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Abstract

In this paper we propose polynomial delay algorithms for several maximal subgraph listing
problems, by means of a seemingly novel technique which we call proximity search. Our result
involves modeling the space of solutions as an implicit directed graph called “solution graph”, a
method common to other enumeration paradigms such as reverse search. Such methods, how-
ever, can become inefficient due to this graph having vertices with high (potentially exponential)
degree. The novelty of our algorithm consists in providing a technique for generating better so-
lution graphs, reducing the out-degree of its vertices with respect to existing approaches, and
proving that it remains strongly connected. Applying this technique, we obtain polynomial de-
lay listing algorithms for several problems for which output-sensitive results were, to the best of
our knowledge, not known. These include Maximal Bipartite Subgraphs, Maximal k-Degenerate
Subgraphs (for bounded k), Maximal Induced Chordal Subgraphs, and Maximal Induced Trees.
We present these algorithms, and give insight on how this general technique can be applied to
other problems.

1 Introduction

Given a set of elements (such as the vertices or edges of a graph) sometimes called the universe,
and a property (such as being a clique, or a tree), a listing problem asks to return all subsets of
the universe which satisfy the given property.

Listing structures, within graphs or other types of data, is a basic problem in computer sci-
ence, and it is at the core of data analysis. While many problems can be solved by optimization
approaches, e.g., by finding the shortest path, or the largest clique, other require finding several
solutions to the input problem: in community detection, for example, finding just one “best” com-
munity only gives us local information regarding some part of the data, so we may want to find
several communities in order to make sense of the input. Furthermore, in many real world scenarios
there may not be a clear objective function to optimize to obtain the best solution: We may define
an algorithm which optimizes some desired property, but the optimal solution found may be lacking
others or simply not be practical. We thus may want to quickly list several solution which may be
suitable, according to some metrics, then analyze them a posteriori to find the desired one.

In these scenarios, listing only the solutions that are maximal under inclusion is a common sense
requirement where it can be applied,1 as maximal solutions subsume the information contained in
all others, and may be exponentially fewer: For example, a graph may have 2n cliques, but only

1In other problems, we may want minimal solutions instead, although this is usually equivalent since it corresponds
to requiring the complement of a solution to be maximal.
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3n/3 maximal ones [22]. For brevity, we call maximal listing problem a listing problem where only
the maximal solutions should be output.

From a theoretical point of view, listing provides many challenging problems, especially when
maximality is required. When dealing with listing algorithms, we are often interested in their
complexity with respect to both n, the size input, and N , the size of the output. Algorithms whose
complexity can be bounded by a polynomial of these two factors are called output-sensitive, or
equivalently output polynomial or polynomial total time [16]. Interestingly, the hardness of listing
problems does not seem to be correlated with that of optimization: there are several np-hard
optimization problems whose corresponding maximal listing problem allows an output-sensitive
solution (see, e.g., [31, 1]) while, for other problems, finding an output-sensitive algorithm for
listing maximal solutions would imply p=np, even though one maximal (or maximum) solution
can be identified in polynomial time [20].

A long standing question in the area is to find a characterization of which listing problems
allow output-sensitive solutions and which do not. Furthermore, within output-sensitive algorithms
stricter complexity classes exist, such as incremental polynomial time, where the time to output
the i-th solution is polynomial in n and i, and polynomial delay, where the time elapsed between
two consecutive outputs is polynomial in n.

In this work we add a few points to the earlier class, by showing that there exist polynomial
delay algorithms for some subgraph listing problems. More formally, we prove Theorem 1 (where
max. is short for maximal and sg. is short for subgraphs)

Theorem 1. The following problems allow polynomial delay listing algorithms by proximity search:

max. induced bipartite sg. max. connected induced bipartite sg. max. (edge) bipartite sg.
max. induced chordal sg. max. connected induced chordal sg. max. obstacle-free convex hulls

max. induced k-degenerate sg. max. (edge) k-degenerate sg. max. connected directed acyclic sg.

To the best of our knowledge, no output-sensitive result was previously known for these prob-
lems. For completeness, we consider both the induced and edge subgraph cases, where subgraphs
are defined by sets of vertices or edges, respectively, as well as the connected case where subgraphs
are required to be connected.

Furthermore, we abstract a general technique which can be used to obtain similar results on
other problems.

We do so by defining a graph whose vertices are the maximal solutions to the listing problem,
and with directed edges between pairs of solutions, which we call solution graph. The listing problem
is solved by traversing the solution graph, and proving that all solutions are found this way. The
concept solution graph is common to existing approaches, and general techniques already exist for
building them, e.g., [4]. However, the solution graph build with known approaches such as [4] may
have too many edges, resulting in a traversal with exponential delay.

The key concept given in this paper is a technique to build a solution graph with fewer edges,
while at the same time proving that all solutions are found by its traversal. An interesting property
of this approach is that the resulting algorithms are remarkably simple to implement, while the
complexity lies in proving their correctness.

We call this technique proximity search since at its core lies a problem-specific notion of proxim-
ity. This notion acts as a sort of compass on the solution graph built by our algorithm, as given any
two solutions S and S∗, we will show that we always traverse an edge from S to another solution
S′ that has higher proximity to S∗; as S∗ has the highest proximity to itself, this implies that a
traversal of the solution graph from any solution finds all others. While others, such as [4], already
used the principle of reachability in the solution graph, the novelty of this approach lies in the loose

2



and problem-specific concepts of proximity and neighboring function, which allow us to overcome
the exponential burden imposed by the input-restricted problem.

1.1 Related work

The listing problems considered in this paper model solutions as sets of elements (e.g., sets of
vertices or edges of a graph), and consist in listing sets of elements with some required property,
e.g., inducing a bipartite subgraph, or a tree. We observe that the output is a family of sets, we
can associate properties with the corresponding set systems: for example, a property is hereditary
when each subset of a solution is a solution, which corresponds to the well known independence
systems [20].

In this context, a simple yet powerful technique is recursively partitioning the search space
into all solutions containing a certain element, and all that do not. This technique, usually called
binary partition or simply backtracking, proves efficient when listing all solutions [26], and can
be used to design algorithms that are fast in practice,2 or that can bound the number of solutions
in the worst-case [12]. On the other hand, this strategy rarely gives output-sensitive algorithms
when dealing with maximal solutions, as we may spend time to explore a solution subspace which
contains many solutions but no maximal one.

To obtain output-sensitive algorithms for maximal solutions, many algorithms rely on the fol-
lowing idea: given a maximal solution S, and some element x 6∈ S, the hardness of listing solutions
maximal within S ∪{x} is linked to the hardness of listing them in a general instance. The earliest
mentions of the idea can be found in the influential work by Lawler et al. [20], that aims at gener-
alizing ideas from Paull et al. [24] and Tsukiyama et al. [31], and has been later formally defined
as input-restricted problem by Cohen et al. [4].

The intuition is that the solutions obtained this way, using a maximal solution S and an element
not in S, can be used to generate new maximal solutions of the original problem. We can thus
traverse an implicit directed graph, which we will call solution graph, where the vertices are the
maximal solutions and the out-neighbors are obtained by means of the input-restricted problem.

In particular, [20] showed how solving this problem could yield an output-sensitive and poly-
nomial space listing algorithm for properties corresponding to independence systems, assuming the
input-restricted problem has a bounded number of solutions. [4] showed that the strategy could
be extended to the more challenging connected hereditary graph properties (i.e., where connected
subsets of solutions are solutions) using exponential space, and recently, [5] showed that the same
result can be obtained in polynomial space for commutable set systems (which include connected-
hereditary properties).

The literature contains many more results concerning the enumeration of maximal/minimal
solutions, e.g., [1, 28, 13, 15], and in particular regarding challenging problems such as the well
known minimal hypergraph transversals/dominating sets problem [17, 14, 10]. However, to the
best of our knowledge, there is no general technique which can be used to produce polynomial
delay algorithms for classes of problems whose associated input-restricted problem is not solvable
in polynomial time.

1.2 Overview

The main contribution of the paper is presenting proximity search, a general technique which can
be used to solve several enumeration problems in polynomial delay, even some cases of maximal
subgraph listing where the input-restricted problem has exponentially many solutions.

2E.g., the Bron-Kerbosh [30] algorithm tends to be faster than output-sensitive ones [6] for maximal cliques.
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By using this technique we show polynomial delay algorithms for several maximal listing prob-
lems such as maximal bipartite subgraphs and the others mentioned in Theorem 1. Other than
providing efficient algorithms, we remark that technique may help gain further insight on which
classes of problem allow output-sensitive listing algorithms and which do not.

The paper is organized as follows: First, we introduce some basic concepts and notation in
Section 2. Then we proceed bottom-up, focusing on the case of Maximal Bipartite Subgraphs:
in Section 3.1 we give a polynomial algorithm for listing Maximal Connected Induced Bipartite
Subgraphs, and later adapt it to the non-connected and edge-subgraph cases. We then explain in
Section 4 how to abstract the structure of the algorithm to solve other enumeration problems. We
formally define a class of problems, called proximity searchable, which allow a polynomial delay
algorithm using the proposed techniques.

The remaining section of the paper, i.e., Sections 5-9, are consider other maximal listing prob-
lems for which, to the best of our knowledge, output-sensitive algorithms are now known. We show
these problems to be proximity searchable, and thus obtain polynomial delay algorithms for them.
Finally, we give our concluding remarks in Section 10.

2 Preliminaries

In this paper we consider enumeration problems on an undirected graph G = (V (G), E(G)), whose
vertex set is denoted as V (G) and edge set as E(G), or simply V and E when G is clear from the
context. The neighborhood of a vertex v is denoted as N(v). For brevity we refer to |V (G)| as n,
to |E(G)| as m, and to the maximum degree of a vertex in G as ∆. Furthermore, we assume the
vertices to be labelled arbitrarily in increasing order v1, . . . , vn, and say that vi is (lexicographically)
smaller than vj , i.e., i < j, if vi has a smaller label. Furthermore, given a vertex ordering, we say
that a neighbor of vi is a forward neighbor if it comes later than vi in the ordering, and a backward
neighbor otherwise. For a set of vertices A ⊆ V (G), E[A] denotes the edges of G whose endpoints
are both in A, and G[A] the graph (A,E[A]), i.e., the subgraph induced in G by A. Similarly, for
a set of edges B, V [B] denotes the vertices incident to an edge in B and G[B] = (V [B], B). As
common in the literature, we call induced subgraphs those of the earlier kind, defined by a set of
vertices, and edge subgraphs (or simply subgraphs) those of the latter, defined by a set of edges.

