j, where 1 ≤ j ≤ k − 2, such that m(xk) = m(xj). Let Pv be the
αβ-alternating path that starts at v. Note that the first edge of Pv is ej+1 = vxj+1. There are two
cases.

Case 1: Pv does not end at xj . We perform shift(Fv, j + 1) followed by augment(Pv). After the
shift(Fv, j + 1) operation, there is only one conflict – both vxj and vxj+1 are colored with β. This
is resolved by augment(Pv), which changes the color of vxj+1 to α. Moreover, augment(Pv) does not
create new conflicts, since its ending vertex must be missing either α or β (depending on the color of
its last edge) before the shift(Fv, j+ 1) operation. The operation shift(Fv, j+ 1) does not color any
edge with α or β except for xvj . Since Pv does not end at xj as assumed, the partial coloring remains
proper after augmenting along Pv.

Case 2: Pv ends at xj (Figure 1a), we perform augment(Pv) first. After the augmentation, now v
is missing β and xj is missing α (Figure 1b). We let m(xj) = α (there can be multiple missing colors,
but we choose m(xj) to be α). Under the new partial coloring and m(·)-values, Fv is still a fan of v
by definition. Moreover, m(xk) = β ∈ M(v). We then perform shift(Fv, k) and color vxk with β
(Figure 1c).

Therefore, given a fan, we can repair it and thus decrease the number of uncolored edges. Sequen-
tially, if we fix fans one by one, we will be able to color all the edges. To be able to do this efficiently
in the distributed setting, we need to address two challenges.

• We need to be able to color a large portion of uncolored edges at the same time.

• The number of rounds needed to augment along a path is proportional to the length of the path.
It is unclear if all alternating paths are short (i.e. poly(∆, log n)).

3 Algorithm

To tackle the first challenge, we divide the fans into different color classes so that the fans in the same
color class can be fixed without interfering with each other. The rough idea is to take advantage of the
fact that any two αβ-alternating paths do not intersect and the fact that if u and v are in the same
color class of a 2-hop coloring then Fu and Fv do not intersect. Therefore, we can repair all αβ-fans
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whose centers are in the same color class of a 2-hop coloring together.
To overcome the second challenge, the idea is to truncate long alternating paths. Given an alter-

nating path P = (v0, v1, . . . vk), let P (i) denote the truncated version of P defined as follow

P (i) =

{
P, if k ≤ i.
(v0, v1, . . . , vi), otherwise.

We will truncate alternating paths at length T = poly(∆, log n), where the actual value of T will
be specified later. Instead of doing the augment operation on P , we will choose one edge in P (T ) to
be the blocking edge to block the augmentation propagating down the path. Note that we only need
to put a blocking edge on P (T ) if |P | > T , since if |P | ≤ T , we can augment P in O(T ) rounds.

3.1 The Framework

We describe our algorithm in Algorithm 1. Let G2 denote the distance-2 graph of G where (u, v) ∈ G2

if distG(u, v) ≤ 2. Since the maximum degree of G2 is at most ∆ + ∆ · (∆− 1) = ∆2, we can color G2

using ∆2 + 1 colors. This can be done in O(∆2 + log∗ n) rounds [BEK14].

Algorithm 1 Distributed Fan Repair

1: Obtain a 2-hop coloring using ∆2 + 1 colors.
2: while there exists uncolored edges do
3: for i = 1, 2, . . . ,∆2 + 1 do
4: for α = color 1, 2, . . . ,∆ + 1 do
5: Let Vi,α denote color-i vertices that misses α and have at least one uncolored edges.
6: Let Fi,α denote the set of fans grown from each vertex Vi,α.
7: for β = color 1, 2, . . . ,∆ + 1 do
8: Let Fi,α,β denote the set of αβ-fans in Fi,α.
9: Build a conflict graph GFi,α,β for Fi,α,β and color GFi,α,β using O(1) colors.

10: Let Fi,α,β,j ⊆ Fi,α,β denote the fans that are colored in j.
11: for j = color 1, 2, . . . , O(1) do
12: Repair each fan in Fi,α,β,j that has not been destroyed.

The outermost while loop repeats until there is no uncolored edge. We will show in Lemma 3.1 that
each iteration colors a constant fraction of the uncolored edges. Thus, the while loop uses O(log n)
iterations. Inside the while loop, we iterate through each color of G2 (Line 3). For each color class, we
further iterate through all possible values for α (Line 4). Let Vi,α(φ) denote the set of color-i vertices
that have at least one incident uncolored edge and miss α w.r.t. the partial coloring φ. We often
omit the parameter φ and write it as Vi,α when the reference is w.r.t. the current coloring.

For each v ∈ Vi,α, we grow a fan Fv centered at v. Let Fi,α be a collection of all such fans. It is
guaranteed that the fans do not intersect, since Vi,α is an independent set in G2. Next, we iterate β
from color 1 to ∆ + 1. Let Fi,α,β denote all the αβ-fans in Fi,α. Ideally, we want to be able to repair
all fans in Fi,α,β simultaneously, since their alternating paths do not intersect. However, it is possible
that an alternating path of a fan Fv ends at a node of another fan Fw ∈ Fi,α,β. In this case, we might
not be able to repair them together, because the augment(Pv) step may destroy the structure of Fw
(i.e. change M(x) for x ∈ Fw or change the color of the edges in Fw). Note that if Pv crosses a node
in Fw and does not end at a node in Fw, augmenting along Pv does not affect the structure of Fw,
since in this case, Pv cannot contain any edge of Fw. In other words, if Pv crosses but does not end at
a node x ∈ Fw, then m(x) 6= α and m(x) 6= β. Therefore, augmenting P (v) or the prefix of Pv before
the blocking edge (if |Pv| > T ) cannot change m(x).

To resolve this issue, we consider the directed graph GFi,α,β = (VFi,α,β , EFi,α,β ), where VFi,α,β =
{Fv | Fv ∈ Fi,α,β} and (Fu, Fw) ∈ EFi,α,β if |Pv| ≤ T and Pv ends at any nodes of Fw. Note that we
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only consider |Pv| ≤ T , because if |Pv| > T , we will only do modification on Pv(T ). Such modification
will not affect the fans that intersect with Pv(T ).

Since the out-degree of every vertex in GFi,α,β is at most 1, the arborcity of GFi,α,β is O(1).
If we consider GFi,α,β as an undirected graph, we can color GFi,α,β using O(1) colors in O(log n)
rounds [BE10], if GFi,α,β were the underlying communication graph. Since each edge in GFi,α,β is
stretched by a factor of at most T in G, we can simulate the coloring algorithm in O(T · log n) rounds
in G. Now we iterate through each color j of the coloring and process the fans colored in j together
(Line 11). Since the alternating path of each fan colored in j does not end at any other fan colored in
j, nor do the alternating paths intersect, we can repair them simultaneously.

Therefore, it is possible to repair all undestroyed fans in Fi,α,β,j simultaneously, using a shift

operation and possibly an augment operation for each fan. For a fan Fv with its alternating path Pv
whose first edge is the edge between v and the (j + 1)’th leave of Fv, if |Pv| ≤ T , we repair the fan
as outlined in Section 2. Otherwise, we select an edge of Pv(T ) = (v0, v1, . . . , vT ) to be the blocking
edge, say (vi−1, vi), where 1 ≤ i ≤ T . We color (vi−1, vi) with a special color ? and then perform
shift(v, j+1) followed by augment(Pv(i−1)) (Case 1 of the repairing step). After the repairing step,
the uncolored edge in the fan becomes colored and the partial coloring remains proper. We will show
that after O(log n) iterations of the outermost while loop, all the edges become colored (some possibly
in color ?).

