
Parallelizing Greedy for Submodular Set Function Maximization
in Matroids and Beyond∗

Chandra Chekuri
†

chekuri@illinois.edu

University of Illinois, Urbana-Champaign

IL, USA

Kent Quanrud
‡

quanrud2@illinois.edu

University of Illinois, Urbana-Champaign

IL, USA

ABSTRACT
We consider parallel, or low adaptivity, algorithms for submodu-

lar function maximization. This line of work was recently initi-

ated by Balkanski and Singer and has already led to several inter-

esting results on the cardinality constraint and explicit packing

constraints. An important open problem is the classical setting

of matroid constraint, which has been instrumental for develop-

ments in submodular function maximization. In this paper we de-

velop a general strategy to parallelize the well-studied greedy algo-

rithm and use it to obtain a randomized (1/2 − ϵ)-approximation

in O

(
log

2(n)/ϵ2
)
rounds of adaptivity. We rely on this algorithm,

and an elegant amplification approach due to Badanidiyuru and

Vondrák to obtain a fractional solution that yields a near-optimal

randomized (1 − 1/e − ϵ)-approximation in O

(
log

2(n)/ϵ3
)
rounds

of adaptivity. For non-negative functions we obtain a

(
3 − 2
√
2 − ϵ

)
-

approximation and a fractional solution that yields a (1/e − ϵ)-
approximation. Our approach for parallelizing greedy yields ap-

proximations for intersections of matroids and matchoids, and the

approximation ratios are comparable to those known for sequential

greedy.

CCS CONCEPTS
• Theory of computation→ Submodular optimization and poly-
matroids; Approximation algorithms analysis; Massively parallel al-
gorithms.

KEYWORDS
submodular maximization, parallel algorithms, matroids

ACM Reference Format:
Chandra Chekuri and Kent Quanrud. 2019. Parallelizing Greedy for Sub-

modular Set Function Maximization in Matroids and Beyond. In Proceedings

∗
This work is partially supported by NSF grant CCF-1526799. The full version of this

extended abstract is available at https://arxiv.org/abs/1811.12568.

†
http://chekuri.cs.illinois.edu

‡
http://kentquanrud.com

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316406

of the 51st Annual ACM SIGACT Symposium on the Theory of Computing
(STOC ’19), June 23–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3313276.3316406

1 INTRODUCTION
Matroids and submodular functions are two fundamental objects

in combinatorial optimization that help generalize and unify many

results. A matroidM = (N ,I) consists of a finite ground set N

and a downclosed family of independent sets I ⊆ 2
N

that sat-

isfy a simple exchange property. Whitney [55] defined matroids

to abstract properties of dependence from linear algebra. Matroids

are surprisingly common in combinatorial optimization and cap-

ture a wide variety of constraints. Submodular set functions are

a class of real-valued set functions f : 2
N → R that discretely

model decreasing marginal returns. (Formal definitions for both

matroids and submodular functions are given in Appendix A.) More

than purely mathematical generalizations, matroids and submod-

ular functions capture the computational character of their more

concrete instances. One can maximize a linear function over a ma-

troid, the same way that one can compute a maximum or minimum

weight spanning tree. For a submodular function f , one can obtain

an optimal

(
1 − e−1

)
-approximation to maximizing f (S) over a car-

dinality constraint on S [52], the same way that one can obtain an

optimal

(
1 − e−1

)
-approximation to maximum coverage subject to

a cardinality constraint (where optimality assumes P , NP) [33].

Both of these connections are realized by a simple greedy algorithm.

The above connections are by now classical. A comparably re-

cent result is an optimal

(
1 − e−1

)
-approximation to maximizing

f (S) over a matroid constraint S ∈ I when f is monotone [17],

a significant generalization of the cardinality constraint problem.

Subsequent developments obtained a e−1-approximation for non-

negative submodular functions subject to a matroid constraint [36]

and then improved beyond e−1 [13, 26]. The techniques underlying
these results take a fractional point of view with one part continu-

ous optimization and another part rounding, somewhat analogous

to the use of LP’s for approximating integer programs. These and

other techniques lead to a number of improved approximations

for other set systems, such as combinations of matroids and pack-

ing constraints. There has been significant work on submodular

function maximization in the recent past based also on classical

combinatorial techniques such as greedy and local search and some

novel variants such as the double greedy algorithm which led to

an optimum

1

2

-approximation for unconstrained maximization of

a nonnegative submodular function [16].

78

https://arxiv.org/abs/1811.12568
http://kentquanrud.com
https://doi.org/10.1145/3313276.3316406
https://doi.org/10.1145/3313276.3316406
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3313276.3316406&domain=pdf&date_stamp=2019-06-23

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Chandra Chekuri and KentQuanrud

With generality comes applicability. Many modern problems in

machine learning and data mining can be cast as submodular func-

tion maximization subject to combinatorial or linear constraints.

These applications leverage large amounts of informative data that

form very large inputs in the corresponding optimization problem.

Practical concerns of scalability have lead to theoretical consider-

ation of various “big data” models of computation, such as faster

approximations [2, 15, 27, 34, 46, 47], online and streaming mod-

els [1, 14, 18–20, 35, 39, 46, 48, 53], and algorithms conforming to

map-reduce frameworks [8, 9, 43–45, 49].

To retain the full generality of submodular functions, submodu-

lar optimization algorithms are generally specified in a value oracle

model, where one is given access to an oracle that returns the value

f (S) for any set S . Algorithms in this model are typically measured

by the number of oracle calls made in addition to usual computa-

tional considerations. From a learning theoretic perspective, the

oracle model raises a question of how much one can learn about a

submodular function from a limited number of queries to the oracle.

Balkanski et al. [4] showed that a polynomial number of queries

of random samples (drawn from any distribution) cannot lead to a

constant factor approximation for maximizing a submodular func-

tion subject to a cardinality constraint. The key point is that the

queries are selected independently. All the standard polynomial

time algorithms, of course, make only polynomially many queries,

but these queries are chosen sequentially, one query informing the

next.

Motivated by both practical and theoretical interests, Balkan-

ski and Singer [7] investigated the minimum required adaptivity
for submodular maximization. Adaptivity can be interpreted (to

some extent) as a parallel model of computation with parallel ac-

cess to oracles. For k ∈ N, an algorithm with access to an oracle

is k-adaptive if all of its oracle queries can be divided into a se-

quence of k rounds, where the choice of queries in one round can

only depend on the values of queries in strictly preceding rounds.