When dealing with subgraphs defined by a set of vertices (resp. edges) A, we will sometimes
use A to refer to both the vertex set (resp. edge set) and the subgraph G[A] it induces, when this
causes no ambiguity. For further notation, we refer to the standard terminology in [9].

For a set of vertices A ⊆ V (G) which corresponds to a (non necessarily maximal) solution of the
problem at hand, we define a simple “maximalization” function, named comp(A): this function
greedily adds to A the vertex v of minimum label such that the result is still a solution, until A
is maximal. It can be proved that this greedy process always returns a maximal solution if the
property at hand is hereditary (an independence system) or connected hereditary, and that it runs
in polynomial time assuming we can recognize solutions in polynomial time [4]. Note that this is
true for all graph properties considered in this paper.

3 Maximal Bipartite Subgraphs

A graph is bipartite if it allows a bipartition of its vertices V0, V1 such that V0 ∩ V1 = ∅, V0 ∪
V1 = V (G), and both G[V0] and G[V1] are empty graphs. Equivalently, this corresponds to graph
with no odd cycle. Maximal bipartite subgraphs have also been studied as minimal odd cycle
transversals [19], as one is the complement of the other.

4



•• •• •• • •

•

... •• • •• •

e
•

...

•
v

Figure 1: Instances of input-restricted problem for maximal bipartite subgraphs. On the left: the
black dots define a maximal bipartite induced subgraph; adding the vertex v creates a graph with
exponentially many maximal bipartite induced subgraphs, as we can obtain one by removing a
vertex from each connected pair in the bottom in any combination. On the right, a similar case for
the highlighted edge subgraph and the edge e.
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Figure 2: a: a graph. b,c: two maximal connected induced bipartite subgraphs of (a). d,e: two
maximal induced bipartite subgraphs of (a). f : a maximal edge bipartite subgraph of (a).

The problem of listing all bipartite (and induced bipartite) subgraphs has been efficiently solved
in [34]. However, to the best of our knowledge, neither the techniques in [34] or other known ones
extend to efficiently listing maximal bipartite subgraphs.

Finally, we remark that a subgraph of a bipartite graph is itself bipartite, meaning the property
is hereditary, and the connected version connected hereditary.

For completeness, Figure 1 shows two instances of input-restricted problem with exponentially
many solutions, meaning that applying the techniques from [20, 4, 5] would not result in polynomial
cost per solution. Indeed to obtain polynomial cost per solution we would need to solve the input-
restricted problem in polynomial time, which is clearly not possible. The best we could hope for
is solving it with polynomial delay, which would yield an incremental polynomial time algorithm.
Figure 2 shows examples of the three types of bipartite subgraphs we will consider.

We denote an induced bipartite subgraph as a pair of vertex sets B0, B1, with B0 ∩B1 = ∅ and
B0 ∪B1 ⊆ V (G), such that G[B0] and G[B1] are empty graphs.

To remove ambiguity and duplication, B0 is always assumed to be the side of the bipartition
containing the vertex of smallest label among those in the subgraph. In case G[B0 ∪ B1] has
multiple connected components, this applies to all components. This way, any bipartite subgraph
(connected or not) always has a unique representation B0, B1. We will sometimes use simply B to
refer to the subgraph B0, B1.

We define the intersection between two bipartite subgraphs B and B′ as the set of all shared
vertices, i.e.: B ∩B′ = (B0 ∪B1) ∩ (B′0 ∪B′1).

Note that, when performing comp(B), if B is not connected this may move some vertices
from B0 to B1 and vice versa due to different components becoming connected; even when B is
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connected, if a vertex with smaller label than all others in B is added to B1, then B0 and B1 are
immediately swapped to preserve the invariant of the smallest vertex being in B0.

3.1 Listing maximal connected induced bipartite subgraphs

In this section we consider the case of induced connected subgraphs. We will later briefly show
how this structure can be adapted to cover the non-connected and non-induced cases with small
changes. Let B = B0, B1 be a maximal induced bipartite subgraph, and v a vertex not in it, i.e.,
in V (G) \B.

We define a key component of the algorithm, i.e., an operation to obtain neighboring solutions:

Definition 2 (neighboring function for maximal induced bipartite subgraphs).

neigh(Bi, B1−i, v) = B′0, B
′
1 = comp({v} ∪ (Bi \N(u)) ∪B1−i)

Where i is an index in {0, 1}, meaning that the formula can be applied as either neigh(B0, B1, v)
or neigh(B1, B0, v).

Note that the set {u} ∪ (Bi \ N(u)) ∪ B1−i must still induce a bipartite subgraph, as we are
removing the neighbors of u from Bi: all the edges in the remaining subgraph must have one
extreme in ({u} ∪ (Bi \N(u))) and the other in B1−i. We then apply comp() to obtain a maximal
solution B′0, B

′
1, different from B0, B1 as it contains u.

However, the resulting subgraph may not be connected. To enforce this, we need to remove the
vertices that become disconnected from u as well. More formally, we have

Definition 3 (neighboring function for maximal connected induced bipartite subgraphs).

neigh(Bi, B1−i, v) = B′0, B
′
1 = comp(ccu({u} ∪ (Bi \N(u)) ∪B1−i))

Where ccu(H) denotes the connected component of the graph or subgraph G[H] containing u.

As ccu({u}∪(Bi\N(u))∪B1−i) is a connected subgraph of a bipartite graph it will be a connected
bipartite subgraph. Furthermore, as the solutions to the problem are connected subgraphs, comp()
will only add vertices which preserve the connectivity constraint.

Given a solution B0, B1, and considering all vertices u ∈ V (G) \ (B0 ∪B1), we can thus obtain
new solutions, each surely different from B0, B1 in that it contains u: these will correspond to the
out-neighbors of B0, B1 in the solution graph.

It is evident that the out-degree of vertices in this solution graph is polynomial, since we generate
at most 2|V (G)| neighbors from each solution. On the other hand, solving the input-restricted
problem for B0 ∪B1 ∪{u} would generate up to exponentially many neighbors, as remarked by the
example in Figure 1 (left).

Our proposed algorithm essentially performs a depth-first search on this graph, without ever
generating the full graph, but keeping track of the vertices already visited (i.e., the solutions found
so far) to avoid duplication. We thus need to prove that a traversal of this sparser graph still yields
all solutions, and we do so by proving that the graph is strongly connected, which is a sufficient
condition.

The pseudo code of the resulting algorithm is given in Algorithm 1
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Algorithm 1: Enumerate all maximal induced bipartite subgraphs.

input : A graph G = (V (G), E(G))
output: All maximal induced bipartite subgraphs of G
global : Set S of solutions found, initially empty

1 Let v be an arbitrary vertex in V (G)
2 enum(comp({v}))
3 Function enum(B0, B1)
4 Add (B0, B1) to S
5 output (B0, B1)
6 foreach v ∈ V (G) \ (B0 ∪B1) do
7 if S does not contain neigh(B0, B1, v) then enum(neigh(B0, B1, v))
8 if S does not contain neigh(B1, B0, v) then enum(neigh(B1, B0, v))

3.2 Correctness

The proof will proceed as follows: first, we define a binary function on two solutions named “prox-
imity”. Intuitively, this can be seen as a sort of similarity measure that is maximized when the
two solutions are equal. Then, we prove that for any pair of solutions B and B∗ there exists a
vertex v ∈ V (G) such that either neigh(B0, B1, v) or neigh(B1, B0, v) is closer to B∗ in terms of
proximity. It follows that we may iteratively apply neigh operations to finally reach exactly B∗.
In turn, this means that the implicit graph whose vertices are the solutions and whose directed
edges are defined by the neigh operations is strongly connected, and that the proposed algorithm
corresponds to performing a visit on this graph.

In the following, we use an uniform notation for simplicity: we consider two solutions B =
Bi, B1−i and B∗ = B∗j , B

∗
1−j , where i and j are two indices in with value in {0, 1}.

For a solution B, we define its canonical order as follows:

Definition 4 (canonical order for connected induced bipartite subgraphs).
The canonical order of a connected induced bipartite subgraph B is the sequence b1, . . . , b|B|

of its vertices, where b1 is the vertex of smallest label in B, and bi the vertex of smallest label in
B \ {b1, . . . , bi−1} such that {b1, . . . , bi} is a connected induced bipartite subgraph.

An important property of this order is that any of its prefixes {b1, . . . , bi}, i ≤ |B| still correspond
to a connected induced bipartite subgraph.

For example, looking at Figure 2, the canonical order of the subgraph (b) would be {2, 3, 5, 8, 7, 10, 11}
and that of (c) {2, 3, 8, 12, 11}.

Using the canonical order, we then define the “proximity” between two solutions B and B∗:

Definition 5 (proximity).
Given two solutions S and S∗, let {s∗1, . . . s∗|S∗|} be the canonical order of S∗: the proximity S∩̃S∗

between S and S∗ is the longest prefix {s∗1, . . . , s∗i } of the canonical order of S∗ whose elements are
all contained in S.

It can be seen that this proximity is maximized if S = S∗, where we have S∩̃S∗ = S∗ = S, and
minimized when the two solutions share no vertex (more in general, when s∗1 6∈ S, even if other
elements of S∗ are in S). However, it should be noted that the operation is not symmetrical, i.e.,
we may have S∩̃S∗ 6= S∗∩̃S. For example, let S be the subgraph shown in Figure 2 (b) and S∗ that
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shown in (c). Considering the canonical orders mentioned above, we can see that S∩̃S∗ = {2, 3, 8},
and S∗∩̃S = {2, 3}.

In the following, we will assume B and B∗ to be two distinct maximal connected induced
bipartite subgraphs, {b∗1, . . . b∗|B∗|} the canonical order of B∗, and denote with v̇ the earliest vertex

in this order that is not part of the proximity B∩̃B∗ (i.e., v̇ = b∗i+1, with B∩̃B∗ = {b∗1, . . . , b∗i }).
Note that since B and B∗ are distinct and inclusion maximal (i.e., none may contain the other), v̇
is always defined.