Lemma 3.1. In each iteration of the while loop, at least a constant fraction of uncolored edges become
colored. Thus, it takes O(log n) iterations to color all the edges.

Proof. Consider an iteration of the while loop. Let φ−1
0 (⊥) denote the set of uncolored edges at the

beginning of the while loop. Let φi,α be the partial coloring during the i’th iteration of the outer for
loop at Line 3 and at the beginning of α’th iteration of the inner for loop at Line 4. Let φi denote
the partial coloring at the beginning of i’th iteration of the outer for loop at Line 3.

For each uv ∈ φ−1
0 (⊥), we orient the edge from u to v if the color of u is smaller than that of v;

otherwise we orient it from v to u. We will show that

∆+1∑
α=1

|Fi,α| ≥
∑
u∈Vi

outdeg(u)/2,

where Vi denotes the set of color-i vertices.
For each v ∈ Vi, let C(v) denote the first outdeg(v) missing colors of v w.r.t. φi so that |C(v)| =

outdeg(v). For each α ∈ C(v), if v ∈ Vi,α(φi,α), then a fan centered at v will be created during iteration
α (Recall that Vi,α(φi,α) denotes the set of color i-vertices that have at least one uncolored incident
edge and are missing α with respect to the coloring φi,α). Otherwise, if v /∈ Vi,α(φi,α), it must be
caused by the repairing step of some color-i vertex u that changes the color of an incident edge of v
to α during iteration α′ for some α′ < α. In other words, there is a fan Fu that was grown in iteration
α′ < α and repairing Fu causes v /∈ Vi,α(φi,α). Repairing a fan Fu can only change the missing color
set (i.e. M(·)) of its leaves, its center, and the other endpoint of the alternating path. Since u and v
are both in Vi, they cannot be neighbors. Therefore, v must be either the endpoint of the alternating
path Pu or v = u.

Case 1: v is the end of the alternating path of Fu. It must be the augment operation of Fu that
changes the missing color of v during the repairing step of Fu.

Case 2: u = v. Let x1 . . . xk be the leaves of Fu. If an edge incident to u becomes colored in α
during iteration α′, it must be the case that α = m(xk) and α ∈ M(u). We perform shift(Fu, k)
operation and color uxk in α. Note that in this case the augment operation is not performed.

Therefore, if v /∈ Vi,α(φi,α), we can blame it to some fan Fu. Note that each fan Fu can be blamed
at most once, since Case 1 and Case 2 are mutually exclusive. Since for each v and α ∈ C(v), either
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it creates a fan or it blames another fan, we have

∑
u∈Vi

outdeg(u) =
∑
u∈Vi

|C(u)| ≤
∆+1∑
α=1

|Fi,α|+ (#blames)

≤ 2
∆+1∑
α=1

|Fi,α| .

The last inequality follows since (#blames) ≤
∑∆+1

α=1 |Fi,α|.
Note that at most half of the fans are destroyed, since repairing a fan can only destroy at most

one other fan. If a fan is not destroyed, then the uncolored edge in the fan must become colored.

Therefore, at least
∑∆2+1

i=1

∑∆+1
α=1 |Fi,α|/2 uncolored edges are colored. The total number of edges that

are colored during the while loop is at least

∆2+1∑
i=1

∆+1∑
α=1

|Fi,α|/2 ≥
∆2+1∑
i=1

∑
v∈Vi

outdeg(v)/4 = |φ−1
0 (⊥)|/4 .

This implies that at least 1/4 of the uncolored edges become colored during the iteration. Thus,
after O(log n) iterations, all edges are colored.

3.2 Load Balancing the Blocking Edges

By Lemma 3.1, Line 12 of Algorithm 1 is executed for at most t = K∆4 log n times for some constant
K > 0. Note that in each execution of Line 12, the alternating path of each fan in Fi,α,β,j does not
intersect alternating paths of other fans in Fi,α,β,j .

Let `(v) denote the load of v, which is defined to be the number of incident edges to v colored in ?.
Also, let `(G) = maxv∈V `(v). The hope is that at the end of the algorithm, `(G) will be small. Since
the maximum degree induced by ?-edges is `(G), we can recolor ?-edges using 2`(G) − 1 additional
colors using the algorithm of Panconesi and Rizzi [PR01] in O(`(G) + log∗ n) rounds.

In each execution of Line 12 of Algorithm 1, each vertex can only increase its ? degree by one.
This is because the alternating paths of the fans in Fi,α,β,j do not intersect, and thus each vertex can
be passed by at most one alternating path. Recall that t is the number of times Line 12 of Algorithm
1 is executed. Therefore, each vertex can be passed by at most t alternating paths throughout the
algorithm.

On the other hand, for each alternating path P of length at least T , it has T choices to place the
blocking edge on P (T ). If we place the blocking edge uniformly at random on each path, the expected
load for each vertex v is, E[`(v)] ≤ 2t

T = O(1/λ), provided T ≥ t · λ. We can show by Chernoff bound
that `(G) = O(log n/(log λ + log log n)) w.h.p. However, to obtain a (∆ + 2)-edge coloring, we need
to make `(G) = 1 so that the ?-edges form a matching. In the rest of this section, we show how to
achieve `(G) = 1 using randomization and `(G) = O(log n/(log λ+ log logn)) without randomization.

Achieving `(G) = 1: Let T = K∆7 · t = K∆11 log n for some sufficiently large constant K. Instead of
randomly placing the blocking edge, we do the following. Given a path P , let E0(P ) be the set of edges
whose endpoints have zero loads. In each alternating path P , we choose an edge from E0(P ) uniformly
at random to be the blocking edge. We will show that at any time during the algorithm, for every
path P of length T (P is not necessarily an alternating path), |E0(P )| ≥ T/15 w.h.p. Therefore, given
an alternating path of length at least T , it is always possible to choose a blocking edge whose both
endpoints have zero loads w.hp. If some alternating path of length at least T with |E0(P )| < T/15
occurs during Line 12, we say the algorithm fails and let our graph and coloring freeze there. In that
case, P will not be processed. If the algorithm did not fail, then we have achieved `(G) = 1.
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Lemma 3.2. After the last execution of Line 12 of Algorithm 1, it holds w.h.p. that for every path
P of length T , we have that |E0(P )| ≥ T/15.

Proof. Fix a path P of length T . We will show that the probability Pr(|E0(P )| < T/15) ≤ 1/(poly(n) ·
∆T ) after the t’th execution of Line 12 of Algorithm 1. By taking a union bound over all possible
paths of length T , we will conclude that w.h.p. for every path P of length T , |E0(P )| < T/15. This
also implies the algorithm did not fail throughout execution 1 . . . t w.h.p.

We say a vertex v is occupied if `(v) ≥ 1. Otherwise, it is empty. Similarly, we say an edge is
occupied if any of its endpoints is occupied. Otherwise, it is empty.

We say an alternating path is adjacent to an edge uv in P if u or v is in the alternating path.
We divide all the alternating paths from the beginning up to after the t’th execution of Line 12 of
Algorithm 1 that intersect P into two groups:

P1 = {alt. paths that are adjacent to at least
T

1000
edges in P}

P2 = {alt. paths that are adjacent to fewer than
T

1000
edges in P}.

Because the alternating paths in each execution of Line 12 of Algorithm 1 are vertex-disjoint, for
each edge in P , at most 2 alternating paths are adjacent to it in each execution. Thus, at most 2t
alternating paths are adjacent to that edge in total. This implies the number of pairs (e, P̃ ) ∈ P ×P1

where P̃ is adjacent to e is at most 2tT . Since each alternating path in P1 consumes at least T/1000
pairs, we have

|P1| ≤
2tT

T/1000
= 2000t .