For example, the greedy algorithm for cardinality constraints has

adaptivity equal to the specified cardinality. The negative results

of [4] can be restated as saying more than 1 round of adaptiv-

ity is necessary for a constant approximation. Pushing this model

further, Balkanski and Singer [7] showed that no algorithm can

obtain better than a O
(
1/log n

)
approximation ratio with less than

O
(
log(n)/log log n

)
adaptivity. On the positive side, Balkanski and

Singer [7] gave a

1

3

-approximation for maximizing a monotone

submodular function using O
(
log n

)
adaptive rounds. This was

improved by

(
1 − e−1 − ϵ

)
-approximation algorithm for maximiz-

ing a monotone submodular function subject to a cardinality with

O
(
log(n)/poly(ϵ)

)
adaptivity [6, 28]. A number of follow up works

have extended these results to knapsack and packing constraints

[22, 30] and nonnegative submodular functions [3, 30, 31], or im-

proved other aspects such as the total number of oracle calls [32].

One could argue that all of these papers essentially build upon the

understanding and analysis for the cardinality constraint (even the

ones which address significantly more general packing constraints

[22, 30]).

One classical setting that is important to address is submodular

set function maximization subject to an arbirary matroid constraint.

LetM = (N ,I) be a matroid, and f : 2
N → R≥0 a nonnegative

submodular function. The goal is to compute, in parallel, an in-

dependent set I ∈ I maximizing f (I). We note that the natural

and simple greedy algorithm gives a 1/2-approximation when f
is monotone [38]. A strong theoretical motivation to study this

problem is to understand the extent to which the classical greedy

algorithm that gives good approximation for matroid constraints,

and several generalizations, can be parallelized. Historically, the

matroid constraint problem has been important for developing

several new algorithmic ideas including the multilinear relaxation

approach [17]. Before giving our results, it is important to establish

the model, and in particular how we engage the matroid from a

parallel perspective.

As with submodular functions, algorithms optimizing over ma-

troids typically access the matroid structure via oracles. Standard

oracles for a matroid M = (N ,I) are independence oracles,
which take as input a set S ⊆ N and return whether or not S ∈ I;
rank oracles, which take as input a set S ⊆ N and return the

maximum cardinality of any set in S ; and span oracles, which
take as input a set S ⊆ N and an element e ∈ N and returns

whether or not S + e has higher rank than S . Rank oracles are at

least as strong as both independence oracles (since a set S is inde-

pendent iff rank(S) = |S |) and span oracles (by comparing rank(S)
and rank(S + e)). In this work, we assume access to span oracles,

and extend the notion of adaptivity to span oracles in the natural

way.

Parallel rank oracles are known for most useful matroids. Parallel

rank oracles for graphic matroids are given by parallel algorithms

for computing spanning trees, such as Borůvka’s algorithm. Rank

oracles for linearly representable matroids (i.e., independent sets of

vectors in some field) are also known [11, 25, 40, 50]. We note that

many standard matroids (such as partition matroids and graphic

matroids) can be viewed as linearly representable matroids. Parallel

oracle models are well established in the literature. For example,

the parallel oracle model was assumed by Karp et al. [42], who

considered parallel algorithms w/r/t both independence and rank

oracles for computing maximal and maximum independent sets,

generalizing work on perfect matchings [41]. The oracle model was

also considered by Narayanan et al. [51], who obtained parallel

algorithms for matroid union and intersection in representable

matroids, and asked if similar results can be obtained for general

matroids assuming access to rank or independence oracles.

We are now prepared to state our results. We first obtain results

for matroid constraints that are competitive with the best known se-

quential algorithms and are polylogarithmically adaptive.We obtain

different approximation ratios depending on whether one desires a

discrete independent set or a fractional point in the independent set

polytope. The fractional point is evaluated w/r/t the “multilinear

extension” F : RN≥0 → R of the set function f . The multilinear

extension (defined in Appendix A.1) is a continuous extension of

f first applied to submodular optimization in [17]. A point in the

independent set polytope of a matroid can be rounded to a discrete

set without loss, and nearly all competitive approximation algo-

rithms for matroid constraints are obtained by approximating the

multilinear extension and then rounding [2, 17, 23, 36] (with the

notable exception being [37]). The rounding schemes, however, are

79

Parallelizing Greedy for Submodular Set Function Maximization... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

not known to be parallelizable for general matroids. For now, the

fractional solutions give a certificate that allow us to approximate

the optimum value. In the following, let OPT = max

I ∈I
f (I) denote

the maximum value of any independent set. The rank of a matroid

is the maximum cardinality of any independent set. We first give

results for maximizing a monotone submodular function subject to

a matroid constraint.

Theorem 1.1. LetM = (N ,I) be a matroid of rank k and f :

2
N → R≥0 a monotone submodular function.

• There is a randomized algorithm that outputs a set I ∈ I s.t.

E[f (I)] ≥

(
1

2

− ϵ

)
OPT, with O

(
log(n) log(k)

ϵ2

)
adaptive rounds in

expectation.
• There is a randomized algorithm that computes a convex com-

bination of O(1/ϵ) independent sets x ∈ convex(I) s.t. F (x) ≥(
1 − e−1 − ϵ

)
OPT with O

(
log(n) log(k)

ϵ3

)
adaptive rounds in expec-

tation, which implies that one can compute a
(
1 − e−1 − ϵ

)
approxi-

mation to OPT.

Remark 1.2. We state the approximation and adaptivity bounds

as expected quantities. We can achieve a high-probability bounds

via standard tricks, however, in the interest of clarity we leave these

details for a future version.

We also obtain approximations for generally nonnegative sub-

modular functions with low adaptivity.

Theorem 1.3. LetM = (N ,I) be a matroid of rank k and f :

2
N → R≥0 a nonnegative submodular function.

• There is a randomized algorithm that computes an independent

set I ∈ I such that E[f (I)] ≥ (1 − ϵ)
(
3 − 2
√
2

)
OPT and has

adaptivity O
(
log(n) log(k)

ϵ2

)
in expectation.

• There is a randomized algorithm that computes a convex
combination of O(1/ϵ) independent sets I1, . . . , Iℓ ∈ I with

O

(
log(n) log(k)

ϵ3

)
adaptive rounds in expectation such that,

if Jk samples each element in Ik independently with proba-
bility 1/ℓ for each k ∈ [ℓ], we have E[f (J1 ∪ · · · ∪ Jℓ)] ≥(
e−1 − ϵ

)
OPT. This implies that one can compute a

(
e−1 − ϵ

)
approximation to OPT.

Remark 1.4. Given a fractional point x in the matroid polytope it

can be rounded to an independent set I such that E[f (I)] = F (x)
when f is submodular. Pipage rounding [17] and swap rounding

[23] achieve this. Swap rounding requires the decomposition of

x into a convex combination of independent sets and consists of

repeatedly (randomly) merging two independent sets via exchanges.

The algorithms in the preceding theorems provide such a decompo-

sition with onlyO(1/ϵ) independent sets. For some simple matroids

such as partition matroids one can implement the random merg-

ing between two independent sets in parallel rather easily. This

suggests an interesting open problem: for which matroids can two

independent set be merged randomly in parallel?