The correctness of the approach will be proved via a notion of monotonicity on the “proximity”.
In other words, we will prove that for any pair of solutions B0, B1 and B∗0 , B

∗
1 , there exists a vertex

v ∈ V (G) \ (B0 ∪B1) such that for either B′0, B
′
1 ← neigh(B0, B1, v) or B′0, B

′
1 ← neigh(B1, B0, v)

we will have

|B′∩̃B∗| > |B∩̃B∗|

If this is true, then there exist a path in the solution graph from B to B∗. We prove these
claims in Lemma 6 and Theorem 7.

Lemma 6. Let B and B∗ be two distinct maximal connected induced bipartite subgraphs, v̇ the ear-
liest vertex in the canonical ordering B∗ that is not in B, and neigh() the function in Definition 3.
Then |B′∩̃B∗| > |B∩̃B∗| for either B′ = neigh(B0, B1, v̇) or B′ = neigh(B1, B0, v̇).

Proof. Firstly, consider the case |B∩̃B∗| = 0. In this case v̇ = b∗1, and since dv ∈ B′ by definition
of neigh(), |B′∩̃B∗| ≥ 1, which proves the statement.

Otherwise, let Z = B∩̃B∗ = {b∗1, . . . , b∗h}, and we have v̇ = b∗h+1. By Definition 4, Z is a
connected induced bipartite subgraph, meaning that it allows a unique bipartition Z0, Z1 (with Z0

being the set containing the vertex of smallest label in Z, that is, b∗1). Since b∗1 is the vertex of
smallest label in B∗, it will be in B∗0 , so it follows that Z0 ⊆ B∗0 and Z1 ⊆ B∗1 .

Let j be the value in {0, 1} such that v̇ ∈ B∗j , and observe that N(v̇) ∩ Zj ⊆ N(v̇) ∩ B∗j = ∅.
Furthermore, let i be the value in {0, 1} such that b∗1 ∈ Bi, and observe that Zi ⊆ B∗j ∩ Bi and
Z1−i ⊆ B∗1−j ∩B1−i.

Finally, let B′ = neigh(Bi, B1−i, v̇). Z is fully contained in B′: the only other vertices of B
removed are (i) those in N(v̇)∩Bi, but N(v̇)∩Bi ∩Z ⊆ N(v̇)∩Bi ∩Zj ⊆ N(v̇)∩Zj = ∅, and (ii)
the vertices not in the connected component of v̇ in G[{v̇}∪ (Bi \N(v̇))∪B1−i], but no such vertex
can be in Z as Z ∪ {v̇} is a prefix of the canonical order of B∗, and thus G[Z ∪ {v̇}] is connected
by definition.

We thus have that Z ∪{v̇} ⊆ B′, meaning that {b∗1, . . . , b∗h, b∗h+1} ⊆ B′∩̃B∗ and thus |B′∩̃B∗| ≥
|B∩̃B∗|+ 1, proving the statement.

From this we immediately obtain the correctness of Algorithm 1:

Theorem 7. Algorithm 1 outputs all maximal connected induced bipartite subgraphs of a given
graph G without duplication.

Proof. The absence of duplication is trivially guaranteed by the set S. Since the result of a comp()
call is always a maximal solution, Algorithm 1 finds at least one maximal solution. Assume now that
some solution B∗ is not found, and let B = B0, B1 be the solution found which maximizes |B∩̃B∗|.
By hypothesis B 6= B∗, so by Lemma 6 we know that for some v we have |B′∩̃B∗| > |B∩̃B∗|, where
B′ is either neigh(B0, B1, v) or neigh(B1, B0, v). This means B′ is found by Algorithm 1, which
contradicts the hypothesis of B maximizing |B∩̃B∗|.
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3.3 Listing maximal induced bipartite subgraphs

In this section we briefly how to extend the algorithm to the non-connected case. The correctness
proofs are obtained by adapting those for the connected case and can be found in Appendix A.

In short, we prove the strong connectivity between the solutions by showing that we can increase
the proximity between a solution B and a target B∗ one connected component at a time.

The algorithm for this case is essentially the same, i.e., Algorithm 1, with minimal changes:
Firstly, as solutions do not require connectivity, this is reflected on the comp(B) function, will iter-
atively add the smallest addible vertex to B, regardless of connectivity. Secondly, the neighboring
function used will be that in Definition 2, instead of that in Definition 3.

Finally, for proving the correctness we must provide a suitable proximity function ∩̃. This is
obtained by Definition 5, but changing the canonical order as follows:

Definition 8 (canonical order for induced bipartite subgraphs).
Let CB

1 , . . . , C
B
k be the connected components of an induced bipartite subgraph B, in lexicograph-

ical order (i.e., Ci comes before Cj if the vertex of minimum label in Ci is smaller than that in
Cj). The canonical order of B is the sequence b1, . . . , b|B|, obtained by concatenating the canonical

orders of its connected components CB
1 , . . . , C

B
k , in this order, where the order of each connected

component is obtained by Definition 4.

Thus, taking B as the subgraph shown in Figure 2 (d) and B∗ as that shown in (e), the canonical
order of B is {1, 2, 7, 8, 10, 11}, that of B∗ is {1, 2, 7, 9, 10, 12}, and B∩̃B∗ = {1, 2, 7}.

We give a proof sketch for the correctness: Consider the solutions B and B∗, a vertex u in
B∗\B, and let CB∗

x be the connected component of B∗ containing u. As all the neighbors of u in B∗

must be in its same connected component CB∗
x , and the neighbouring function neigh(Bi, B1−i, u)

(Definition 2) only removes neighbors of u from B, clearly it may not remove from B any vertex of
B∗ that is not in CB∗

x . As for CB∗
x , which is a connected induced bipartite subgraph, the proximity

can be increased by looking at the strategy for the connected case, since each connected component
uses the canonical ordering of the connected case. We thus state the result:

Theorem 9. Algorithm 1, using neigh() from Definition 2 and relaxing the connectivity require-
ment in comp(), outputs all maximal induced bipartite subgraphs of a graph G without duplication.

For a detailed proof, refer to Appendix A.

3.4 Complexity

For brevity, we just show that the algorithms presented have polynomial delay. A finer complexity
analysis can be found in Appendix B.

It is easy to see from the pseudo code of Algorithm 1 that we can bound the cost per solution
by that of one iteration of enum(). Indeed, whenever we find a new solution, the cost of the
corresponding iteration can be attributed to it.

Let γ be a bound for the cost checking whether a solution is in S or adding it to S, and δ a
bound for the cost of neigh(). The cost per solution of the algorithm will be O(γ + n(δ + γ)).

Firstly, γ is surely polynomial as we can store S as, e.g., a binary search tree with access time
O(n), as n is the size of the universe on which solutions are defined. Furthermore, δ is dominated
by the cost of a comp() call: as we can check in linear time whether a graph is connected and/or
bipartite, comp() takes polynomial time.

For completeness we remark that the space usage is bounded by the size of S, that is polynomial
not only in the size of the input, but in that of the output as well (e.g., a simple binary search tree
takes O(n · |S|) space, where |S| is the number of solutions).
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Finally, since every recursive call generated outputs a solution, we may use the alternative output
technique [32]: by simply changing the moment in which output is performed, we can reduce the
delay of Algorithm 1 to match exactly the cost per solution (up to a constant factor).

We can observe that comp() can be trivially implemented by testing each of the O(n) vertices
for addition in O(m) time, for a total of O(nm) time, giving us a delay bounded by O(n2m), that
is polynomial.

By the more careful analysis shown in Appendix B, however, we obtain the following:

Theorem 10. Algorithm 1 lists all maximal connected induced bipartite subgraphs with delay
O(nm), and all maximal induced bipartite subgraphs with delay O(n(m+ nα(n))).

Where n and m are the number of vertices and edges, and α() is the functional inverse of the
Ackermann function [29].

3.5 Maximal Edge Bipartite Subgraphs

We here briefly mention how to adapt the above algorithm to Maximal Edge Bipartite Subgraphs,
where edge subgraphs are denoted by a set of edges, rather than vertices. A complete description,
with correctness and complexity analysis is given in Appendix C.

In the following, let E(A,B) be the set of edges with one endpoint in A and the other in B,
where A and B are two disjoint sets of vertices.

Firstly, we observe Maximal Edge Bipartite Subgraphs (mebs in the following) of a connected
graph are always connected (otherwise some edge could be added without creating odd cycles),
spann all vertices, and may thus be represented by a bipartition B0, B1 of V (G), where the bipartite
subgraph corresponds to the edges in E(B0, B1).

We also observe that the problem is hereditary and allows a polynomial time computable comp()
function. We define the canonical order of a solution B by taking b1, . . . , b|B| as the canonical order
of the vertices of G[B] (according to Definition 4), then taking the edges of B in increasing order of
their latter vertex in the vertex order, and breaking ties by increasing order of the earlier extreme.
This essentially corresponds to “building” B in a similar fashion as in the induced version, but
adding one edge at a time incident to the newly selected vertex.

The principle behind the neighboring function is different but inspired to the induced case:
rather than taking a vertex out of the solution and trying to add it to B0 or B1, we take an edge
e = {a, b} with both extremes in the same Bi, and try to move the two vertices a and b to opposite
sides of the bipartition.

This can be achieved by including the edge e in the solution, and then, to preserve the subgraph
being bipartite, removing either NE(a) or NE(b) from it. Finally we apply the comp() function to
obtain a solution that is maximal. More formally:

neighbors(B) =
⋃

e∈E(G)\E(Bi,B1−i)

(neigh(B, a, b) ∪ neigh(B, b, a))

Where
neigh(B, a, b) = comp((E(Bi, B1−i) \NE(a)) ∪ {e})

For brevity, the proof of correctness are moved to Appendix C, but it can be proved that,
for any pair of distinct solutions B and B∗, there is a solution B′ ∈ neighbors(B) such that
|B′∩̃B∗| > |B∩̃B∗|, which yields the following resultç

Theorem 11. Maximal Bipartite (edge) Subgraphs can be listed in O(m3) time delay.

10



4 Generalized algorithm for proximity search

It is worth observing that the proof of correctness for the algorithms above (Theorems 7 and 9) is
not based on the specific structure of the problem at hand. We can deduct that the structure of
Algorithm 1 is adaptable the enumeration of any type of (maximal) subgraph, as long as suitable
∩̃ and neigh() operations are provided to prove a statement equivalent to that of Lemma 6.

In other words, we can obtain a listing algorithm by simply designing a suitable neigh() func-
tion, and a proximity (∩̃) notion able to prove that the solution graph induced by neigh() is
strongly connected.