Note that we only place at most one blocking edge on an alternating path (i.e., if the path is truncated).
Each blocking edge can cause at most three edges in P to be occupied (this corresponds to the case
the blocking edge is in P ). Thus, the alternating paths in P1 can cause at most 6000t edges in P to
be occupied.

Now we bound the number of occupied edges in P caused by the blocking edges of alternating
paths in P2. Let P = u0 . . . uT . Let E′(P ) = {u0u1, u2u3, . . . , u2·(dT/2e−1)u2·(dT/2e−1)+1} denote the set
of every other edge in P so that |E′(P )| = dT/2e. We say an edge is adjacent to E′(P ) if it shares
an endpoint with an edge in E′(P ).

We say a vertex u is in E′(P ) if it is an endpoint of an edge in E′(P ). We orient every edge
(including those not in P ) e = uv that is adjacent to E′(P ) as follows: Without loss of generality, let
u be the vertex that is in E′(P ). If v is not in E′(P ), we orient e from u to v. Otherwise, we orient
the edge from the vertex that appears earlier in P to the vertex that appears later in P .

Given an edge e = uv ∈ E′(P ), we say e is outwardly occupied if any of the outgoing edges
from u or v is a blocking edge of some alternating path in P2. Next, we will bound the number of
outwardly occupied edges in E′(P ).

The reason we are using “outwardly occupied” instead of “occupied” is because it resolves some
dependency issues. In particular, each alternating path in P2 can only make at most one edge in
E′(P ) outwardly occupied, while it can make two edges occupied. Moreover, as we will see later, the
number of occupied edges in E′(P ) is at most 3 times the number of outwardly occupied edges.

Now we hope to upper bound the total number of outwardly occupied edges X =
∑

e∈E′(P )Xe

where Xe is the indicator variable for the event e is outwardly occupied. Consider an edge e, the
following is a rough argument to bound Pr(Xe = 1). The probability that an alternating path makes
e outwardly occupied is O(1/T ), since it has Ω(T ) empty edges to choose from. Moreover, there are
at most O(t) alternating paths that are adjacent to e throughout the algorithm. Thus, by taking
a union bound over these paths, we have Pr(Xe = 1) = O(t) · O(1/T ) = O(t/T ). As a result,
E[X] = O(T · (t/T )) = O(t). However, it will be difficult to obtain a tail bound on X directly due to
dependency issues.
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Since we need to apply the strongest form of Chernoff bound in order to obtain a very sharp
bound (1/(poly(n) ·∆T )) on the probability that X deviates from E[X], we couple random variables
{Xe}e∈E′(P ) with independent Bernoulli random variables {Ye}e∈E′(P ) with success probability at most
150t/T in the following lemma whose proof is deferred to the end of this proof.

Lemma 3.3. For every e ∈ E′(P ), let Xe = 1 if e is outwardly occupied by a blocking edge in
an alternating path in P2 and Xe = 0 otherwise. Let {Ye}e∈E′(P ) be independent Bernoulli random
variables with success probability at most 150t/T . Let X =

∑
e∈E′(P )Xe and Y =

∑
e∈E′(P ) Ye. For

any M ≥ 0, we have Pr(X > M) ≤ Pr(Y > M).

Therefore,

E[Y ] ≤ dT/2e · 150t

T
< 100t .

Let δ = (T/700t)− 1, and so (1 + δ) = (T/700t). Let M = 100t be an upper bound of E[Y ]. We can
apply a variant of Chernoff bound (where one could replace E[Y ] by M if M ≥ E[Y ], see Corollary 4
of [PS15]) to obtain:

Pr(Y > T/7) = Pr(Y > (T/700t) · 100t)

= Pr(Y > (1 + δ) ·M)

≤ Pr(Y > E[Y ] + δM)

≤
(

e

1 + δ

)(1+δ)·M
Corollary 4 of [PS15]

=

(
e

1 + δ

)T/7
≤
(

1

e∆7

)T/7
(1 + δ) =

T

700t
> e2 ·∆7

≤ 1

poly(n)
· 1

∆T
T = Ω(log n) .

By Lemma 3.3, Pr(X > T/7) ≤ Pr(Y > T/7) ≤ 1/poly(n) · 1/∆T .
Suppose that the number of outwardly occupied edges in E′(P ) is at most T/7. Consider an

occupied edge that is not outwardly occupied. Its adjacent blocking edge must be adjacent to an edge
e ∈ E′(P ) that is outwardly occupied. Moreover, each e ∈ E′(P ) can only be adjacent to at most
two blocking edges. Therefore, the number of occupied edges is at most T/7 + 2(T/7) + 6000t =
3T/7 + 6000t. The number of empty edges in E′(P ) must be at least dT/2e − 3T/7− 6000t > T/15.
Thus, the probability that there are fewer than T/15 empty edges on P is at most 1/(poly(n) ·∆T ).

There are at most n · ∆T−1 paths of length T . By taking a union bound all length-T paths,
the probability that there is a length-T path with fewer than T/15 empty edges is at most (n ·
∆T−1)/(poly(n) ·∆T ) = 1/poly(n). This also implies that the algorithm did not fail w.h.p.

Proof of Lemma 3.3. First, we create i.i.d. random variables θe,i for each edge e ∈ E′(P ) and 1 ≤
i ≤ 2t, where Pr(θe,i = 1) = 75/T . For each e ∈ E′(P ), we let Ye =

∨
1≤i≤2t(θe,i = 1). Clearly,

Pr(Ye = 1) ≤ 2t · (75/T ) = 150t/T and {Ye}e∈E′(P ) are independent.
The next step is to couple {Xe}e∈E′(P ) with {θe,i}e,i. Recall that in our algorithm, each alternating

path P̃ ∈ P2 (that is processed) selects the blocking edge uniformly at random from E0(P̃ ) (unoccupied
edges at the execution when P̃ occurs). Now we consider a modified algorithm that has the same
outcome with the original algorithm. It allows us to do the coupling more easily. Given e ∈ E′(P ),
let outP̃ (e) denote the set of edges that are in E0(P̃ ) and are outgoing edges from any endpoint of e.
Note that if e, e′ ∈ E′(P ) and e 6= e′, then outP̃ (e) and outP̃ (e′) are disjoint.
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Let E′
P̃

(P ) ⊆ E′(P ) denote the set of edges with non-empty outP̃ (e). Since P̃ ∈ P2, |E′
P̃

(P )| ≤
T/1000. Also, since |outP̃ (e)| ≤ 4, we have

∑
e∈E′

P̃
(P ) |outP̃ (e)| ≤ 4T/1000.

The modified algorithm maintains a counter, occurred, which is initially set to 0. Then it goes
through each edge e ∈ E′

P̃
(P ) and does the following: Throw a coin independently with success

probability |outP̃ (e)|/(|E0(P̃ )| − occurred). If it succeeds, it selects a blocking edge randomly from

outP̃ (e) and then it is done with processing P̃ . Otherwise, it sets occurred← occurred+ |outP̃ (e)| and

continues to process the next edge in E′
P̃

(P ). If the algorithm did not successfully select a blocking edge

after it processed every edge in E′
P̃

(P ) ⊆ E′(P ), it selects an edge from E0(P̃ ) \ (
⋃
e∈E′

P̃
(P ) outP̃ (e))

uniformly at random as the blocking edge.
It is easy to see that in the modified algorithm, the probability that any edge in E0(P̃ ) is selected as

the blocking edge is exactly 1/|E0(P̃ )|. Therefore, the modified algorithm is equivalent to the original
algorithm where P̃ selects a random edge in E0(P̃ ) as the blocking edge.