The techniques extend beyond matroids to combinations of

matroids, such as matroid intersections or (more generally) p-
matchoids. These systems generalize bipartite matchings, arbores-

ences, and non-bipartite matchings, and are defined formally in

Appendix A.2.1. The rank of such a system is the maximum car-

dinality of any independent set. W/r/t the oracle model, these set

systems are defined by some underlying collection of matroids, and

we assume access to a rank oracle for each underlying matroid. We

also note that, unlike in matroids, rounding a fractional solution

in matroid intersections and matchoids incurs additional constant

factor loss in the approximation, but we still state bounds for the

multilinear relaxation as they are of independent interest and can

be used in contention resolution schemes when combining with

other constraints [24].

Theorem 1.5. LetM = (N ,I) be a p-matchoid for some p ∈ N of
rank k , and let f : 2

N → R≥0 be a monotone submodular function.
There is a randomized algorithm that computes an independent set

I ∈ I s.t. E[f (I)] ≥
(
1 − ϵ

p + 1

)
OPT with O

(
log(n) log(k)

ϵ2

)
adaptive

rounds in expectation. There is a randomized algorithm that computes
a convex combination of O(1/ϵ) independent sets x ∈ convex(I)

s.t. E[F (x)] ≥
(
1 − e−1/p − ϵ

)
OPT with O

(
log(n) log(k)

ϵ3

)
adaptive

rounds in expectation.

For nonnegative functions we have the following theorem.

Theorem 1.6. LetM = (N ,I) be a p-matchoid for some p ∈ N
of rank k , and let f : 2

N → R≥0 be a nonnegative submodular
function. There is a randomized algorithm that computes I ∈ I

such that E[f (I)] ≥ (1 − ϵ)
(
1 + o(1)

4(p + 1)

)
OPT with O

(
log(n) log(k)

ϵ2

)
adaptive rounds in expectation. One can computed ℓ = O(1/ϵ) ran-

domized independent sets I1, . . . , Iℓ ∈ I with O

(
log(n) log(k)

ϵ3

)
adaptive rounds in expectation such that, if Ji samples each element
in Ii independently with probability 1/ℓ for each i ∈ [ℓ], we have

E[f (J1 ∪ · · · ∪ Jℓ)] ≥
1 − ϵ

p
e−1/p OPT.

1.1 Overview of Techniques
We give a brief overview of the techniques that lead to our results.

The overall algorithm is relatively simple, and much shorter to

describe than to analyze fully. Moreover, it is a composition of

modular techniques, each of which may be of independent interest.

For the sake of discussion, we focus on the setting of maximizing a

monotone submodular function subject to a matroid constraint, not-

ing that the techniques apply to nonnegative submodular functions

as well.

Consider the simple greedy algorithm in the sequential setting,

given in Figure 1. The greedy algorithm starts with an empty set S =
∅, and greedily adds to S the element e maximizing f (S+e) subject to
S +e ∈ I. It terminates when there are no longer any elements that

can be added to S . The greedy algorithm has an approximation ratio

of 1/2, short of the optimal (1 − e−1)-approximation scheme. This

suboptimal ratio is not the primary concern because a priori it is not
clear how to get any constant factor approximation for matroids in

parallel. (Moreover, a 1/2 approximation ratio can be amplified to

80

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Chandra Chekuri and KentQuanrud

greedy(M = (N ,I),f : 2
N → R≥0)

1. S ← ∅
2. while S is not a base
A. e ← argmax

d
{ fS (d) : I + d ∈ I}

B. S ← S + e
3. return S

Figure 1: A greedy 2-approximation formaximizing amono-
tone submodular function subject to a matroid constraint.

1−e−1; more on this later.) The greater problem in our setting is that

it is inherently very sequential. The number of iterations, rank(M),

can be as large as n. One hopes to “flatten” the iterations, but each

chosen element e depends on the previously selected elements S
at two critical points: (a) the marginal value fS (e) decreases as S
increases due to submodularity, and (b) we cannot take e if S + e is
infeasible. Note that when one considers a cardinality constraint

the second issue is significantly less important since every element

in the ground set can be feasibly added as long as we have not

reached a base. In fact all recent papers on adaptivity are focused

mainly on the first issue.

It is clear that to obtain poly

(
log n, 1/ϵ

)
depth, we cannot take

just one element at a time, and would prefer to somehow take, say,

rank(M)/poly
(
log n, 1/ϵ

)
elements in each parallel round. In fact,

we do not even take a set per iteration, but pairs of sets that we call

“greedy blocks”. For any set systemM = (N ,I), a (1 − ϵ)-greedy
block consists of a random pair of sets (I , S) s.t.

(1) I ⊆ S and I ∈ I.

(2) E[f (I)] ≥ (1 − ϵ)E[|S |]max

{
0,max

e
f (e)

}
.

We are interested in randomized greedy blocks not only w/r/tM

and f , but the contracted matroidM/Q and marginal values fQ
for various sets Q ⊆ N . When we do not assume f is monotone,

fQ can be negative, hence the need to take the max with 0.

Note that S is not required to be independent, but we still require

an independent certificate I ⊆ S that captures most of the value of S .
At the end of the day, we will output a union of the independent I -
components of the greedy blocks which will form a feasible solution.

Allowing S to be dependent is an important degree of freedom that

is used to make measurable progress and bound the depth.

We produce greedy blocks for matroids by a simple “greedy

sampling” procedure. Let λ ≥ max

e ∈N
f (e) be some upper bound on

the margin of any element. For a carefully chosen value δ > 0

we let S sample each element e with nearly-maximum marginal

value f (e) ≥ (1 − ϵ)λ independently with probability δ . We then

prune any sampled element that is either (a) spanned by the other

sampled elements or (b) has marginal value ≤ (1 − ϵ)λ w/r/t the

other sampled elements. The pruning step leaves an independent

subset I ⊆ S where each element contributes at least (1 − ϵ)λ to

I . We choose δ conservatively so that I retains most of the value

of S , but also as large as possible within these constraints. This

“greedy” choice of δ ensures that the residual problem (consisting

of large margin elements not spanned by S) is smaller by about an

ϵ-fraction in expectation. We can both search for the appropriate

value of δ and sample with probability δ in parallel. The basic idea

of greedy sampling is directly inspired by a much simpler greedy

sampling procedure in the cardinality setting in our previous work

[22].
1

We now iterate along greedy blocks, where each iteration is

w/r/t the residual system induced by previously selected greedy

blocks. We start with empty sets I , S = ∅. We repeatedly generate

(1 − ϵ)-greedy blocks (I ′, S ′)w/r/t the contracted matroidM/S and
the marginal values fS , and then add I ′ to I and S ′ to S . The λ’s
are decreased by multiplicative factors of 1 − ϵ to bound the depth:

within a fixed λ, we expect a limited number of greedy samples

until there are no elements left of marginal value ≥ (1 − ϵ)λ; λ
can decrease by 1 − ϵ multiplicative factor only a limited number

of times before the marginal values of remaining elements are

negligibly small. When λ is small enough, we return I , which is an

independent set.