We devote this section to formalize a class of problem for which this method can be applied.
For convenience, we show in Algorithm 2 the pseudo code corresponding algorithm, which

traverses the solution graph, based on the neighbors() function. As we noted earlier, the algo-
rithms obtained by this structure are remarkably simple, in that we only need to implement the
neighbors() function, while their complexity is mostly hidden behind proving their completeness.

Algorithm 2: Traversal of the solution graph by proximity search.

input : A graph G = (V (G), E(G)), a listing problem P
output: All (maximal) solutions of P in G
global : Set S of solutions found, initially empty

1 Let S be one arbitrary solution of P
2 enum(S)

3 Function enum(S)
4 Add S to S

/* output S if recursion depth is even */

5 foreach S′ ∈ neighbors(S) do
6 if S does not contain S′ then enum(S′)

/* output S if recursion depth is odd */

This version of the algorithm generalizes the neighboring function, which corresponds to the set
of solutions produced when considering the solution S. Note also that we may equivalently check
whether S′ has already been found before recurring on it.

To give an example of neighboring function, in the case of Algorithm 1 neighbors(B) would cor-
respond to all the solutions generated on Lines 6-8, i.e.,

⋃
u∈V (G)\B

{neigh(B0, B1, v),neigh(B1, B0, v)}.

Furthermore, we need one arbitrary (maximal) solution S to start the algorithm. We remark
that identifying one maximal (not maximum) solution is usually trivial, and can achieved for
example by running comp(v) for some arbitrary v ∈ V (G) as in Algorithm 1 when a comp()
function is computable in polynomial time.

We formally define the class of problems which allow a polynomial delay algorithm using this
structure as proximity searchable:

Definition 12 (Proximity searchable).
Let P be a listing problem whose solutions are subset of a universe U , and let S ⊆ 2U be the set

of solutions of P. P is proximity searchable if it allows a proximity function ∩̃ : S × S → 2U and
a neighboring function neighbors() : S → 2S that returns a set of solutions of P, such that the
following holds:
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• At least one solution of P can be identified in time polynomial in |U|.

• Given any two distinct solutions S, S∗ ∈ S, ∃S′ ∈ neighbors(S) : |S′∩̃S∗| > |S∩̃S∗|.

• neighbors(S) is computable in time polynomial in |U|.

If a problem is proximity searchable, then it is straightforward to see that we obtain a polynomial
delay algorithm for it by using the corresponding neighbors() function in Algorithm 2: A formal
proof of correctness is obtained by trivially adapting that of Theorem 7, and the cost per solution
(that is, the delay) is bounded by the cost of neighbors(S), plus the cost of checking membership
of each solution found in the S set (condition of the if on Line 6) and adding S to S, both of which
can be done in polynomial time as remarked in Section 3.4.

We can thus state the following:

Theorem 13. All proximity searchable listing problems allow a polynomial delay listing algorithm.

Furthermore, the following observations are in order:

• As neighbors(S) needs to be computable in polynomial time, it must return a polynomial
number of solutions.

• ∩̃ is not actually used in Algorithm 2, and does not need to be computable in polynomial
time.

• Proximity search is mainly intended for maximal listing problems, as the non maximal case
usually allows simpler techniques, however it is not strictly limited to it.

• Maximal listing problems in which input-restricted problem is computable in polynomial time
(as well as the comp() function) are proximity searchable.3

• The delay of the resulting algorithm will be bounded by the cost of Lines 4-6 in Algorithm 2.

In the rest of the paper we show some other maximal listing problems for which, to the best
of our knowledge, polynomial delay algorithms were not known. We show that these problems are
proximity searchable, and thus allow a polynomial delay listing algorithm by Algorithm 2.

We will use a common notation: S is an arbitrary solution, S∗ the “target” solution, and v̇ a
vertex.

We also recall that comp(X) is a function which, given a non-maximal solution X, iteratively
adds to X the element with smallest label such that X is still a solution of the problem at hand,
until it is maximal.

Finally, as general we combine solutions with vertices to obtain new ones, rather than defin-
ing neighbors(S), we will use neighbors(S, v), in which case neighbors(S) is intended to be⋃
v∈V (G)

neighbors(S, v).

3In essence, we obtain as a special case the same solution graph as known algorithms based on the input-restricted
problem [31, 20, 4]: For a solution S we compute neighbors(S) by sequentially taking all elements v ∈ U \S, solving
the input-restricted problem for S ∪ {v}, and applying comp() on the results.
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5 Maximal k-Degenerate Subgraphs

We here consider the enumeration of maximal k-degenerate subgraphs, giving an algorithm that
has polynomial delay when k is bounded.

A graph G is k-degenerate if it allows an elimination ordering where each vertex has degree at
most k when deleted. Equivalently, it is k-degenerate if no subgraph of G is a (k + 1)-core, i.e., a
graph where each vertex has degree greater or equal to k+ 1. The degeneracy d of G is the highest
k for which G is k-degenerate.

A degeneracy ordering of G is an order of its vertices in which each vertex v has at most
d neighbors occurring later than v, where d is the degeneracy of G. It is well known that a
degeneracy ordering can be found in O(m) time by recursively removing the vertex of smallest
degree. To remove ambiguity, when multiple vertices have the same degree we can remove the one
with smallest label.

The degeneracy is a well known sparsity measure [11], and generalizes maximal independent sets
(0-degenerate graphs) and maximal trees and forests (connected and non-connected 1-degenerate
graphs). Furthermore, degeneracy is linked to planarity as all planar graphs are 5-degenerate, while
outerplanar graphs are 2-degenerate [21].

We are interested in listing all maximal k-degenerate subgraphs of a given graph G. An output-
sensitive algorithm is known for maximal induced k-degenerate subgraphs if G is chordal [7], but
no output-sensitive results are known for general graphs.

5.1 Maximal Induced k-Degenerate Subgraphs

As a subgraph of a k-degenerate graph is k-degenerate, and degeneracy can be computed in linear
time, we may compute the comp() function in polynomial time.

Given a maximal k-degenerate subgraph S, we define its canonical order as the reverse of its
degeneracy ordering, i.e., an ordering s1, . . . , s|S|, such that s|S|, . . . , s1 is the degeneracy ordering of
S. In the case of non connected subgraphs, this is adapted by considering the connected components
one at a time in lexicographical order. Then, the proximity is defined as in Definition 5.

An important property of this ordering is that |N(si) ∩ {s1, . . . , si−1}| ≤ k, i.e., the neighbors
of si in S that precede si in the canonical order are at most k.

The neighboring function is then obtained as follows:

Definition 14 (Neighboring function for Maximal Induced k-Degenerate Subgraphs).

neighbors(S) =
⋃

v∈V (G)

neighbors(S, v)

Where :

neighbors(S, v) = {comp({v} ∪ (S \N(v)) ∪K) : K ⊆ (S ∩N(v)) and |K| ≤ k}

Less formally, when computing neighbors(S, v), we try to add v to S. As S is maximal, this
violates the degeneracy constraint, so we remove all neighbors of v except at most k (the set K).
The resulting subgraph D = {v}∪ (S \N(v))∪K is clearly k-degenerate as any subgraph of D has
a vertex of degree at most k: any subgraph of D either contains v, which has degree at most k, or
does not, thus it is a subgraph of S (which is k-degenerate) and as such has a vertex of degree at
most k.

We finally use the comp() function to obtain a maximal solution, which is still k-degenerate by
definition of comp().
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As for the choice of K, we simply try all possible subsets of S ∩N(v) of size at most k. These
are O(

∑
i∈{1,...,k}

(|N(v)|
i

)
) = O(nk), which is polynomial when k is bounded.

In this way, we are able to prove the correctness of the algorithm: Indeed, consider two distinct
maximal solutions S and S∗, and let v̇ be the first element of the canonical order of S∗ that is
not in S. In other words we have S∩̃S∗ = {s∗1, . . . , s∗h} and v̇ = s∗h+1. By construction of the
canonical order, v̇ has at most k neighbors in {s∗1, . . . , s∗h}, all of which are in S. Let the set of these
vertices be K ′; as |K ′| ≤ k, at some point it will be considered as K by the neighboring function
neighbors(S, v) in Definition 14.

When this happens, we will obtain S′ = comp({v̇} ∪ (S \N(v̇))∪K ′). Since S contains S∩̃S∗,
and all neighbors of v̇ in S∩̃S∗ are in K ′, we have that S∩̃S∗ ⊆ (S \ N(v̇)) ∪ K ′ ⊆ S′. Thus
(S∩̃S∗) ∪ {v̇} = {s∗1, . . . , s∗h, s∗h+1} ⊆ S′, which implies |S′∩̃S∗| > |S∩̃S∗|.

We thus meet the first two requirements of Definition 12. We only need to show that neighbors(S)
can be computed in polynomial time.

Let us first consider the cost of a comp(X) call. k-degenerate graphs are a hereditary property,
meaning that if a vertex is not addible it will not become addible in the future, thus we need to
test each v ∈ V (G) \X for addition at most once. As testing the degeneracy takes O(m) time, we
can compute comp(X) in O(mn) time.

Let us now consider the complexity of neighbors(S, v): firstly, we need to enumerate each
possible K ⊆ N(v) ∩ S, which can be done in O(

∑
i∈{1,...,k}

(|N(v)|
i

)
) = O(|N(v)|k) time. For each,

we need to run comp({v} ∪ (S \ N(v)) ∪ K), which takes O(mn) time. The total cost is thus
bounded by O(nk + 1m) time.

As neighbors(S) consists in running neighbors(S, v) n times, the resulting cost is polynomial
when k is of constant size. This means the problem is proximity searchable, and the delay of the
listing algorithm is given by the cost of neighbors(S) (which dominates that of maintaining the
solution set). More formally:

Theorem 15. Maximal Induced k-degenerate Subgraphs are proximity searchable when k is con-
stant, and can be enumerated with delay O(mnk+2).

5.2 Maximal Edge k-Degenerate Subgraphs

An algorithm for this case can be obtained by exploiting the structure of the induced one. In the
following, let NE(v) be the edge neighborhood of v, i.e., the set of all edges in the input graph G
incident to the vertex v.

Note that also edge k-degenerate subgraphs are hereditary, and thus we can compute the comp()
function in polynomial time.

Let S be an edge k-degenerate subgraph, and let v1, . . . , vl be the canonical order of the vertices
of G[S] (i.e., the graph containing only the edges in S and the vertices incident to them), obtained
as in Section 5.1.