Now we couple the randomness of the modified algorithm with {θe,i}i,e. When the modi-
fied algorithm processes an edge e ∈ E′

P̃
(P ), instead of throwing a new coin with probability

|outP̃ (e)|/(|E0(P̃ )| − occurred), we will couple it with the randomness from θe,i. For each e ∈ E′(P ),
we maintain a counter q(e) that points to the smallest index such that θe,q(e) is not yet exposed.

Initially, q(e) are 1 for every e ∈ E′(P ). Now when the algorithm processes P̃ ∈ P2 and an
edge e ∈ E′

P̃
(P ), we will expose θe,q(e). Let E1 denote the event that θe,q(e) = 1. Also, we set

q(e)← q(e) + 1. Let E2 denote the event that a coin with success probability 1
Pr(E1) ·

|outP̃ (e)|
(|E0(P̃ )|−occurred)

succeeds. Note that Pr(E1) · Pr(E2) = |outP̃ (e)|/(|E0(P̃ )| − occurred). The original coin with proba-

bility |outP̃ (e)|/(|E0(P̃ )| − occurred) will be simulated by the trial that both the two events E1 and
E2 happen.

Note that given e ∈ E′(P ), at most 2t alternating paths in P2 may be adjacent to e in total. This
implies θe,q(e) is always well-defined when the algorithm refers to it. It remains to show that Pr(E2) is

a valid probability, namely, |outP̃ (e)|/(|E0(P̃ )| − occurred) ≤ Pr(E1).

Pr(E1) = 75/T

≥
(

|outP̃ (e)|
T/15− 4T/1000

)
|outP̃ (e)| ≤ 4

≥
(

|outP̃ (e)|
T/15− occurred

)
occurred ≤ 4T/1000

≥
(

|outP̃ (e)|
|E0(P̃ )| − occurred

)
|E0(P̃ )| ≥ T/15 .

The second to the last line holds since occurred ≤
∑

e∈E′
P̃

(P ) |outP̃ (e)| ≤ 4T/1000. Also, the last

line holds since if |E0(P̃ )| < T/15, the algorithm freezes and P̃ will not be processed.
Finally, we point out that the coupling argument implies whenever Xe = 1, it must be the case

that θe,i = 1 for some 1 ≤ i ≤ 2t. This in turns implies that Ye = 1 and thus Xe ≤ Ye. Therefore, for
any M > 0, Pr(X > M) ≤ Pr(Y > M).

By Lemma 3.1, Line 9 is executed O(∆4 log n) times. Each execution uses O(T · log n) time, where
T = O(∆11 log n). By Lemma 3.1 again, Line 12 is also executed O(∆4 log n) times. Each execution
takes O(T ) time. Therefore, the number of rounds used by our algorithm to obtain a (∆ + 2)-edge-
coloring is O(∆15 log3 n). The following lemma (whose proof we postpone to the end of the section)
completes the proof of Theorem 1.1, which shows the algorithm can be converted to a (1 + ε)∆-edge-
coloring algorithm that runs in O((1/ε)15 log3 n) rounds for any ε ≥ 2/∆.
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Lemma 3.4. Suppose that there is a deterministic (randomized) (∆ + z)-edge-coloring algorithm that
runs in O(∆x logy n) rounds. Then there exists a deterministic (randomized) (1 + ε)∆-edge-coloring
algorithm that runs in O((1/ε)x · (z + 1)x · logy n) + Õ(log2 ∆ · ε−1 · log ε−1 · log n) rounds for any
ε ≥ z/∆, where Õ(·) hides a poly(log log n) factor.

Achieving `(G) = O(log n/(log λ + log log n)) deterministically: We will choose T = 2t · λ. Let
(1 + δ) = K · λ · log n/(log λ+ log log n) for some constant K > 0. Given an alternating path P with
length at least T , let `q(v) denote the load of v after q’th execution of Line 12 of Algorithm 1.

During the q’th execution of Line 12 of Algorithm 1, we select the blocking edge as follows. Given
an edge e = uv, define the cost c(e) to be (1 + δ)`q−1(v) + (1 + δ)`q−1(u). Given an alternating path P ,
we select the edge e ∈ P (T ) with the minimum cost c(e) to be the blocking edge. We will show that
this greedy algorithm achieves a maximum load of O(log n/(log λ+ log log n)).

Lemma 3.5. If T = 2tλ, the greedy algorithm achieves a load of O(log n/(log λ+ log log n)).

Proof. We use the method of conditional expectation to show that the greedy algorithm is a deran-
domization of the randomized algorithm. Define the pessimistic estimator

Φ(q) =
∑
v∈V

(1 + δ)`q(v) · (1 + δ · (2/T ))t−q

(1 + δ)(1+δ)/λ
.

We show that Φ(q + 1) ≤ Φ(q) by the choice of the greedy algorithm. Consider the (q + 1)’th
iteration of Line 12 of Algorithm 1.

Let B denote a set of blocking edges chosen during (q + 1)’th execution. Given an edge e, if v is
an endpoint of e, we write v ∈ e. Moreover, we write v ∈ B, if there exists e ∈ B such that v ∈ e. We
use [v ∈ B] denote the indicator variable for the event v ∈ B. Let Q(B) denote the following quantity:

Q(B) =
∑
v∈V

(1 + δ)`q(v)+[v∈B] .

Suppose that we choose each blocking edge randomly in (q + 1)’th execution of Line 12, we have

E[Q(B)]

=
∑
v∈V

(
Pr(v ∈ B) · (1 + δ)`q(v)+1 + Pr(v /∈ B) · (1 + δ)`q(v)

)
=
∑
v∈V

(1 + δ)`q(v) · (Pr(v ∈ B) · (1 + δ) + (1− Pr(v ∈ B)))

=
∑
v∈V

(1 + δ)`q(v) · (1 + δ · Pr(v ∈ B))

≤
∑
v∈V

(1 + δ)`q(v) ·
(

1 + δ · 2

T

)
.

Observe that given e and e′, if c(e) < c(e′), then
∑

v∈V (1 + δ)`q(v)+[v∈e] <
∑

v∈V (1 + δ)`q(v)+[v∈e′].
Moreover, the alternating paths generated in the (q + 1)’s execution of Line 12 do not intersect.
Therefore, our greedy strategy is always choosing a set of blocking edges to minimize Q(B). Thus,
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Φ(q + 1) =
(1 + δ · (2/T ))t−q−1

(1 + δ)(1+δ)/λ
·min

B
Q(B)

≤ (1 + δ · (2/T ))t−q−1

(1 + δ)(1+δ)/λ
· EB[Q(B)]

≤ (1 + δ · (2/T ))t−q−1

(1 + δ)(1+δ)/λ
·
∑
v∈V

(1 + δ)`q(v) (1 + δ · (2/T ))

= Φ(q) .

Let X = log λ+ log log n. We have∑
v∈V

(1 + δ)`t(v)−(1+δ)/λ = Φ(t) ≤ Φ(t− 1) ≤ . . . ≤ Φ(0)

=
∑
v∈V

(1 + δ · (2/T ))t

(1 + δ)(1+δ)/λ

≤
∑
v∈V

eδ·(2t/T )

(1 + δ)(1+δ)/λ
(since 1 + x ≤ ex)

≤
∑
v∈V

eδ/λ

(1 + δ)(1+δ)/λ

≤
∑
v∈V

[
e

Kλ log n/(log λ+ log log n)

]K logn/(log λ+log logn)

=
∑
v∈V

exp(−(X + logK − log(X)− 1) ·K log n/X)

≤
∑
v∈V

exp(−(K/2) log n) (for sufficiently large X)

≤
∑
v∈V

1

poly(n)
< 1 .

This implies `t(v) ≤ (1 + δ)/λ = O(log n/(log λ + log log n)) for all v. Thus, we have achieved
`(G) = O(log n/(log λ+ log log n)).