The above produces a randomized independent set I w/

2 E[f (I)] ≥ (1 − ϵ)OPT. In fact, it achieves a slightly stronger

bound of the form E[f (I)] ≥ (1 − ϵ)fS (T) for any independent

set T ∈ I, where S is a set containing I such that E[f (S)] ≤
(1 + ϵ)E[f (I)]. This is similar to (but slightly weaker than) the

sequential greedy algorithm, which outputs an independent set I
such that f (I) ≥ fI (T) for any independent set T ∈ I.

To improve the bound of 1/2 we rely on an elegant result of

Badanidiyuru and Vondrák [2]. Motivated by the problem of find-

ing a faster approximation algorithms for submodular function

maximization, they showed that O(1/ϵ) iterations of the greedy

algorithm via auxiliary functions induced by the multilinear re-

laxation produces a convex combination of O(1/ϵ) independent

sets with approximation ratio

(
1 − e−1 − ϵ

)
. We call this process

“multilinear amplification”, and show that it can be used, via our 1/2

approximation, to produce

(
1 − e−1 − ϵ

)
-approximate fractional

solution.

1.2 Further Discussion and Related Work
Submodular function maximization is a classical topic that was

explored in several papers in the 70’s with influential papers on the

performance of the greedy algorithm, in particular by the work of

Nemhauser et al. [52] and several subsequent ones. Recent years

have seen a surge of activity on this topic. There have many im-

portant and interesting theoretical developments ranging from al-

gorithms, lower bounds, connections to learning and game theory,

and also a number of new applications in various domains includ-

ing machine learning and data mining. Greedy and local-search

methods have been revisited and improved and approximation al-

gorithms for nonnegative nonmonotone functions were developed.

An important development was the introduction of the multilinear

relaxation approach which brought powerful continuous optimiza-

tion methods into play and led to a new algorithmic approach. The

literature is too large to discuss in this paper. We are primarily

motivated by the work in approximation algorithms and the recent

interest in finding parallel algorithms. We refer the reader to [7]

for background and motivation studying the notion of adaptivity

1
There one chooses δ as large as possible subject to preserving the gradient (along

high margin elements) of the multilinear extension on average. The initial inspiration

for the greedy sampling procedure for matroids was to apply the same logic to the

rank function of the matroid, which is also a monotone submodular function.

81

Parallelizing Greedy for Submodular Set Function Maximization... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

which extends beyond interest in parallelization. Studying adaptiv-

ity allows one to avoid certain low-level details of the traditional

PRAM model. However, we note that modulo poly-logarithmic fac-

tors and the reliance on an oracle for f and the rank function of the

the underlying matroids, all of our algorithms can be implemented

in the PRAM model without much effort. Parallel algorithms for

Set Cover have been well-studied earlier (see [10] and references)

and more recent work has explored Max Coverage and submodu-

lar function maximization in modern parallel systems such as the

Map-Reduce model [8, 43, 44]. The study of parallelism for abstract

problems that we consider here can provide high-level tools that

could be specialized and refined for various concrete problems of

interest.

Some of these results have been obtained independently. Balka-

nski et al. [5] obtained similar results for monotonic submodular

functions, corresponding to Theorem 1.1 and Theorem 1.5. Ene et al.

[29] (updating an earlier manuscript [30]) obtains similar results

for optimizing the multilinear relaxation subject to a matroid con-

straint, both monotone and nonnegative, similar to Theorem 1.1

and Theorem 1.3.

Organization: We employ standard methodology and definitions

that can be found in standard references in combinatorial optimiza-

tion such as [54]. For the sake of completeness, preliminaries are

given (at a leisurely pace) in Appendix A. Section 2 describes and

analyzes the greedy sampling scheme which is the critical piece

in our algorithms. Section 3 describes how greedy sampling can

be used iteratively to derive approximation algorithms with low

adaptivity. In Section 4 we describe the multilinear amplification

idea from [2], extend it, and use it on top of the greedy algorithms

to obtain improved bounds. Proofs from Section 4 are omitted due

to space constraints. We also omit low-level details regarding sam-

pling and estimation that were abstracted out of the algorithms. We

refer the reader to the full version [21] for full details and proofs.

Notation: We use the following notation. For a set S and an

element e , we let S +e denote the union S ∪ {e} and let S −e denote
the difference S \ {e}. For a sequence of sets S1, . . . , Sk , we denote

their union by Sk =
k⋃
i=1

Si .

2 GREEDY SAMPLING
Recall the notion of greedy blocks, introduced in Section 1.1. In this

section, we define and analyze a randomized procedure for gener-

ating greedy blocks, called greedy-sample and given in Figure 2.

A brief sketch was given in Section 1.1, which we supplement now

with a more thorough description.

We focus on the setting where all elements e ∈ N have margin

(1 − ϵ)λ ≤ f (e) ≤ λ for some λ > 0. For a carefully chosen value

δ > 0, we sample each element in the ground set independently

with probability δ to produce a set S . S may be dependent. We prune

any element e ∈ S that is spanned by S − e , leaving an independent

subset I .
As δ increases, and S grows with it, submodularity pushes down

the expected value of S per sampled element, and the expected

span of S increases. In turn, the likelihood of pruning increases, and

the ratio f (I)/|S | decreases in expectation. Conversely, as we take

greedy-sample(M = (N ,I), f , λ, ϵ)

// Assume: (1 − ϵ)λ ≤ f (e) ≤ λ for all e
// Goal: randomized pair of sets (I , S), where I is an independent

subset of S , satisfying Theorem 2.1
1. choose δ > 0 large as possible s.t. for S ∼ δN,
A. E[|{e : fS (e) ≤ (1 − ϵ)λ}|] ≤ ϵ |N |
B. E[|span(S)|] ≤ ϵ |N |

2. sample S ∼ δN
3. I ← {e ∈ S : fS−e (e) ≥ (1 − ϵ)λ, e < span(S − e)}
4. return (I , S)

Figure 2: A greedy sampling procedure for generating
greedy blocks in independence systems.