The canonical ordering of S is obtained by selecting the edges of B by increasing order with
respect to their later extreme in the vertex order, and breaking ties by increasing order of the other
(earlier) extreme.

This essentially corresponds to selecting the vertices v1, . . . , vl in order, and for each adding the
edged towards the preceding vertices one by one. Any time all the edges from vi to the preceding
vertices have been added, we can observe that the graph correspond to the subgraph induced in
G[S] by the vertices {v1, . . . , vi}. By the canonical order of the vertices defined in Section 5.1, this
means vi has at most k neighbors in {v1, . . . , vi−1}.

Finally, the proximity ∩̃ is again defined using the canonical order as in Definition 5.
We can now define the neighboring function:
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Definition 16 (Neighboring function for Maximal Edge k-Degenerate Subgraphs).
Let S be a maximal edge k-degenerate subgraph, and e = {a, b} and edge not in S. We define:

neighbors(S) =
⋃

e={a,b}∈E(G)\S

neighbors(S, a, b) ∪ neighbors(S, b, a)

Where:

neighbors(S, a, b) = {comp({e} ∪ (S \NE(a)) ∪K) : K ⊆ (S ∩NE(a)) and |K| ≤ k − 1}

In other words, to find neighboring solutions, we add an edge e = {a, b} to S, then force either
a (or, respectively, b) to have degree at most k, by removing all other edges incident to it except
at most k − 1, as well as adding e. The resulting graph is surely k-degenerate as all its subgraph
will either have a (respectively b), which has degree at most k, or will be subgraphs of S, which is
k-degenerate, and thus have a vertex of degree at most k.

Let us now consider two solutions S, S∗, with S∩̃S∗ = {e1, . . . , eh}, and let ė = {x, y} be the
earliest edge in the canonical order of S∗ that is not in S, i.e, eh+1.

Furthermore, assume that x comes earlier than y in the canonical ordering of S∗. By definition
of canonical ordering of S, y has at most k neighbors preceding it in the (vertex) ordering, i.e,
|{e1, . . . , eh} ∩ NE(y)| ≤ k. Furthermore, by the same definition, all edges incident to y that
precede ė in the ordering must be between y and another vertex which comes earlier than x, and
thus than y, in the ordering, thus they may be at most k − 1 (k, including ė itself, from y to x).
Let K ′ be the set of these edges (not including ė).

When computing neighbors(S, y, x), we will consider all the subset of edges in S incident to
y of size at most k − 1. By what stated above, at some point we will consider exactly K ′. In this
case, we will obtain S′ = comp({ė}∪ (S \NE(y))∪K ′). This must contain all edges in {e1, . . . , eh},
as we only removed edges neighboring y, but all those in {e1, . . . , eh} were in K ′. Thus we have
{e1, . . . , eh} ∪ ė = {e1, . . . , eh, eh+1} ⊆ S′, which implies |S′∩̃S∗| > |S∩̃S∗|. The case in which x
comes after y in the ordering is similarly satisfied by neighbors(S, x, y).

Finally, we only need to show that neighbors(S) takes polynomial time to compute: indeed
this is O(m) times the cost of neighbors(S, y, x), which in turn has the cost of computing comp()

once for each possible considered set K. These latter are O(
(NE(y)

k−1
)
), and the comp() can be easily

implemented in O(m2) (as above, testing degeneracy takes O(m) time and each edge needs to
be considered at most once for addition since the problem is hereditary), for a total cost that is
polynomial when k is constant. We can thus state the following:

Theorem 17. Maximal k-degenerate Subgraphs are proximity searchable when k is constant, and
can be enumerated with delay O(

(
n

k−1
)
m3).

6 Maximal Induced Chordal Subgraphs

A graph G is chordal if every cycle in G of length greater than 3 has a chord, i.e., an edge between
two non-consecutive vertices in the cycle. Chordal graphs have been widely studied, and it is known
that several problems which are challenging on general graphs become easier on chordal graphs (see,
e.g., [3, 23, 2]).

In this section we aim at listing all maximal sets of vertices which induce a chordal subgraph in
G. Induced subgraphs of chordal graphs are chordal, thus the problem is hereditary, and chordality
can be tested in O(m) time [25], thus we can compute the comp() function in polynomial time.
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It is well known that graph (or subgraph) is chordal if and only if it allows a perfect elimination
ordering {v1, . . . , vn} of its vertices, that is, an ordering such that N(vi) ∩ {vi+1, . . . , vn} forms a
clique. We can obtain such an ordering by recursively peeling simplicial vertices, i.e., those whose
neighborhood is a clique in the residual graph.4 An important remark is that, since the neighbors
of a simplicial vertex form a clique, removing a simplicial vertex cannot disconnect them from each
other, i.e., a simplicial vertex is never a cut vertex. It is also known that a chordal graph has at
most O(n) cliques, and that a vertex v in a chordal graph may be participate in at most O(|N(v)|)
maximal cliques [7].

We use this to define the canonical order, which is then combined with Definition 5 to obtain
the proximity function ∩̃.

Definition 18 (Canonical Order for Maximal Induced Chordal Subgraphs).
The canonical order {s1, . . . , s|S|} of the maximal induced chordal subgraph S is the reverse of

its perfect elimination ordering, i.e., such that {s|S|, . . . , s1} is the perfect elimination ordering.

In this way, the neighbors of a vertex v that precede v in the ordering form a clique. This applies
to both the connected and non connected cases. Furthermore, as we remarked earlier simplicial
vertices may not disconnect the graph when removed. This implied that, when S is a connected
solution, any prefix {s1, . . . , sj≤|S|} of the canonical order will correspond to a connected subgraph.

The neighboring function is defined as follows:

Definition 19 (Neighboring function for Maximal (Connected) Induced Chordal Subgraphs).
We define neighbors(S) =

⋃
v∈V (G)\S

neighbors(S, v).

For the non connected case neighbors(S, v) is defined as:
neighbors(S, v) = {comp((S \N(v)) ∪Q) : Q is a maximal clique containing v in G[S ∪ {v}]}

While for the connected case it is:
neighbors(S, v) = {comp(ccv((S\N(v))∪Q)) : Q is a maximal clique containing v in G[S∪{v}]}

Less formally, we add a vertex v to S, then remove all its neighbors except one maximal clique.
In the connected case we further remove vertices not in the connected component of v. We can
observe how this yields a chordal graph, since v itself is simplicial and can be removed, leaving an
induced subgraph of S which is chordal and thus allows to complete the elimination ordering.

Again, let S and S∗ be two solutions, S∩̃S∗ = {s∗1, . . . , s∗h} and v̇ = s∗h+1 the earliest vertex in
the canonical order of S∗ not in S∩̃S∗.

By definition of canonical order, N(v̇)∩ (S∩̃S∗) = N(v̇)∩{s∗1, . . . , s∗h} forms a clique. It follows
that when computing neighbors(S, v̇), as we try all maximal cliques for some Q we will have
N(v̇) ∩ (S∩̃S∗) ⊆ Q. The resulting S′ will thus contain all neighbors of v̇ in S∩̃S∗, and thus all
of S∩̃S∗, plus v̇, meaning that |S′∩̃S∗| > |S∩̃S∗|, which proves the correctness the neighbors()
function.

Finally, neighbors() can indeed be computed in polynomial time: in order to identify all
maximal cliques containing v in G[S ∪ {v}], we can simply list all maximal cliques in G[S ∩N(v)],
and add v to each. While G[S ∪{v}] is not chordal, G[S ∩N(v)] is, since it is an induced subgraph
of S. Furthermore, G[S ∩ N(v)] has at most |N(v)| vertices and O(|N(v)|2) edges, so it has at
most |N(v)| maximal cliques, which can be listed in O(|N(v)|2) time, as we recall a chordal graph
has O(n) cliques and they may be listed in O(m) time (e.g., by computing a perfect elimination
ordering [25]).

4To remove ambiguity and associate a unique order to any graph, we can assume that ties are broken lexicograph-
ically by taking the vertex of smallest label first when more than one may be removed.
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The amortized cost of listing all cliques for each v ∈ V (G)\S is thus bounded byO(
∑

v∈V (G)\S
|N(v)|2) =

O(mn) time, and the proces yields at most O(
∑

v∈V (G)\S
|N(v)|) = O(m) maximal cliques. For each

clique Q, we must further compute the corresponding comp() call: as the problem is hereditary,
again we only need to test each vertex at most once for addition, and a chordality can be tested
in O(m) time, a comp() call can be implemented in O(mn) time (which dominates the time for
checking membership in S). Furthermore, the same bound applied to the connected case, as we
simply need to consider vertices for addition only when they become adjacent to the current so-
lution. Scanning the neighborhoods of the vertices that are added to the solution to find these
candidates has an additional cost of O(m) which does not affect the O(mn) bound. The total cost
will be O(mn+m ·mn) = O(m2n)

We can thus state that:

Theorem 20. Maximal Induced Chordal Subgraphs and Maximal Connected Induced Chordal Sub-
graphs are proximity searchable, and can be listed with O(m2n) time delay.

7 Maximal Obstacle-free Convex Hulls

In appplication domains such as robotics planning and routing, a common problem is finding areas,
typically convex, in a given environment which are free from obstacles (see, e.g., [8, 27]).

In this section we solve the following formulation of the problem: we are given two sets of
elements V and X, which corresponds to points on a 2-dimensional plane. V represents the point
of interest for our application, and X represents the obstacles. For short, let |V | = n and |X| = h.
We are interested in listing all maximal obstacle-free convex hulls (mocs for short), where an
obstacle-free convex hull is a set of elements S ⊆ V such that the convex hull of S does not contain
any element of X.

This problem does not concern a graph, but its solutions are modeled as sets of elements, thus
our technique may still be applied.

Again, note that the problem is hereditary, i.e., each subset S′ of a solution S clearly also admits
a convex hull which does not include elements of X (since it will be contained in that of S).

Consider a maximal solution S and an element v ∈ V \ S. As S is maximal, there is at least
one element x ∈ X included in the convex hull of S ∪ {v}. This element x casts two “shadows” S1
and S2 on S, seen by v: consider the straight line between v and x, S1 consists of all elements of
S above this line, and S2 of all those below it. It is straightforward to see how both the convex
hull of S1 ∪ {v} and that of S2 ∪ {v} do not contain x. Any element of S that falls exactly on the
line may not participate in any solution involving v.5 Furthermore, any element x′ ∈ X above this
line, and still in the convex hull of S ∪ {v}, further casts two shadows on S1, as any element below
this line casts them on S2. If we repeat this process for all elements of X in the convex hull of
S ∪ {v} we obtain a number of shadows of S which is at most linear in the number of elements of
X. Let φ(S, v) be the set of these shadows. For each of these shadows Si ∈ φ(S, v), we have that
the convex hull of Si∪{v} may not include elements of X, i.e., Si∪{v} is a (possibly not maximal)
solution.