The running time is dominated by Line 9, which is executed O(∆4 log n) times. Each execution
uses O(T · log n) time. The total running time for obtaining a ∆ +O(log n/(log λ+ log log n)) coloring
is O(∆4T · log2 n) = O(λ · ∆8 log3 n). We show how to reduce the running time to O(λ · ∆6 log3 n)
in the next section. By Lemma 3.4, it can be converted to a deterministic (1 + ε)∆-edge-coloring
algorithm that runs in O(λ · (1/ε)6 log9 n) algorithm for ε = Ω(log n/(∆(log λ+ log log n))).

Proof of Lemma 3.4. W.L.O.G. we may assume ε ≤ 1/8. If ∆ ≤ (16(z + 8))/ε, then by applying the
(∆+z)-edge-coloring algorithm, we obtain an (1+ ε)∆-edge-coloring in O(∆x logy n) = O((1/ε)x · (z+
1)x logy n) rounds, since z ≤ ε∆ and ε ≤ (16(z + 8))/∆.

Otherwise, let ε′ = ε/(32 log4/3 ∆). By using the splitting algorithm of [GHK+17], we obtain two

subgraphs of maximum degree (1/2 + ε′)∆ + 4 in Õ(ε′−1 · log ε′−1 · log n) rounds. Let ∆0 = ∆ and
∆i = (1/2+ε′)∆i−1+4. If we apply the algorithm recursively for h levels, we obtain 2h subgraphs whose
maximum degree are bounded by ∆h. We choose h to be the smallest number that (1/2 + ε′)h ·∆ ∈
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[(8(z + 8))/ε, (16(z + 8))/ε]. Note that h ≤ log4/3 ∆, since ε′ ≤ ε ≤ 1/4. Note that

∆h = (1/2 + ε′)h ·∆ +
h−1∑
i=0

(1/2 + ε′)i · 4

≤ (1/2 + ε′)h ·∆ +

h−1∑
i=0

(3/4)i · 4 (since ε′ < 1/4)

≤ (1/2 + ε′)h ·∆ + 16

≤ (1 + ε/4)(1/2 + ε′)h ·∆
(since (1/2 + ε′)h ·∆ ≥ (8(z + 8))/ε ≥ 64/ε) .

We run the (∆h + z)-edge-coloring algorithm on the 2h subgraphs using disjoint palettes to obtain
a (∆h + z)-edge-coloring for each. The total number of colors that are used is

2h · (∆h + z) ≤ 2h · (1 + ε/4) ·∆h (since ∆h ≥ (1/2 + ε′)h ·∆ ≥ 8z/ε)

= 2h · (1 + ε/4)2 · (1/2 + 2ε′)h ·∆ (since ∆h ≤ (1 + ε/4) · (1/2 + 2ε′)h ·∆)

= (1 + ε/4)2 · (1 + 4ε′)h ·∆
≤ (1 + ε/4)2 · (1 + 8hε′) ·∆ (since (1 + a)b ≤ 1 + 2ab for 0 ≤ ab ≤ 1)

≤ (1 + ε/4)2 · (1 + ε/4) ·∆ (since ε′ = ε/(32 log4/3 ∆) ≤ ε/(32h))

≤ (1 + ε)∆ (when ε < 1/8) .

Since ∆h = O(z/ε), the running time is Õ(log ∆ ·ε′−1 · log ε′−1 · log n)+O((1/ε)x(z+1)x logy n).

4 Faster Algorithms

In this section, we provide more efficient algorithms that use fewer number of rounds. Our technique
is based on another type of fans that was introduced by Gabow et al. [GNK+85]. This allows us to
reduce the number of rounds by a factor ∆2 for general graphs and ∆4 for bipartite graphs.

A reverse αB-fan with center v and leaves x1, x2, . . . , xk (where B = {β1, β2, . . . , βk+1} and k ≥ 2)
satisfies: All edges vxi are uncolored. The color α is missing at all leaves, i.e., α ∈ M(xi) for all
1 ≤ i ≤ k. The colors in B are missing at v, i.e., β ∈ M(v) for all β ∈ B. Finally, there is an edge
with color α that is incident to the center v, i.e., α /∈M(v). The above definition is well-defined since
there must be at least k + 1 missing colors at v. We use normal fans and reverse fans to distinguish
between the two types. We use fans to refer to fans of either types. We use incomplete vertices to
refer to vertices that are incident to at least one uncolored edge.

Algorithm outline: We outline our algorithm (Algorithm 2) and analysis as follows. Similar to
the previous section, we will show that each iteration of the while loop in Line 1 will color at
least a constant fraction of the uncolored edges and therefore the algorithm will terminate after
O(log n) iterations. Roughly speaking, we iterate through the incomplete vertices that miss the colors
α = 1, 2, . . . ,∆ + 1 (i.e., the for loop in Line 5). For each color α, we try to make a maximal set
of vertex-disjoint α-fans (i.e., every vertex in Vγ,α belongs to a fan) that consists of normal fans and
reverse fans. This is done by merging intersecting fans in a clever way. Then, the algorithm tries
to repair these fans simultaneously. The idea is that we can repair the fans simultaneously in fewer
rounds since they are vertex-disjoint. There are two new key challenges in the LOCAL model (beside
long alternating paths):

• We need to implement the merge step in the distributed setting efficiently. Gabow et al.
[GNK+85] only provided a sequential algorithm for this.
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Algorithm 2 Faster Distributed Fan Repair

1: while there exists uncolored edges do
2: Color the graph using ∆ + 1 colors.
3: for γ = color 1, 2, . . . ,∆ + 1 do
4: Let Vγ be the vertices with color γ.
5: for α = color 1, 2, . . . ,∆ + 1 do
6: Let Eγ,α = {uv ∈ E | u ∈ Vγ and uv is uncolored and α ∈M(u) ∩M(v)}.
7: Let Mγ,α be a maximal matching in Eγ,α.
8: Color Mγ,α with α.
9: Let Vγ,α be the set of incomplete vertices in Vγ that now miss the color α.

10: Color G4[Vγ,α] using at most 4∆4 colors.
11: for i = 1, 2, . . . , 4∆4 do
12: Grow a normal α-fan Fv from each vertex v with color i in G4[Vγ,α].
13: merge intersecting fans.

14: for β = color 1, 2, . . . ,∆ + 1 do
15: Build a conflict graph GFγ,α,β for normal and sub-reverse αβ-fans in Fγ,α,β .
16: Color GFγ,α,β using O(1) colors.
17: for η = color 1, 2, . . . O(1) do
18: Repair undestroyed normal and sub-reverse fans in Fγ,α,β with color η in GFγ,α,β .

19: Repair semi-destroyed sub-reverse fans in GFγ,α,β .

• With two types of fans, there are more cases to analyze when repairing a fan destroys the
structure of another fan. This can become tricky since a destroyed reverse fan may lead to many
edges remain uncolored.

4.1 Making a Maximal Set of α-Fans

We consider a fixed iteration of the outermost while loop. We first color the vertices using ∆+1 colors
which could be done deterministically in O(∆ + log∗ n) rounds [BEK14]. We then process vertices in
the same color class γ, denoted by Vγ , together. The reason for this step will become clear later.

Fix a nested iteration γ and α of the for loop in Line 3 and the for loop in Line 5. We first
consider the set Eγ,α of all uncolored edges uv that are incident to one vertex in Vγ such that both u
and v miss the color α. More formally,

Eγ,α = {uv ∈ E | u ∈ Vγ and uv is uncolored and α ∈M(u) ∩M(v)} .

We find a maximal matching Mγ,α in Eγ,α and color the matching with the color α in O(∆+log n)
rounds [BEK14].