δ down to 0, I converges to S in expectation, and for sufficiently

small δ , (I , S) is a greedy block. We define the “sufficiently small”

threshold to be such that in expectation, (a) at least (1 − ϵ)-fraction
of N has marginal value ≥ (1 − ϵ)λ w/r/t S , and (b) at least (1 − ϵ)-
fraction ofN is not spanned by S . Any δ satisfying both (a) and (b),

it is shown, produces a greedy block (I , S).
We greedily maximize δ s.t. the above constraints for the sake

of efficiency. Maximality ensures we reach the breaking point of

one of the two limiting conditions. If condition (a) is tight, many of

the elements have their marginal value drop below (1 − ϵ)λ. If (b)
is tight, then the sample S spans about an ϵ-fraction of the entire

matroid. Either way, we expect to substantially decrease the number

of un-spanned elements with marginal value ≥ (1 − ϵ)λ.
The first condition, (1.A), says we do not sample past the point

where the margins are decreasing by a lot. A simpler form appears

in previous work in the monotone cardinality setting [22]. The

second condition (1.B), is a more significant departure from the

cardinality setting, and strikes a balance between trying to span

many elements, and not having to prune too many of the sampled

elements. To build some intuition for condition (1.B), consider the
graphic matroid on a “fat path graph”, the multigraph consisting of

k copies of each edge.

h h
fa 5/52,

Then (1.B) (approximately) implies that δ ≤ ϵ/k . For this value
of δ , we expect a random sample to span an ϵ-fraction of the legs,

hence an ϵ-fraction of the edges. We drop edges from legs that

are sampled multiple times, but the probability of double sampling

from any particular leg is ≤ O
(
ϵ2
)
.

For a second example where the distribution is less uniform,

consider the “fat tail graph”, which is a multigraph where the first

leg has k copies of that edge for k much larger than 1/ϵ .

We consider two regimes for k . On one hand, if k is comparable

to n, then (1.B) is something like δ ≤
ϵ

k
≈

ϵ

n
. A uniform sample

with probability δ will span the fat tail, hence a large fraction of

82

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Chandra Chekuri and KentQuanrud

all the edges, with probability about ϵ . The probability of double

sampling from the fat tail remains small.

More illuminating is the case where k is much smaller than n.
Then (1.B) roughly comes out to δ ≤ ϵ . We expect the uniform

sample to span an ϵ-fraction of the single-edge legs, and almost

certainly prune from the fat tail. That is, the algorithm deliberately

oversamples the fat tail. The edges lost from oversampling fit into

“an ϵ of room”: the expected number of edges pruned from the fat

tail, ϵk , is much smaller than the expected number of edges sampled,

ϵn, and the loss is essentially negligible.

Finding δ and other implementation issues: All of our algorithms

critically rely on randoimization explicitly or implicitly. For instance

it is not obvious how to find the δ in (1) of greedy-sample. We

rely on random sampling and concentration bounds to estimate

various quantities of interest. A formal analysis of the estimation

errors and how they influence the approximation and adaptivity

clutters the flow of the main ideas. Some of these implementation

details are deferred to the full version [21], and we focus here on

the key high-level steps.

Theorem 2.1. LetM = (N ,I) be a matroid or p-matchoid, let
f : 2

N → R be a submodular function, and let λ ≥ 0 such that
(1 − ϵ)λ ≤ f (e) ≤ λ for all e ∈ N . Then greedy-sample(M, f , λ,
ϵ) returns random sets (I , S) such that

(i) (I , S) is a (1 −O(ϵ))-greedy block,
(ii) E[|{e < span(S) : fS (e) ≥ (1 − ϵ)λ}|] ≤ (1 − ϵ)|N |.

Proof.

(i) Clearly, I is an independent subset of S . Indeed, if I is not inde-
pendent, then there is e ∈ I s.t. e ∈ span(I − e). But span(I − e) ⊆
span(S − e) and e < span(S − e) by choice of e . We relate E[f (I)]
and |S | via two intermediate sets. Let

Q = {e ∈ S : fS−e (e) ≥ (1 − ϵ)λ}
and P = {e ∈ S : e < span(S − e)}.

Then I = P ∩Q . We claim that

(a) E[f (Q)] ≥ (1 − ϵ)λ E[|S |].
(b) E[|S \ P |] ≤ ϵ E[|S |].
Assuming claims (a) and (b) hold, we have

E[f (I)]
(a)
= E[f (Q)] − E[fI (Q)]

(b)
≥ E[f (Q)] −

∑
e ∈Q

E[fI (e)]

(c)
≥ E[f (Q)] −

∑
e ∈Q

P[e ∈ Q \ I]f (e)

(d)
≥ E[f (Q)] − λ

∑
e ∈Q

P[e ∈ Q \ I]

= E[f (Q)] − λ E[|Q \ I |]
(e)
≥ E[f (Q)] − λ E[|S \ P |]

(f)
≥ (1 − 2ϵ)λ E[|S |]

by (a) I ⊆ Q , (b,c) submodularity, (d) choice of λ, (e) Q \ I ⊆ S \ P ,
and (f) plugging in (a) and (b). It remains to prove claims (a) and

(b).

(a) For each element e , we have e ∈ Q iff e ∈ S and fS−e (e) ≥
(1 − ϵ)λ. Moreover, the events [e ∈ S] and [fS−e (e) ≥ (1 − ϵ)λ] are

independent because S is an independent sample. Thus

P[e ∈ Q] = P[e ∈ S]P[fS−e (e) ≥ (1 − ϵ)λ]

= δP[fS−e (e) ≥ (1 − ϵ)λ] (1)

We have

E[f (Q)]
(g)
≥

∑
e ∈N

P[e ∈ Q]E
[
fQ−e (e)

�� e ∈ Q]
(h)
= δ

∑
e ∈N

P[fS−e (e) ≥ (1 − ϵ)λ]E
[
fQ−e (e)

�� e ∈ Q]
(i)
≥ δ

∑
e ∈N

P[fS−e (e) ≥ (1 − ϵ)λ]E[fS−e (e) | e ∈ Q]

(j)
≥ δ (1 − ϵ)λ

∑
e ∈N

P[fS−e (e) ≥ (1 − ϵ)λ]

(k)
≥ δ (1 − ϵ)2λ |N | = (1 − ϵ)2λ E[|S |]

by (g) submodularity, (h) substituting for P[e ∈ Q] by equation (1)

above, (i) submodularity and Q − e ⊆ S − e , (j) definition of Q , and

(k) choice of δ per (1.A).
(b) For each element e , e ∈ S \ P iff e ∈ S and e ∈ span(S − e).
Moreover, the events [e ∈ S] and [e ∈ span(S − e)] are independent
because S is an independent sample. Thus

P[e ∈ S \ P] = δP[e ∈ span(S − e)] for all e ∈ N . (2)

We have

E[|S \ P |]
(l)
=

∑
e ∈N

P[e ∈ S \ P]

(m)
= δ

∑
e ∈N

P[e ∈ span(S − e)]

(n)
≤ δ

∑
e ∈N

P[e ∈ span(S)]

(o)
= δ E[|span(S)|]

(p)
≤ δϵ |N | = ϵ E[|S |].

by (l) linearity of expectation, (m) equation (2) above, (n) mono-

tonicity of span, (o) linearity of expectation, and (p) choice of δ .
(ii) By maximality of δ , either (1.A) or (1.B) is tight. If (1.A) is

tight, then

E[|{e : fS (e) ≥ (1 − ϵ)λ}|] ≤ (1 − ϵ)|N |.