The neighboring function is then obtained as follows:

Definition 21 (Neighboring function for mocs).
neighbors(S) =

⋃
v∈V (G)\S

neighbors(S, v)

5Note that it may not fall between v and x otherwise the convex hull of S would have included x.
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Where neighbors(S, v) = {comp(Si ∪ {v}) : Si ∈ φ(S, v)}

Finally, for two solutions S and S∗, we simply define S∩̃S∗ as their intersection S ∩S∗ between
their elements.

Let I = S ∩ S∗ = S∩̃S∗, and v any element in S∗ \ S. Since I ∪ {v} is contained in a moc,
S∗, its convex hull cannot contain any element of X. It follows that I must be fully contained in a
single Si ∈ φ(S, v). We have that the neighboring function will return S′ = comp(Si ∪ {v}), with
I ∪ {v} ⊆ S′, which implies |S′∩̃S∗| > |S∩̃S∗|. The algorithm is thus correct.

As for the complexity, again the problem is hereditary, so we may compute a comp(S) call
by testing each vertex just once in increasing lexicographical order. The convex hull of S can be
computed in O(|S| log |S|) time, and testing that is a solution consists in checking that each vertex
of X is not in it, which can trivially be done in O(|S| · h) . For a total cost of O(n(h+ log n)). For
each candidate v, we have at most h neighboring solutions, and since we need to consider at most
n candidates, the delay of the algorithm will be n · h times the cost of a comp() call.

We thus obtain an algorithm with the following complexity:

Theorem 22. Maximal Obstacle-free Convex Hulls are proximity searchable, and can be listed in
O(n2h(h+ log n)) time delay.

Note that the algorithm is also trivially adapted to the case where the sets of points are more
than two, as we simply need to set as V the desired set, and as X the union of all others.

8 Maximal Connected Induced Directed Acyclic Subgraphs

For this problem we consider a directed graph, thus each edge has a head and a tail, and its
direction is from the tail to the head. We call N+(v) the out-neighbors of the vertex v and N−(v)
its in-neighbors.

The goal of this section is listing Maximal Connected Acyclic Induced Subgraphs (mcais here-
after) of a given directed graph G.

Note that the problem is connected-hereditary (any connected subgraph of a connected acyclic
subgraph is itself connected and acyclic), and acyclicity can be tested in linear time, thus the
comp() can be implemented in polynomial time, e.g., in O(mn).

For completeness, we remark that the non-connected version, i.e., Maximal Induced Directed
Acyclic Subgraphs, corresponds exactly to listing the complements of minimal feedback vertex sets
in a directed graph, and thus is of no interest since an output-sensitive algorithm was given in [28].

Let us define the canonical order:

Definition 23 (Canonical Order for Maximal Connected Acyclic Induced Subgraphs).
Let S be a mcais. The canonical order of S is the order {s1, . . . , s|S|} such that, for each si,

{s1, . . . , si} is connected, and either {s1, . . . , si−1}∩N+(si) = ∅ or {s1, . . . , si−1}∩N−(si) = ∅. As
more than one one order with these property may exist, let the canonical one be the lexicographically
minimum among them.

We now need to show that such an order always exists for S. However, as the algorithm does
not actually need to compute ∩̃ or the canonical order, we do not need to show how to compute
the lexicographically minimum one. Note that every mcais S allows a topological order, that is
an order where {s1, . . . , si−1} ∩N+(si) = ∅ (i.e., no vertex has backward out-neighbors), however
this may not respect the constraint of {s1, . . . , si} being connected. Furthermore, recall that every
acyclic subgraph always has at least one vertex with no in-neighbors (a source) and one with no
out-neighbors (a target).
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Firstly, let us observe an important property of acyclic graphs with a single source:

Lemma 24. Let G be a single-source acyclic graph, and v1, . . . , vn any topological order of G. Any
prefix v1, . . . , vi of this order induces a connected subgraph.

Proof. By the property of a topological order, no vertex may have a backward out-neighbor. This
implies that v1 is the (only) source. Any other vertex vj>1 has at least one in-neighbor, and by
the property of the topological order this is a backward neighbor vz. By recursively following the
backward neighbor of vz, as the graph is acyclic, we must eventually end up in a source, that is v1.
This means that every vertex vj is reachable from v1 using only vertices that come earlier than vj
in the ordering, which proves the statement.

Note that, as reversing edge directions on a single-source acyclic graph yields a single-target
acyclic graph, Lemma 24 also implies that the reversed topological order (i.e., where vertices have
no forward out-neighbors) is such that every prefix induces a connected subgraph.

We also remark that both these orders satisfy Definition 23.
We now use this lemma to show that acyclic graphs allow the defined canonical order. In the

following, we define collapsing a set of vertices A ⊆ S in x as replacing them with a single vertex
x, whose in- and out-neighbors correspond to all vertices in S \ A that are respectively in- and
out-neighbors of some vertex in A.

Lemma 25. Every Directed Acyclic Graph allows a canonical order by Definition 23.

Proof. Let S be a Directed Acyclic Graph. Let v1 be a source of S, and S1 be the set of vertices
reachable by v1, including v1.

Let s1,1, . . . , s1,|S1| a topological ordering of S1. By Lemma 24 every prefix is connected as v1
is the only source of S1.

No vertex in S1 can have an out-neighbor outside of S1 as otherwise said vertex would be
reachable by v1 and thus be in S1 itself. They may, however, have in-neighbors: let S2 be the set
of all vertices in S \ S1 which can reach some vertex in S1.

If we collapse S1 into a single vertex x, we can observe that x is a target and S2 ∪ {x} is
a single-target acyclic subgraph. Let x, s2,1, . . . , s2,|S2| be a reverse topological ordering of S2 ∪
{x}. Note that x must be the first vertex as it is the target, and by Lemma 24 each prefix is
connected. Furthermore, if we replace x with the previously computed order of S1, we obtain an
order s1,1, . . . , s1,|S1|, s2,1, . . . , s2,|S2|} which respects Definition 23: Each vertex in s1,1, . . . , s1,|S1| has
no backward out-neighbor by the topological ordering of S1; each s2,1, . . . , s2,|S2| has no backward
in-neighbor by the reverse topological ordering of S2, and the fact that no vertex of S1 can have
an out-neighbor outside of S1; finally, every prefix of s1,1, . . . , s1,|S1| is connected, and every prefix
s1,1, . . . , s1,|S1|, s2,1, . . . , s2,j is connected, as x, s2,1, . . . , s2,j is connected, meaning that all vertices
in s2,1, . . . , s2,j are connected to some vertex in S1, that is itself connected.

We may now repeat this step by collapsing S1 ∪S2 into a single vertex x′, and since x′ will be a
source (any vertex that could reach one of S2 would be in S2), take S3 as all vertices reached by x′

in S \ (S1 ∪ S2), and take a topological order of S3 ∪ {x′}, which we append to the order obtained
so far (excluding x′).

By iterating this step, we obtain an ordering s1,1, . . . , s1,|S1|, s2,1, . . . , s2,|S2|, s3,1, . . . , s3,|S3| . . . , sk,1, . . . , sk,|Sk|,
with k ≤ |S|, which contains all vertices of S, and such that any prefix will induce a connected sub-
graph, and any si,j will have no backward out-neighbors if i is odd, and no backward in-neighbors
if i is even. This order will thus satisfy the conditions of Definition 23.

Finally, the proximity ∩̃ is defined accordingly using Definition 5.
We define the neighboring function as follows:
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Definition 26 (Neighboring Function for Maximal Connected Acyclic Induced Subgraphs).
For a solution S and a vertex v ∈ V (G) \ S, we define

neighbors(S) =
⋃

v∈V (G)\S

neighbors(S, v)

Where:

neighbors(S, v) = {comp(ccv({v} ∪ S \N+(v))),comp(ccv({v} ∪ S \N−(v)))}

In other words, the function will add v to S. S ∪ {v} is not acyclic, but all cycles must involve
v, so we make it acyclic by removing either all the out-neighbors N+(v), which makes v a target,
or all its in-neighbors N−(v), which makes v a source. It then takes the connected component
containing v and feeds the result to comp(), to surely obtain a mcais.

Consider now two solutions S and S∗, and again let v̇ be the first vertex in the canonical order
of S∗ which is not in S∩̃S∗. More formally, let S∩̃S∗ = {s∗1, . . . , s∗h} and v̇ = s∗h+1.

Let S′ = comp(ccv̇({v̇} ∪ S \ N+(v̇))) and S′′ = comp(ccv̇({v̇} ∪ S \ N−(v̇))) be the two
solutions generated by neighbors(S, v̇).

By definition of the canonical order of S∗, we have that (S∩̃S∗) ∪ {v̇} is connected, and either
(S∩̃S∗) ∩N+(v̇) = ∅ or (S∩̃S∗) ∩N−(v̇) = ∅.

It follows that if (S∩̃S∗) ∩ N+(v̇) = ∅, then (S∩̃S∗) ∪ {v̇} ⊆ ccv̇({v̇} ∪ S \ N+(v̇)) ⊆ S′, and
otherwise we have (S∩̃S∗) ∩N−(v̇) = ∅, which means (S∩̃S∗) ∪ {v̇} ⊆ ccv̇({v̇} ∪ S \N−(v̇)) ⊆ S′′.

We thus have that either |S′∩̃S∗| > |S∩̃S∗| or |S′′∩̃S∗| > |S∩̃S∗|, which gives us the second
necessary condition of proximity search.

Finally, it is straightforward to see that neighbors(S) takes polynomial time, as its cost is
bounded by O(n) calls to comp(), which can be implemented in O(mn), meaning that all conditions
of Definition 12 are satisfied. Theorem 27 follows.

Theorem 27. Maximal Connected Directed Acyclic Induced Subgraphs are proximity searchable,
and can be listed O(mn2) time delay.

8.1 Maximal Connected Directed Acyclic Edge Subgraphs

We remark here that the structure can be adapted to the edge case, i.e., Maximal Connected
Directed Acyclic Edge Subgraphs (mcaes).