After coloring Mγ,α, recall from Algorithm 2 that Vγ,α denotes the set of incomplete vertices in
Vγ that miss the color α. Note that Vγ,α is an independent set since the γ-color vertices must not be
neighbors.

We now describe a sequential procedure that finds a maximal set of α-fans. Specifially, each vertex
in Vγ,α is either a center of a fan or a leaf of a reverse fan. Furthermore, all the fans are vertex-disjoint
and the number of uncolored edges remain the same.

We want to maintain the following invariant: a) all active fans are vertex-disjoint and b) all vertices
v ∈ Vγ,α that have been considered must either be a center of a normal fan or a leaf of a reverse fan.
Now, suppose we consider the next vertex v in Vγ,α and grow a normal α-fan from v. We have argued
that Vγ,α is an independent set. Assuming the invariant holds up to this point, we have:

Claim 4.1. Consider a normal α-fan Fv grown from v ∈ Vγ,α that intersects with a currently active
α-fan Fu. If Fu is a normal fan, they must intersect at leaf node(s). On the other hand, if Fu is a
reverse fan, then they only intersect at u.
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Suppose Fv intersects with at least one other α-fan. Let the leaves of Fv be x1, . . . , xk and let
w = xj be the first leaf that is in an intersection, i.e., j is the smallest possible. Suppose Fv intersects
with Fu at w.

If Fu is a normal fan, then we shift Fv and Fu from w and uncolor the edges vw and uw. We then
deactivate Fu and Fv and grow a reverse fan centering at w with the leaves u and v. We note that w
cannot miss α otherwise the matching Mγ,α is not maximal.

If Fu is a reverse fan, then note that u = w based on Claim 4.1. We shift Fv from u and uncolor
the edge vu. We then deactivate Fv and add vu to Fu.

The fact that w is the first leaf that is in an intersection is important since Fv may intersect with
many current active fans and shifting at another leaf vertices may destroy other fans that are not Fv
and Fu. It is easy to see that the invariant that the number of uncolored edges remain the same and
the fans are vertex-disjoint holds after we process each vertex v in Vγ,α. Hence, we obtain a maximal
set of vertex-disjoint α-fans.

Merging fans the distributed setting: We still need to implement this idea in the LOCAL model.
We now describe the merge step that corresponds to Line 10 to Line 13 in our algorithm.

First, we obtain a 4-hop coloring of Vγ,α using at most 4∆4 colors which can be done in O(∆4 +
log∗ n) rounds [BEK14]. In particular, this is a vertex coloring of the graph G4[Vγ,α] in which there is
an edge between uv if the distance between u and v is less than five in G. We then go through vertices
in each color class i = 1, . . . , 4∆4 and grow a normal α-fan from vertices in that class.

The key observation is as follows. Suppose u and v are from the same color class i. Since
distG(u, v) > 4, the normal fans Fu and Fv that are grown in Line 12 do not intersect and further-
more, Fu and Fv cannot intersect the same currently active α-fan Fw. Therefore, we can simultaneously
merge the newly grown fans with the existing active fans as described in a constant number of rounds
(Algorithm 3).

Algorithm 3 merge

1: Let A be the set of fans that have just been grown from vertices in color class i of the 4-hop coloring.
2: Let B be the set of current active fans including the fans in A.
3: for each Fv in A \B that intersects with another fan in B do
4: Let x be the first leaf of Fv that is in an intersection.
5: Let Fw be the fan that intersects with Fv at x.
6: if Fw is a normal fan then
7: Shift Fw and Fv from x.
8: Uncolor wx and vx.
9: Grow a reverse α-fan centering at x with leaves w and v.

10: Deactivate Fv and Fw.
11: else
12: Shift Fv from x.
13: Uncolor vx.
14: Add vx to Fw (note that w = x).
15: Deactivate Fv.

Hence, we obtain a maximal set of vertex-disjoint α-fans after we iterate through all color classes
i = 1, 2, . . . , 4∆4. We summarize this as the following claim.

Claim 4.2. After the merge step (just before Line 14), we have a maximal set of vertex-disjoint α-fans
with respect to Vγ,α.

4.2 Repairing Fans

Recall that we currently fix a nested iteration γ and α of the for loops in Line 3 and Line 5. We
furthermore have a maximal set of vertex-disjoint α-fans.

16



Sub-reverse fans: For the sake of a simpler analysis, we further decompose a reverse αB-fan that Fw
with k leaves into bk/2c edge-disjoint sub-reverse fans. The first sub-reverse fan consists of {w, x1, x2}.
The second sub-reverse fan consists of {w, x3, x4}, and so on. The last sub-reverse fan may consist of
three leaves if k is odd.

Recall that B = {β1, β2, . . . , βk+1} is a set of k + 1 colors missing at w. We associate β1 with the
first sub-reverse fan, β2 with the second sub-reverse fan, and so on. We use Fw,1, Fw,2, . . . , Fw,bk/2c to
denote these sub-reverse fans. In particular, we call Fw,i a sub-reverse αβi-fan.

We now focus on normal fans and sub-reverse fans. Let αβ-fans denote normal αβ-fans or sub-
reverse αβ-fans. We consider a simple repair for a sub-reverse αβi-fan with center vertex w and (at
least) two leaf vertices x2i, x2i+1. Consider the maximal alternating αβi-path Pw from the center w.
We can first augment(Pw). If Pw does not end at x2i, then color wx2i with α. Otherwise, if Pw ends
at x2i, then color wx2i+1 with α. This repair will color an uncolored edge. After the algorithm repairs
Fw,i, then either wx2i or wx2i+1 will be colored with the color α. Therefore, we still have α /∈M(w).
As a result, other sub-reverse fans centering at w are not destroyed.

Claim 4.3. Repairing a sub-reverse fan Fw,i does not destroy another sub-reverse fan Fw,j.

Repairing fans in the distributed setting: As outlined in the previous section, if the length of a
maximal alternating path Pv = (v0, v1, . . .) is longer than T , we truncate Pv and pick a blocking edge
(vi−1, vi) accordingly (i.e., i ≤ T is chosen based on whether the goal is a deterministic algorithm with
`(G) = O(log n/(log λ+log log n)) or a randomized algorithm with `(G) = 1). We then augment(Pv(i)).

We make the following observation: Based on the definition, a vertex in a sub-reverse αβ-fan
misses either β if it is the center or α if it is a leaf. Therefore, a maximal αβ-path cannot intersect
a sub-reverse αβ-fan except at the last vertex of the path. Thus, a truncated αβ-path Pv(T ) where
|Pv| > T cannot intersect with a sub-reverse αβ-fan.

Next, let us fix an iteration β in the for loop of Line 14. We again observe that the alternating
paths of αβ-fans do not intersect. Augmenting an alternating path can only destroy the structure of
at most one other fan. This happens when an alternating path of length at most T ends at another
fan.

Let the set of the current normal and sub-reverse αβ-fans be Fγ,α,β. We build a conflict graph on
GFγ,α,β = (VFγ,α,β , EFγ,α,β ), where VFγ,α,β = {Fv | Fv ∈ Fγ,α,β} and (Fu, Fw) ∈ EFγ,α,β if |Pu| ≤ T and
Pu ends at a vertex in Fw. If |Pu| > T and the truncated path Pu(T ) ends at any node of Fw, then
Fw must be a normal fan and furthermore the modification on Pu(T ) will not affect the structure of
Fw as pointed out in the previous section.

Since each vertex in GFγ,α,β contributes at most one edge, the arboricity of GFγ,α,β is constant.
Therefore, as argued in the previous section, we can build and color the conflict graph using O(1)
colors in O(T log n) rounds [BE10]. Now we iterate through each color j of the coloring and process
the fans colored in j together. Since the alternating paths of the fans colored in j neither intersect
nor end at another fan, we can repair them simultaneously.