If (1.B) is tight, then

E[|N \ span(S)|] = |N | − E[|span(S)|] ≤ (1 − ϵ)|N |.

Thus

E[|{e < span(S) : fS (e) ≥ (1 − ϵ)λ}|]

≤ min

{
E[|N \ span(S)|],

E[|{e : fS (e) ≥ (1 − ϵ)λ}|]

}
≤ (1 − ϵ)|N |.

■

Remark 2.2. Theorem 2.1 does not require f to be nonnegative

but does require λ ≥ 0. Theorem 2.1 holds for any independence

systemM = (N ,I) equipped with a function span : 2
N → 2

N

such that:

(a) If S ⊆ T ⊆ N , then span(S) ⊆ span(T).

83

Parallelizing Greedy for Submodular Set Function Maximization... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

(b) If S ⊆ N and e < span(S − e) for all e ∈ S , then S ∈ I.

For matroids, this is the standard span function. For matroid inter-

sections, this is given by the union of the individual span functions.

Remark 2.3. Claim (b) in the proof implies that δ |N | ≤
O(rank(M)). Indeed, |S \ P | ≥ |S | − rank(M) deterministically,

and (b) asserts that E[|S \ P |] ≤ ϵ E[|S |]. On the other hand, we

know that δ ≥ ϵ/n, since otherwise S = ∅ with probability at least

1 − ϵ and so (1.A) and (1.B) are easily satisfied.

3 ITERATION BY GREEDY BLOCKS
We now iterate along greedy blocks, where each iteration is w/r/t

the residual of previously selected greedy blocks. We start with

empty sets I , S = ∅. We repeatedly generate (1 − ϵ)-greedy blocks

(I ′, S ′) w/r/t the contracted matroidM/S and the marginal values

fS , and then add I ′ to I and S ′ to S . Recursively selecting greedy

blocks like so leads to approximation factors resembling the stan-

dard greedy analysis (Theorem 3.3 below).

The λ’s are generated by the standard technique of threshold-

ing, which is employed for the sake of efficiency. We maintain a

value λ such that fS (e) ≤ λ for all e ∈ N . We do not update λ
until fS (e) ≤ (1 − ϵ)λ for all e ∈ N , at which point we replace λ
with (1 − ϵ)λ. By part (ii) of Theorem 2.1, we only expect to call

greedy-sample O
(
log(n)/ϵ

)
times for a fixed value of λ. λ can

only decrease O
(
log(rank(M))/ϵ

)
times before the marginal val-

ues w/r/t S are small enough to be negligible. We expect to select

O

(
log(n) log(rank(M))

ϵ2

)
greedy blocks before the algorithm ter-

minates.

First give a general analysis concerning finite sequences of

greedy blocks.

Lemma 3.1. LetM = (N ,I) be a matroid and let f : 2
N → R

be a submodular function. Let I1, . . . , Ik ⊆ N and S1, . . . Sk ⊆ N be
two sequences of random sets such that:

(a) For each i , (Ii , Si) is an (1 − ϵ)-greedy block w/r/t fS i−1 and

M/Si−1.
(b) fSk

(T \ span
(
Sk

)
) ≤ β for all T ∈ I.

Then

(i) E

[
f
(
Ik

)]
≥ (1 − ϵ)E

[
f
(
Sk

)]
.

(ii) For a fixed independent set T ∈ I, there is a partition
T1, . . . ,Tk+1 of T (depending on S1, . . . , Sk) such that Ti ∩
Si−1 = ∅ for each i and

E

[
f
(
Ik

)]
≥ (1 − ϵ)

k+1∑
i=1

E

[
fS i−1
(Ti)

]
− (1 − ϵ)β .

Proof.
(i) We have

E

[
f (Ik)

]
(a)
=

k∑
i=1

E

[
fI i−1
(Ii)

] (b)
≥

k∑
i=1

E

[
fS i−1
(Ii)

]
(c)
≥ (1 − ϵ)

k∑
i=1

E

|Si |max

0, max

e<span
(
Su−1

) fS i−1 (e)

block-greedy(M = (N ,I),f : 2
N → R,ϵ)

1. I , S ← ∅; λ← max

e ∈N
f (e); λ0 ←

ϵ OPT

rank(M)

// or any λ0 ≤
ϵ OPT

rank(M)
2. while λ ≥ λ0
A. while N ′ = {e ∈ N : fS (e) ≥ (1 − ϵ)λ} is not empty
i. (I ′, S ′) ← (1 − ϵ)-greedy blocks w/r/t fS and
(M/S) ∧ N ′

ii. I ← I ∪ I ′, S ← S ∪ S ′

B. λ← (1 − ϵ)λ
3. return (I , S)

Figure 3: An extension of the greedy algorithm to greedy
blocks with a polylogarithmic number of iterations in ex-
pectation.

(d)
≥ (1 − ϵ)

k∑
i=1

E

[
fS i−1
(Si)

]
(e)
= (1 − ϵ)E

[
f
(
Sk

)]
by (a) telescoping, (b) submodularity and I i−1 ⊆ Si−1, and (c) as-

sumption (a) that (Ii , Si) is a greedy block, (d) submodularity, and

(e) telescoping.

(ii) By Lemma A.2, we can partition T ∩ span
(
Sk

)
= T1 ∪ · · · ∪Tk

such that for each i ,

Ti ⊆ N \ span
(
Si−1

)
and

|Ti | ≤ rank

(
Si
)
− rank

(
Si−1

)
≤ |Si |.

(3)

Let T1, . . . ,Tk be such a partition for each realization of S1, . . . , Sk ,

and let Tk+1 = T \ span
(
Sk

)
. The partition T1, . . . ,Tk+1 of T is

randomized, and a deterministic function of S1, . . . , Sk . We have

E

[
f (Ik)

]
(f)
=

k∑
i=1

E

[
fI i−1
(Ii)

] (g)
≥

k∑
i=1

E

[
fS i−1
(Ii)

]
(h)
≥ (1 − ϵ)

k∑
i=1

E

|Si |max

0, max

e<span
(
S i−1

) fS i−1 (e)

(i)
≥ (1 − ϵ)

k∑
i=1

E

|Ti |max

0, max

e<span
(
S i−1

) fS i−1 (e)

(j)
≥ (1 − ϵ)

k∑
i=1

E

[
fS i−1
(Ti)

] (k)
≥ (1 − ϵ)

k∑
i=1

E

[
fSk
(Ti)

]
(l)
≥ (1 − ϵ)

k+1∑
i=1

E

[
fS i−1
(Ti)

]
− (1 − ϵ)β

by (f) telescoping, (g) submodularity and I i−1 ⊆ Si−1, (h) (Ii , Si)

being a greedy block w/r/t fS i−1
andM/Si−1, and (i) |Ti | ≤ |Si |,

(j) Ti ⊆ N \ span
(
Si−1

)
, (k) submodularity, and (l) adding the

(negative) term (1 − ϵ)E
[
fSk
(Tk+1)

]
− (1 − ϵ)β .