Firstly note that as the problem is still hereditary and acyclic subgraphs can be tested in
linear time, we can implement the comp() function in O(m2) time. Furthermore, we can define a
canonical order as follows:

Definition 28 (Canonical order for mcaes). Given a mcaes S, let v1, . . . , v|V [S]| be the canonical
ordering of the vertices of G[S] according to Definition 23.

The canonical ordering of S is obtained by selecting the edges of S by increasing order with
respect to their later extreme in the vertex order, and breaking ties by increasing order of the other
(earlier) extreme.

We thus obtain a canonical ordering e1, . . . e|S| of S with the following properties: take an
edge ei = {vj , vk}, assuming wlog j < k. All edges whose latter extreme comes earlier than vk
in the vertex order are by definition preceding ei in the order, thus all the edges in the induced
subgraph G[{v1, . . . , vk−1}] will be in the prefix e1, . . . ei of the canonical ordering of S. Note that
by Definition 23, G[{v1, . . . , vk−1}] is connected. Finally, the only other edges in e1, . . . ei are those
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whose latter extreme is vk, meaning that their earlier extreme is in {v1, . . . , vk−1}. It follows that
each prefix e1, . . . ei forms a connected (edge) subgraph, which is also acyclic as it is a subgraph of
the acyclic subgraph S.

Furthermore, it also holds that, for the latter extreme vk of ei, either {v1, . . . , vk−1}∩N+(vk) =
∅ or {v1, . . . , vk−1} ∩ N−(vk) = ∅. This implies that either {e1, . . . , ei−1} ∩ N+

E (vk) = ∅, or
{e1, . . . , ei−1} ∩N−E (vk) = ∅, which gives us our neighboring function:

Definition 29 (Neighboring Function for mcaes).
Let S be a mcaes and e = {vt, vh} a directed edge in E(G) \ S directed from its tail vt to its

head vh. Furthermore, let N+
E (vh) and N−E (vh) be the out-edges and in-edges of vh, respectively.

We define

neighbors(S, vt, vh) = {comp(ccvt({e} ∪ (S \N−E (vt))),comp(ccvh({e} ∪ (S \N+
E (vh)))}

And thus

neighbors(S) =
⋃

e={vt,vh}∈E(G)\S

neighbors(S, vt, vh)

In other words, we add e to S, and try each of the two possibilities to obtain the latter vertex
in the canonical order of S∗: if it is the tail vt of the edge, surely its backward out-neighborhood
in the canonical order of S∗ is not empty as it contains vh, so it’s in-neighborhood must be, thus
we can safely remove N−E (vt) to make S ∪{e} acyclic. Conversely, if it is the head vh we can safely
remove N+

E (vh). We thus obtain |S′∩̃S∗| > |S∩̃S∗| for some S′ ∈ neighbors(S).

9 Maximal Induced Trees

In this section we consider the enumeration of maximal induced trees. A tree is an acyclic connected
graph. An induced tree in G is a set of vertices T ⊆ V (G) such that G[T ] is a tree.

Relaxing the induced constraint we obtain the problem of listing maximal trees, defined as sets
of edges, which correspond to spanning trees, and for which efficient algorithms are known [18].
Relaxing the maximality constraint, we obtain the problem of listing all trees, for which output-
sensitive algorithms also exist [33]. Finally, relaxing the connectivity constraint we obtain maximal
induced forests, which correspond exactly to the complements of minimal feedback vertex sets,
which was solved efficiently in [28].

To the best of our knowledge, however, no output-sensitive algorithms are known for the enu-
meration of maximal induced trees.

Firstly, we observe that the problem is connected-hereditary, and that we can implement
comp(X) in O(m) time: first, in O(m) we can test that X is indeed a tree and collect all candidate
vertices C which are adjacent to some vertex in X. We then iterate C in increasing order; for each
vertex ci, it is sufficient to check that ci has no more than one neighbor in X, otherwise it can be
discarded, and this can be done in O(|N(ci)|) time. If ci is added, we need to also take its neighbors
that are not in C and add them to it, which also takes O(|N(ci)|) time. The resulting cost is thus
bounded by O(m+

∑
c∈V (G) |N(c)|) = O(m).

The canonical order of a solution S can be defined as a BFS traversal order of S, starting from
the vertex of minimum label. The resulting order s1, . . . , s|S| will be such that each prefix is an
induced tree, as it will be a subtree of the BFS tree, and each si with i > 1 will have exactly
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one backward neighbor in this order, corresponding to its parent in the BFS tree. In other words,
|{s1, . . . , si−1} ∩N(si)| = 1.

The proximity ∩̃ again follows from Definition 5.
All that needs to be defined is the neighboring function neighbors(S, v) for v ∈ V (G) \ S.

Definition 30 (neighboring function for Maximal Induced Trees).

neighbors(S) =
⋃

v∈V (G)\S

neighbors(S, v)

Where
neighbors(S, v) = {comp(ccv((S \N(v)) ∪ {v, x})) : x ∈ N(v) ∩ S}

Less formally, we attempt to add v to S. If v has more than one neighbor in S, this would create
a cycle, and we break all such cycles by removing all neighbors of v in S except one, x, for which
we try all possible choices. Finally, we feed the result to comp() to obtain a maximal solution.
Note that if v has no neighbor in S, neighbors(S, v) = {comp({v})}. Otherwise, v must have at
least two neighbor in S, as if it only had one S ∪ {v} would be an induced tree, and S would have
not been maximal.

We also remark that computing neighbors(S) takes polynomial time, since it consists in call-
ing neighbors(S, v) for each v ∈ V (G) \ S, and the cost of each neighbors(S, v) is bounded
by computing a connected component and calling comp() (both of which take O(m) time) for
each vertex in N(v) ∩ S. The total cost will thus be bounded by O(

∑
v∈V (G)(|N(v)| · m)) =

O(m
∑

v∈V (G)(|N(v)|)) = O(m2).

Finally, we need to prove the key condition on the proximity ∩̃.
In the following let S∩̃S∗ = {s1, . . . , sh}, and v̇ = sh+1 be the first vertex in the canonical order

of S∗ not included in S.

Lemma 31. Given two distinct Maximal Induced Trees S and S∗, there exists some S′ ∈ neighbors(S),
such that |S′∩̃S∗| > |S∩̃S∗|.

Proof. Recall that {s1, . . . , sh} = S∩̃S∗ is an induced tree, and so is {s1, . . . , sh} ∪ {v̇} as they are
both prefixes of the canonical order of S∗. We also know that v̇ has exactly one neighbor ẋ in
{s1, . . . , sh} (unless v̇ = s1, in which case the proof is trivial as |S∩̃S∗| = 0).

Let S′ be the solution obtained by neighbors(S, v̇) when x = ẋ. Clearly, no vertex of
{s1, . . . , sh} is removed from S since ẋ is the only neighbor of v̇ in S, thus S′ contains {s1, . . . , sh}∪
{v̇}, proving the statement.

We can thus state the result:

Theorem 32. Maximal Induced Trees in a graph are proximity searchable, and can be listed in
O(m2) time delay.

10 Conclusions

We presented proximity search, a technique for the design of efficient enumeration algorithm, based
on defining and traversing a solution graph where solutions have bounded out-degree. We presented
several application cases, considering problems that did not allow efficient algorithms with known
techniques, and showing that these allow polynomial delay algorithms using proximity search.
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Other than being a useful tool for algorithm design, we remark that the technique may bring
useful insight in better understanding which classes of problems allow output sensitive algorithms
and which do not. Future work involves extending the applicability of the techniques to open listing
problems, and investigating whether the technique can be modified to use just polynomial space.
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A Listing maximal induced bipartite subgraphs

In this section we give the full correctness proof for the algorithm described in Section 3.3, that is
Algorithm 1, adapted to maximal induced bipartite subgraphs (i.e., without connectivity require-
ments).

Firstly, recall that the comp(B) function is adapted according to the problem at hand, i.e.,
it will iteratively add the smallest addible vertex to B, regardless of connectivity. Secondly, the
neighboring function is that in Definition 2.

We also recall that the the proximity function ∩̃ is defined accordingly to Definition 5, using
the canonical order in Definition 8 (which essentially is the same as that for the connected case,
but computed for one connected component at a time, ordering the components lexicographically)

To prove the correctness, we will prove that we are always able to increase the size of the
proximity by 1, either by further completing a partially included connected component, or by
adding a vertex from the first empty one when all previous ones are completed.

Similarly to above, we consider two distinct maximal solutions B and B∗, with B∩̃B∗ =
{b∗1, . . . , b∗h}, and define v̇ as b∗h+1. Our goal is proving Lemma 6 for the non-connected case:

Lemma 33. Let B and B∗ be two distinct maximal induced bipartite subgraphs, v̇ the earliest
vertex in the canonical ordering B∗ that is not in B, and neigh() the function in Definition 2.
Then |B′∩̃B∗| > |B∩̃B∗| for either B′ = neigh(B0, B1, v̇) or B′ = neigh(B1, B0, v̇).

Proof. We proceed in the same way as for Lemma 6: When |B∩̃B∗| = 0 we have v̇ = b∗1, and
{v̇} ⊆ B′∩̃B∗ by definition of neigh(), proving the statement.

Otherwise, let Z = B∩̃B∗ = {b∗1, . . . , b∗h}, and we have v̇ = b∗h+1). By Definition 4, Z is an

induced bipartite subgraph, with connected components CZ
1 , . . . , C

Z
l . Still by Definition 4, for

1 ≤ x < l we have CZ
x = CB∗

x , and CZ
l ⊆ CB∗

l .

25



We consider two cases:

CZ
l = CB∗

l : In this case we have v̇ ∈ CB∗
l+1, meaning that v̇ is not connected to any vertex in Z. As

neigh(Bj , B1−j , v̇) only removes vertices in N(v̇) from B, it follows that B′ will fully contain
Z and v̇.

CZ
l ⊂ CB∗

l : In this case we have v̇ ∈ CB∗
l , and that CZ

l ∪ {v̇} is a connected induced bipartite subgraph,
meaning that all vertices in N(v̇) ∩ CZ

l are in the same partition Bi of B. It follows that
B′ = neigh(B1−i, Bi, v̇) will place v̇ in B1−i, and no vertex of CZ

l will be removed, nor any
vertex of CZ

x<l, since they are separate connected components and may not contain neighbors
of v̇. B′ will thus contain Z and v̇.