There are three cases to take into consideration when an alternating path of length at most T ends
at another fan Fw:

• Case 1: Fw is a normal αβ-fan.

• Case 2: Fw is a sub-reverse αβ-fan and the alternating path ends at a leaf of Fw.

• Case 3: Fw is a sub-reverse αβ-fan and the alternating path ends at w.

We say that Fw is destroyed if Case (1) or Case (2) happens. This is because augmenting that
path will destroy the structure of Fw.

We however cannot ignore Case (3) since it may destroy Ω(∆) sub-reverse fans centering at w.
If case (3) occurs, we say that Fw is semi-destroyed. Fortunately, it is relatively easy to repair all
semi-destroyed fans simultaneously.
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As argued above, if Case (3) happens, the final edge of the alternating path must be a color-α
edge. After the alternating path is augmented, the final edge will become a color-β edge and therefore
α becomes missing at w. Hence, we can color an edge in Fw with α. We call this step repairing semi-
destroyed sub-reverse fans. Note that this step can be done simultaneously among αβ-fans. Based
on Claim 4.3, no other sub-reverse fan centering at w is destroyed during this step. We also note
that each shift operation to repair a normal fan will not destroy another α-fan since all the fans are
vertex-disjoint.

Analysis: Now, we will show that each iteration in the while loop colors at least a constant fraction of
the uncolored edges. Let φ0 be the partial coloring at the beginning of a fixed interation of the while
loop. Let φγ be the partial coloring just before the iteration γ of the for loop in Line 3. Similarly,
let φγ,α be the partial coloring just before the iteration γ and α of the nested for loops in Line 3 and
Line 5. We again use |φ−1

0 (⊥)| to denote the number of uncolored edges at the beginning of current
iteration of the while loop.

We use Fγ,α,β to denote the normal and sub-reverse αβ-fans considered in the nested iteration

γ, α, β. In addition, let Fγ,α = ∪∆+1
β=1 Fγ,α,β.We again let Vγ,α(φ) denote the set of color-γ incomplete

vertices that miss color α with respect to the partial coloring φ.

Lemma 4.4. Each iteration of the while loop of Algorithm 2 colors a constant fraction of uncolored
edges. Thus, it takes O(log n) iterations to color all the edges.

Proof. For each uv ∈ φ−1
0 (⊥), we orient the edge from u to v if the color of u is smaller than that of

v; otherwise we orient it from v to u. Specifically, we orient the edge from u to v if u ∈ Vγ and v ∈ Vγ′
such that γ < γ′. We will show that

∆+1∑
α=1

|Mγ,α|+
∆+1∑
α=1

|Fγ,α| ≥
∑
u∈Vγ

outdeg(u)/8 .

For each v ∈ Vγ , let C(v) denote the first outdeg(v) missing colors of v w.r.t. φγ so that |C(v)| =
outdeg(v). For each α ∈ C(v), if v ∈ Vγ,α(φγ,α), then there can be two cases. The first case is that an
uncolored edge incident to v will be in the matching Mγ,α. The second case is that v will belong to a
fan in Fγ,α. Recall that in the second case, the algorithm will first grow a normal α-fan from v and if
the fan intersects with an existing fan, then v will belong to a reverse α-fan after the merge step.

Otherwise, if v /∈ Vγ,α(φγ,α), it must be caused by either the repairing step of some normal or
sub-reverse fan that was grown in iteration γ. Repairing a normal fan F can only change the missing
colors (i.e. M(·)) of its leaves, its center, and the other endpoint of the alternating path. So if M(v)
is changed by repairing F , we conclude that v is the other end point of the alternating path of F or
v is the center of F . Note that v cannot be among F ’s leaves since Vγ is an independent set. On the
other hand, repairing a sub-reverse fan F can only changes the missing colors of at most five vertices
(this corresponds to the case of repairing a sub-reverse fan with three leaves; in fact, a more careful
argument shows that a sub-reverse fan can be blamed at most twice).

Therefore, if v /∈ Vγ,α(φγ,α), we can blame it to the repair of a normal or sub-reverse fan F grown
in iteration γ. We have just argued that each fan F can be blamed at most five times. Furthermore,
a normal or sub-reverse fan in Fγ,α has at most one or three vertices in Vγ,α(φγ,α) respectively. An
edge in Mγ,α has one vertex in Vγ,α(φγ,α). Hence, we have the following relationship

∑
u∈Vγ

outdeg(u) =
∑
u∈Vγ

|C(u)| ≤
∆+1∑
α=1

|Mγ,α|+ 3
∆+1∑
α=1

|Fγ,α|+ (#blames)

≤
∆+1∑
α=1

|Mγ,α|+ 8

∆+1∑
α=1

|Fγ,α| .
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The second inequality is because (#blames) ≤ 5
∑∆+1

α=1 |Fγ,α|. Therefore,

∆+1∑
α=1

|Mγ,α|+
∆+1∑
α=1

|Fγ,α| ≥
∑
u∈Vγ

outdeg(u)/8 .

Note that at most half of the (normal and sub-reverse) fans are destroyed, since repairing a fan
can only destroy at most one other fan. If a fan is not destroyed, then one uncolored edge in the fan
must become colored. Therefore, at least

∑∆+1
γ=1

∑∆+1
α=1 |Mγ,α|+

∑∆+1
γ=1

∑∆+1
α=1 |Fγ,α|/2 uncolored edges

are colored. The total number of edges that are colored during an iteration of the while loop is at
least

∆+1∑
γ=1

∆+1∑
α=1

|Mγ,α|+
∆+1∑
γ=1

∆+1∑
α=1

|Fγ,α|/2 ≥
∆+1∑
γ=1

∑
v∈Vγ

outdeg(v)/16 = |φ−1
0 (⊥)|/16 .

This implies at least a fraction 1/16 of the uncolored edges become colored during the iteration.
Thus, after O(log n) iterations, all edges are colored.

It is easy to check that the number of rounds is O
(
log n ·∆2

(
∆4 + ∆ · T · log n

))
and the number

of parallel augmentation in Line 18 and Line 19 is t = O(∆3 log n).
If we opt for a randomized algorithm with `(G) = 1 or a deterministic algorithm with `(G) =

O(log n/(log λ+log log n)), then we set T = O(∆7t) or T = 2tλ respectively as in the previous section.
Since we managed to reduce t by a factor ∆2, we obtain the following improvements.

Theorem 4.5. There exists a deterministic distributed ∆ +O(log n/(log λ+ log log n))-edge-coloring
algorithm that runs in O(∆6 · λ log3 n) rounds. Furthermore, there exists a deterministic distributed
algorithm that colors all the edges using ∆ + 2 colors and runs in O(∆13 · log3 n) rounds.

In general, we save a factor ∆2 for both the deterministic and randomized algorithms. One may
ask if we can make further improvement. We next show that it is possible to save another factor ∆2

if the graph is bipartite.

4.3 Algorithm for Bipartite Graphs

Algorithm outline: We now give an even faster and simpler algorithm for edge coloring bipartite
graphs. This algorithm is also based on a similar idea. The pseudo-code is outlined in Algorithm 4.

We first fix an iteration of the while loop. Then, fix an iteration α of the for loop in Line 2. We
first find a maximal matching among the uncolored edges uv where α ∈M(u)∩M(v) in O(∆+log∗ n)
rounds [BEK14]. We color the matching with α. Then, let Vα the independent set of the remaining
incomplete vertices that are still missing α.