■

84

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Chandra Chekuri and KentQuanrud

Lemma 3.2. Let f : 2
N → R be a normalized submodular function

and let (I , S) be a greedy block where P[S , ∅] > 0. Then (I , S) is a
greedy block conditional on S , ∅.

Proof. We have

E[|S |] = P[S , ∅]E[|S | | S , ∅],

and since (a) S = ∅ =⇒ I = ∅ and (b) f is normalized, we have

E[f (I)]
(a)
= P[S = ∅]f (∅) + P[S , ∅]E[f (I) | S , ∅]

(b)
= P[S , ∅]E[f (I) | S , ∅]

Thus

E[f (I) | S , ∅] =
E[f (I)]

P[S , ∅]

= (1 − ϵ)
E[|S |]

P[S , ∅]
max

{
0,max

e
f (e)

}
= (1 − ϵ)E[|S | | S , ∅]max

{
0,max

e
f (e)

}
,

as desired. ■

Theorem 3.3. Let M = (N ,I) be a matroid and let f :

2
N → R≥0 be a nonnegative submodular function. With

O

(
log(n) log(rank(M))

ϵ2

)
calls to greedy-sample in expectation,

one can compute a randomized independent set I ∈ I and a ran-
domized sequence of n = |N | sets S1, . . . , Sn such that

(1) I ⊆ Sn .
(2) E[f (I)] ≥ (1 − ϵ)E

[
f
(
Sn

)]
.

(3) For any set T ∈ I, there is a partition T1, . . . ,Tn+1 of T (de-
pending on S1, . . . , Sn) such that

E[f (I)] ≥ (1 − ϵ)
n+1∑
i=1

E

[
fS i−1
(Ti)

]
.

Proof. Consider block-greedy. Each iteration of (2.A.*) expects

to decrease N ′ by a (1 − ϵ)-multiplicative factor, and N ′ is at most

n. So we expect at most O
(
log(n)/ϵ

)
iterations of (2.A.*) per

λ. Moreover, we have O
(
log(rank(M))/ϵ

)
choices of λ. Thus we

expect at most O
(
log(n) log(rank(M))/ϵ2

)
iterations total.

Of the greedy samples computed by block-greedy, let

(I1, S1), (I2, S2), . . . be the subsequence of nonempty greedy blocks

with Si , ∅. Since the Si ’s are disjoint, there are at most n pairs

in the sequence. Appending empty greedy blocks if necessary, we

have n random pairs (I1, S1), . . . , (In , Sn) such that:

(a) for each i ∈ [n], by Lemma 3.2, (Ii , Si) is an (1 − ϵ)-greedy

block w/r/t f
span

(
S i−1

)
andM/Si−1.

(b) deterministically we have E

[
fSn
(e)

]
≤

cϵ maxe f (e)

poly(rank(M))
for

any desired constant c .

The result now follows from applying Theorem 3.3 with β ≤

ϵ E
[
f
(
In
)]
. ■

To help interpret Theorem 3.3, we note that the sequential greedy

algorithm gives the above guarantee deterministically, with I = Sn

and ϵ = 0. That is, greedy returns an independent set I ∈ I and a

sequence of sets S1, . . . , Sk ⊆ N (for k = rank(M)) such that:

(a) I ⊆ Sn .
(b) For any set T ∈ I, there is a partition T1, . . . ,Tn+1 of T

(depending S1, . . . , Sn+1) such that

f (I) ≥
n+1∑
i=1

fS i−1
(Ti).

3.1 Beyond Matroids
It is well-known that the greedy analysis extends past matroids,

to intersections of matroids, and more generally, matchoids. In

this section, we show that greedy blocks extend to p-matchoids as

well, obtaining the appropriate approximation ratios inversely pro-

portional to p. Proofs are omitted due to space constraints and

we refer the reader to the full version [21]. In this section, let

rank(M) = max{|I | : I ∈ I} denote the maximum cardinality of

any independent set.

Theorem 3.4. LetM = (N ,I) be ap-matchoid, and let f : 2
N →

R be a submodular function. With O
(
log(n) log(rank(M))/ϵ

)
calls

to greedy-sample in expectation, one can compute a randomized
independent set I ∈ I and a sequence of n = |N | sets S1, . . . , Sn such
that

(i) I ⊆ S and E[f (I)] ≥ (1 − ϵ)E[f (S)].
(ii) For anyT ∈ I, there is a partitionT1, . . . ,Tn+1 ofT (depending

on S) such that Ti ∩ span
(
Si−1

)
= ∅ for each i and

E[f (I)] ≥
1 − ϵ

p

n+1∑
i=1

E

[
fS i−1
(Ti)

]
.

To help interpret Theorem 3.4, we note that the sequential greedy

algorithm can be interpreted as a sequence of exact (i.e., ϵ = 0) and

deterministic greedy blocks. This gives the above guarantee deter-

ministically, with I = Sn and with ϵ = 0. That is, greedy returns an

independent set I ∈ I and a sequence of sets S1, . . . , Sk ⊆ N (for

k = |I |) such that:

(a) I ⊆ Sn .
(b) For any set T ∈ I, there is a partition T1, . . . ,Tn+1 of T

(dependent on S1, . . . , Sn+1) such that

f (I) ≥
1

p

n+1∑
i=1

fS i−1
(Ti).

Monotone approximation. Theorem 3.3 and Theorem 3.4 directly

lead to approximations in the monotone case essentially matching

the greedy algorithms.

Theorem 3.5. Let M = (N ,I) be a p-matchoid, and let
f : 2

N → R≥0 be a monotonic submodular function. With
O
(
log(n) log(rank(M))/ϵ

)
calls to greedy-sample in expectation,

one can compute a randomized independent set I ∈ I such that

E[f (I)] ≥
1 − ϵ

p + 1
f (T)

for any T ∈ I.

85

Parallelizing Greedy for Submodular Set Function Maximization... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Nonnegative approximation. LetM = (N ,I) by a p-matchoid

and f : 2
N → R≥0 be a nonnegetive submodular function. If f is

not monotone, then the approximation guarantees (i) and (ii) of

Theorem 3.3 do not immediately imply an actual approximation

factor, as the sum on the RHS of (ii) may be much smaller than

f (T). Nonetheless one can prove the following.