In both cases, B′ will contain Z ∪ {v̇}, meaning that Z ∪ {v̇} = {b∗1, . . . , b∗h, b∗h+1} ⊆ B′∩̃B∗,
which proves the statement.

Thus, by simply retracing the proof of Theorem 7, using Lemma 33 in place of Lemma 6, we
obtain the correctness of the algorithm, that is the proof of Theorem 9.

Corollary 33.1. Algorithm 1, using neigh() defined in Definition 2, outputs all maximal induced
bipartite subgraphs of a given graph G without duplication.

B Complexity of Maximal Bipartite Subgraph Enumeration

Let us discuss the complexity of Algorithm 1 for listing maximal (connected) induced bipartite
subgraphs.

Firstly, note that before generating a recursive call, we check that the solution produced has
not been found already, meaning that the cost of nested recursive calls can be shouldered by the
new solutions found in them. This means that the cost per solution is bounded by that of a single
recursive call.

The cost per solution will thus be the time required to add a solution to S, plus O(n) times
that of performing the neigh() operation, which is that of a comp() call, and checking whether
the result is in S.

B.1 Cost of maintaining S

We can store S as a binary search tree, where vertices are considered in order v1, . . . vn on descending
paths, where each node has a child corresponding to the presence of the considered vertex and one
corresponding to its absence. A descent in this tree is enough to either add or check existence of a
solution in it, and this takes O(n) time (as the depth of the tree is n, in the case of edge subgraphs
this would be O(m) time). Furthermore, we can avoid storing empty subtrees which do not contain
any solutions, meaning that the space required to store S will be O(n · |S|), where |S| denotes the
number of solutions in it, since it will have exactly |S| leaves, each with at most n ancestors.

B.2 Cost of a comp(X) call

Let us first consider the non connected case: a trivial implementation consist in trying to add each
vertex v in V (G) \X at each step and check whether the resulting X ∪ {v} is a solution: this way
we perform O(n) steps, and try O(n) vertices each step. Checking whether a set of vertices is a
(connected) bipartite subgraph can trivially be done in O(m) time, thus the cost is bounded by
O(n2m).
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However, we can obtain better bounds. If we keep track of the connected components via
union-find, to test a vertex v we must just check that it does not connect to two vertices in different
partitions C0 and C1 of the same connected component C of X: this can be done in O(|N(v)|).
Updating the union-find can be done in total O(nα(n)), where α() is the functional inverse of
the Ackermann function [29]. Finally, once we tested a vertex, if this was not addible, it will
never become addible, thus we only need to test each vertex once (in increasing lexicographical
order). The cost will be the sum of their degrees, that is bounded by O(m). The total time is thus
O(m+ nα(n)).6

As for the connected case, we must test at each time only vertices adjacent to X, in increasing
lexicographical order. All vertices adjacent to X can be found in O(

∑
x∈X |N(x)|). Whenever

adding a vertex v to X, we can further update the list of vertices adjacent to X with its neighbors
in O(|N(v)|). As each vertex is only added once, the cost is bounded by O(m). As above, if a vertex
is not addible, it can be immediately discarded, thus each vertex is testes for addibility at most
once. Testing addibility of v can be done in O(|N(v)|) by simply checking that it is not adjacent
to both vertices in X0 and X1, for a total of O(m). The total cost for the connected case will thus
be O(m).

B.3 Total cost

The total cost of the algorithm is given by the cost of a recursive call. This is bounded by O(γ +
n(comp + γ)), where γ = O(n) is the cost of adding a solution to S or checking whether it is
contained in it.

From what discussed above, this is bounded for the non connected case by

O(n+ n(m+ nα(n))) = O(n(m+ nα(n)))

While, for the connected case, it is bounded by O(mn). We remark that, in real instances,
the two bounds are practically equivalent. Finally, since every recursive call generated outputs a
solution, we may use the alternative output technique [32]: whenever the recursion depth of a call
in Algorithm 1 is even, we output the solution on Line 5 as shown, but when it is odd, we output
the solution at the end of the call (i.e., as if moving Line 5 to after the for loop of Lines 6-8).

Thanks to this simple tweak, the delay of the algorithm, i.e., the maximum time elapsed between
two consecutive outputs, becomes the same as the amortized cost per solution.

C Maximal Edge Bipartite Subgraphs

We here show that we may adapt our proximity search algorithm for Maximal Induced Bipartite
Subgraphs to listing Maximal Edge Bipartite Subgraphs, where edge subgraphs are denoted by a
set of edges, rather than vertices.

The problem is inherently different as, for example, the induced bipartite subgraphs of a com-
plete graph have at most 2 vertices, while the edge bipartite graph can have linear size (e.g., a
spanning tree of the graph).

However, structural similarities allows us to obtain a canonical order and a suitable neighboring
function for this case too.

In the following, let E(A,B) be the set of edges with one endpoint in A and the other in B,
where A and B are two disjoint sets of vertices.

6As α(n) grows extremely slowly, we observe that O(m + nα(n)) is in essence the same as O(m) on real, finite,
graphs.
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Firstly, we observe that while a Maximal Edge Bipartite Subgraph (mebs in the following) of a
connected graph is a set of edges, it may be represented by two sets of vertices. Indeed:

• Any mebs is connected, otherwise it could be extended by joining one connected component
or isolated vertex to another with a single edge, and the result would still be bipartite.

• Any mebs spans all vertices of the graph, as otherwise the same logic as above applies to
vertices not spanned by the solution.

• Any connected bipartite subgraph allows a single bipartition B0, B1 a defined above, and the
subgraph is maximal iff the edges it contains are all and only those between B0 and B1, i.e.,
E(B0, B1).

Note that, as mebs are always connected, we do not need to separately consider the connected
and non-connected cases.

We will refer in the following to a bipartite subgraphs by the set of edges they contain (e.g.,
E(B0, B1)), and to maximal bipartite subgraphs by either that, or the bipartition B0, B1 of the
vertices of G which induces it.

Then, let us observe that the problem is hereditary, and since being bipartite can be tested
in O(m) time the comp() function can be implemented in O(m2) time. Let us now define the
canonical order of a solution:

Definition 34 (Canonical order for mebs). Given a mebs B = B0, B1, let b1, . . . , b|B| be the
canonical ordering of the vertices of G[B] according to Definition 4.

The canonical ordering of B is obtained by selecting the edges of B by increasing order with
respect to their later extreme in the vertex order, and breaking ties by increasing order of the other
(earlier) extreme.

In other words, we sequentially considering each vertex bi in increasing order, and for each we
add all edges in B incident to bi and some bj<i, in increasing order of j.

We can observe how this essentially corresponds to “building” B in a similar fashion as in the
induced version, but adding one edge at a time incident to the newly selected vertex. It follows
that:

Lemma 35. Given a mebs B and the canonical ordering of its edges e1, . . . , e|E(B0,B1)|, any prefix
of this order is a connected bipartite subgraph.

The principle behind the neighboring function is different but inspired to the induced case:
rather than taking a vertex out of the solution and trying to add it to B0 or B1, we take an edge
e = {a, b} with both extremes in the same Bi, and try to move the two vertices a and b to opposite
sides of the bipartition.

This can be achieved by including the edge e in the solution, and then, to preserve the subgraph
being bipartite, removing either N(a) or N(b) from it. Finally we apply the comp() function to
obtain a solution that is maximal. More formally:

Definition 36 (neighboring function for Maximal Bipartite Subgraphs). Let Bi, B1−i be a Maximal
Bipartite Subgraph, and e = {a, b} such that {a, b} ⊆ Bi.

neighbors(B) =
⋃

e∈E(G)\E(Bi,B1−i)

(neigh(B, a, b) ∪ neigh(B, b, a))

Where

neigh(B, a, b) = comp((E(Bi, B1−i) \NE(a)) ∪ {e})
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Note that {a, b} ⊆ Bi fully characterizes all edges which are not in E(B0, B1), as if a ∈ B0 and
b ∈ B1 or vice versa, then the edge {a, b} could be included in B, meaning that B would not be
maximal.

Less formally, we force the edge e = {a, b} into the solution, then make the graph bipartite by
removing either the edges incident to a or those incident to b (except e). Indeed, any odd cycle
introduced by the addition of e is broken by either of these operation since either a or b is left with
degree one.

Furthermore, we can show that this function satisfies the requirements of proximity search.
Firstly note that it is clearly computable in polynomial time, as it consists in O(m) calls to the
neighbors(Bi, B1−i, e) function, whose cost is bounded by that of comp(), that is O(m2).

Secondly, consider two solution B and B∗, with e1, . . . , e|E(B∗
0 ,B

∗
1 )| being the canonical order of

B∗. Furthermore, let B∩̃B∗ = {e1, . . . , eh} and ė = eh+1 = {a, b} the first edge in the ordering of
B∗ which is not in B.

By the definition of the canonical ordering, we have that {e1, . . . , eh} is a connected bipartite
subgraph, meaning that it allows a unique bipartition B′ = B′0, B

′
1 of its incident vertices. As

{e1, . . . , eh} ∪ {ė} is also a connected bipartite subgraph, for some j ∈ {0, 1} we must have both
N(a) ∩B′j = ∅ and N(b) ∩B′1−j = ∅.

Since B′ is included in B, we must have either (i) B′j ⊆ Bi and B′1−j ⊆ B1−i or (ii) B′1−j ⊆ Bi

and B′j ⊆ B1−i. Recall now that both a and b are assumed wlog to be in Bi, meaning that
N(a) ∩ Bi = N(b) ∩ Bi = ∅. In the (i) case, we have N(b) ∩ B1−i ∩ B′1−j = ∅, so removing NE(b)
from B may not remove any edge of B′. Thus neigh(B, b, a) will contain (B∩̃B∗) ∪ {e}.

In the (ii) case, we have N(a)∩B1−i ∩B′1−j = ∅, removing NE(a) may not remove any edge of
B′. Thus neigh(B, a, b) will contain (B∩̃B∗) ∪ {e}.

In both cases, neighbors(B) will yield a solution S′ which contains (B∩̃B∗) ∪ {e}, i.e., such
that |S′∩̃S∗| > |S∩̃S∗|.

This means that all the conditions of proximity search (Definition 12) are satisfied, and we can
state the result:

Theorem 37. Maximal Bipartite (edge) Subgraphs are proximity searchable, and can be listed in
O(m3) time delay.
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