For bipartite graphs, we however do not need to grow a fan from each vertex in Vα. We consider
uncolored edges vu for each v in Vα. Some of these edges may share an end point that is not in Vα.
We can merge these intersecting edges to form reverse α-fans. This can easily be implemented in a
constant number of rounds. Now, we are left with a set of disjoint uncolored α-edges Yα that have one
end point in Vα and a set of reverse α-fans Fα. All the reverse α-fans and α-edges are vertex-disjoint.
They are also maximal, i.e., all vertices in Vα belong to a reverse α-fan or an α-edge.

In the normal setting, we can color an edge vu in Yα as follows. Suppose α ∈M(v) and β ∈M(u).
We call vu an αβ-edge. First, find the maximal alternating αβ-path Pu from u. We observe that
because the graph is bipartite, this path cannot end at u or v. Hence, we can perform augment(Pu)
and color vu with α.
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Implementation in the distributed setting: Recall that we currently fix an iteration α in Line
2. We again split reverse fans into sub-reverse fans. We use αβ-items to refer to αβ-edges and sub-
reverse αβ-fans. We aim to repair αβ-items, i.e., color an αβ-edge or repair a sub-reverse αβ-fan in
iteration β of the for loop in Line 8. We want to color αβ-items simultaneously and efficiently in the
LOCAL model. We again truncate an alternating path if its length exceeds T and pick a blocking edge
accordingly (based on whether the goal is a deterministic algorithm with `(G) = log n/(log λ+log log n)
or a randomized algorithm with `(G) = 1).

A truncated alternating path Pv(T ) where |Pv| > T cannot intersect another αβ-item. To this
end, we build a conflict graph Gα,β in which the vertices are αβ-items. There is an edge between two
vertices if a truncated alternating path P where |P | ≤ T of an αβ-item ends at another αβ-item. With
a similar argument as in the previous sections, this graph has bounded arboricity and therefore can
be colored using O(1) colors in O(T log n) rounds [BE10]. We then iterate through each color class
and repair αβ-edges and sub-reverse αβ-fans with this color. Since in each color class, the alternating
paths neither intersect nor run into another item, we can repair them simultaneously. Similar to the
previous algorithm, we also need to repair semi-destroyed sub-reverse αβ-fans.

Algorithm 4 Distributed Item-Repair for Bipartite Graphs

1: while there exists uncolored edges do
2: for α = color 1, 2, . . . ,∆ do
3: Let Mα be a maximal matching of Eα = {vu ∈ E | vu is uncolored and α ∈M(v) ∩M(u)}.
4: Color Mα with α.
5: Let Vα be the set of incomplete vertices that now miss the color α.
6: For each v ∈ Vα, pick an incident uncolored edge vu. Activate vu.
7: Merge intersecting active edges into reverse α-fans.
8: for β = color 1, 2, . . . ,∆ + 1 do
9: Build a conflict graph Gαβ for αβ-edges and sub-reverse αβ-fans.

10: Color Gαβ using O(1) colors.
11: for η = color 1, 2, . . . O(1) do
12: Repair undestroyed αβ-edges and sub-reverse fans in Gαβ with color η.

13: Repair semi-destroyed sub-reverse fans in Gαβ .

Let Vα(φ) be the set of incomplete vertices missing α with respect to the partial coloring φ. Let
φ0 be the partial coloring at the beginning of a fixed while loop and φα be the partial coloring right
before the iteration α of the loop in Line 2.

Lemma 4.6. Each iteration of the while loop of Algorithm 4 colors a constant fraction of uncolored
edges. Thus, it takes O(log n) iterations to color all the edges.

Proof. Let d(v) be the number of uncolored edges incident to v with respect to φ0. Let C(v) be the
first d(v) missing color at v with respect to φ0. Let Iα be the set that includes all αβ-items and the
edges in the matching Mα.

Consider α ∈ C(v). If v ∈ Vα(φα), then v belongs to an element in Iα. Specifically, v may belong
to an edge in the matching Mα, an αβ-edge or a sub-reverse αβ-fan for some β.

If v /∈ Vα(φα), then we can blame this to an element in Iα′ for α′ < α. In particular, this could be
caused by either a) the repair of an α′-item or b) the coloring of some edge in Mα′ .

The coloring step of each edge in a matching Mα′ can be blamed at most twice since it can only
change the missing colors of its endpoints. The repair of an αβ-edge can be blamed at most three
times, since this can only change the missing colors of two of its endpoinds and the other endpoint
of its alternating path. Finally, the repair of a sub-reverse αβ-fan can be blamed at most five times.
Thus, each element in ∪∆+1

α=1 Iα can be blamed at most five times overall.
We also note that an edge in Mα has two vertices in Vα(φα). An α-edge has exactly one vertex in

Vα(φα) and a sub-reverse α-fan has at most three vertices in Vα(φα). Therefore, we have the following
relationship
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∑
u∈V

d(u) =
∑
u∈V
|C(u)| ≤ 3

∆∑
α=1

|Iα|+ (#blames)

≤ 8
∆∑
α=1

|Iγ,α| (#blames) ≤ 5
∆+1∑
α=1

|Iγ,α| .

Using the same argument as in previous sections, at least half of α-items are repaired. Therefore, the
number of edges being colored in this while iteration is at least

∆∑
α=1

|Iα|/2 ≥
∑
v∈V

d(v)/16 = |φ−1
0 (⊥)|/8 .

The number of parallel augmentations in Line 12 and Line 13 is t = O(log n ·∆2). Similarly, by
setting T = O(λt) or T = O(t∆7), we achieve the following respective improvements.

Theorem 4.7. Consider bipartite graphs. There exists a deterministic distributed ∆+O(log n/(log λ+
log log n)-edge-coloring algorithm that runs in O(∆4 · λ log3 n) rounds. Furthermore, there exists a
randomized, (∆ + 1)-edge-coloring distributed algorithm that runs in O(∆11 log3 n) rounds.

Note that for the randomized case, we use one fewer color in the randomized algorithm since the
coloring algorithm requires m(v) to be non-empty only when v is incident to an uncolored edge. Hence,
a palette of ∆ colors, excluding the special color ? is sufficient.
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[Joh99] Öjvind Johansson. Simple distributed ∆ + 1-coloring of graphs. Inf. Process. Lett., 70,
1999.

[KW06] Fabian Kuhn and Roger Wattenhofer. On the complexity of distributed graph coloring.
In Symp. on Principles of Distributed Computing (PODC), 2006.

[Lin92] Nati Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM journal on computing, 15(4):1036–1053, 1986.

[MG92] J. Misra and David Gries. A constructive proof of vizing’s theorem. Inf. Process. Lett.,
41(3):131–133, March 1992.

[PR01] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse
networks. Distributed computing, 14(2):97–100, 2001.

[PS92] Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for col-
oring and network decomposition problems. In Proc. of the Symp. on Theory of Comp.
(STOC), pages 581–592. ACM, 1992.

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via
an extension of the chernoff–hoeffding bounds. SIAM Journal on Computing, 26(2):350–
368, 1997.

[PS15] S. Pettie and H.-H. Su. Distributed algorithms for coloring triangle-free graphs. Informa-
tion and Computation, 243:263–280, 2015.

[Ram99] S. Ramanathan. A unified framework and algorithm for channel assignment in wireless
networks. Wireless Networks, 5(2):81–94, 1999.

[Viz64] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz, (3):25–
30, 1964.

23


	1 Introduction
	1.1 Our Results
	1.2 A High-Level Description of Our Method

	2 Notation and Vizing's Theorem
	2.1 Vizing's Theorem and Fan Repair

	3 Algorithm
	3.1 The Framework
	3.2 Load Balancing the Blocking Edges

	4 Faster Algorithms
	4.1 Making a Maximal Set of -Fans
	4.2 Repairing Fans
	4.3 Algorithm for Bipartite Graphs