Corollary 3.6. LetM = (N ,I) be a p-matchoid and f : 2
N →

R≥0 a nonnegative submodular function. For sufficiently small ϵ > 0,

withO
(
log(n) log(rank(M))/ϵ2

)
adaptive rounds in expectation, one

can compute an independent set J such that

E[f (I)] ≥ (1 − ϵ)
(
2p + 1 − 2

√
p(p + 1)

)
OPT

= (1 − ϵ)

(
1 + o(1)

4(p + 1)

)
OPT .

4 MULTILINEAR AMPLIFICATION
By combining greedy matroid sampling of Section 2 with the it-

erative analysis of greedy blocks in Section 3, we can produce

independent sets that resemble those of the greedy algorithm in

performance. For monotone functions, this implies a near-2 approx-

imation, short of the desired near-(1 − 1/e) approximation factor

achieved originally by the continuous greedy algorithm in [17].

Badanidiyuru and Vondrák [2] showed how to amplify a near-2 ap-

proximation into a near-(1 − 1/e) approximate fractional solution,

as a convex combination of O(1/ϵ) near-2 approximations w/r/t

submodular functions induced by the multilinear relaxation. We

call this process “multilinear amplification”.

We want to highlight that multilinear amplification applies to

any set system, and for any approximation guarantee for the oracle,

where the amplified approximation factor varies with the approxi-

mation ratio of the oracle.

The primary caveat with multilinear amplification is that the

fractional solution still needs to be rounded. Many constraints can

be rounded with some bounded loss, but in many cases the loss

offsets the gains from the amplification.
2
An important exception is

matroids, which can be rounded without loss. For other constraints,

the amplification step may still prove valuable if the rounding

schemes improve in the future.

It is not clear if general matroids can be rounded with low depth.

Some explicit matroids, such as partition matroids, can be handled

fairly easily and directly. Rounding algorithms for general matroids,

such as swap rounding, appeal to properties (such as Brualdi’s

strong exchange) that are inherently sequential.

The amplification process still gives an improved approxima-

tion ratio to the value of the optimization problem, since there is

no integrality gap for matroids. Moreover, rounding to a matroid

in parallel may be less important than solving the optimization

problem in parallel, because the O(1/ϵ) independent sets produced
by the amplification may be much smaller than the original input,

and existing rounding schemes are oblivious and do not require f .
We think that parallelizable rounding schemes for matroids is an

interesting open question.

2
Perhaps this is why [2] does not explicitly explore multilinear amplification in its full

generality.

monotone-ML-amp(M = (N ,I), f : 2
N → R≥0, ϵ > 0)

1. x ← 0
2. repeat ℓ = O(1/ϵ) times
A. define д(S) = F (x + S/ℓ) − F (x)
B. invoke oracle to get S ∈ I s.t.

E[д(S)] ≥ (1 − ϵ)α E[дS (T)] for all T ∈ I

C. x ← x +
S

ℓ
3. return x

Figure 4: A procedure based on [2] amplifying an α-
approximation algorithm for monotone submodular maxi-
mization to a fractional nearly

(
1 − e−α/1−α

)
-approximation

algorithm via the multilinear extension.

nonnegative-ML-amp(M = (N ,I), f : 2
N → R≥0, ϵ, α)

1. x ← 0
2. for i = 1 up to ℓ = O(1/ϵ)

A. define д(S) = E

[
f J i−1
(S ′)

]
where S ′ ∼ S/ℓ and

Jj ∼ αIj/ℓ for each j
B. invoke oracle to get Ii ∈ I satisfying

conditions (a) and (b) of Theorem 4.2
3. return (I1, . . . , Iℓ)

Figure 5: A procedure amplifying greedy-type approxima-
tion algorithms for nonegative submodular functions via
the multilinear extension.

4.1 Monotone Multilinear Amplification
The monotone case is essentially given by Badanidiyuru and Von-

drák [2] and sketched in Figure 4.

Theorem 4.1. LetM = (N ,I) be a set system, and let f : 2
N →

R≥0 be a monotone submodular function. Suppose one has access to
an oracle that, given a submodular function д, returns a (possibly
randomized) set S ∈ I such that

E[д(S)] ≥ α E[дS (T)] for all T ∈ I,

for some α ∈ (0, 1]. With O(1/ϵ) calls to this oracle, one can compute
a convex combination ofO(1/ϵ) independent sets x ∈ convex(I) such
that

F (x) ≥ (1 − ϵ)
(
1 − e−α

)
f (T) for all T ∈ I,

where F is the multilinear extension of f .

4.2 Nonnegative Multilinear Amplification
In this section, we consider another multilinear amplification

scheme that attains weaker bounds for the more general class of

nonnegative submodular functions. The nonnegative multilinear

amplification scheme is to measured greedy what the monotone

multilinear amplification scheme is to continuous greedy, as dis-

cussed further in the full version [21].

Theorem 4.2. LetM = (N ,I) be a set system, and let f : 2
N →

R≥0 be a nonnegative submodular function. Suppose one has access
to an oracle that, given a submodular function д, computes a (possibly

86

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Chandra Chekuri and KentQuanrud

randomized) set I ⊆ N and for which there exists a sequence of
disjoint sets S1, S2, . . . , Sk ⊆ N such that

(a) E[д(I)] ≥ (1 − ϵ)E
[
д(Sk)

]
(b) For any T ∈ I, there exists a partition T = T1 ∪ · · · ∪ Tk+1

(depending on S1, . . . , Sk) such that Tj ∩ S j−1 = ∅ for each j

and E[д(I)] ≥ α
∑
j
E

[
дS j−1

(Tj)
]
for some α ∈ [0, 1].

With ℓ = O(1/ϵ) calls to this oracle, one can compute ℓ independent
sets I1, . . . , Iℓ ∈ I such that if Ji ∼ α Ii/ℓ independently for each
i ∈ [ℓ], then

E[f (J1 ∪ · · · ∪ Jℓ)] ≥ (1 − ϵ)αe
−α f (T)

for all T ∈ I.

Remark 4.3. One motivation for Badanidiyuru and Vondrák [2]

was to improve the oracle complexity of maximizing a monotone

submodular function subject to a matroid constraint in the sequen-

tial setting. The nonnegative amplification scheme appears to of-

fer some improvement in the oracle complexity of maximizing a

generally nonnegative submodular function subject to a matroid

constraint in the sequential setting. It is cleaner to analyze the

sequential setting so we plan to address this in a separate writeup.

A PRELIMINARIES
This paper is primarily concerned with two abstract objects, sub-

modular functions and matroids, which we define formally in Ap-

pendix A.1 and Appendix A.2 respectively.

A.1 Submodular Functions
Let f : 2

N → R be a real-valued set function. f is:

(1) normalized if f (∅) = 0.

(2) nonnegative if f (S) ≥ 0 for all S ⊆ N .

(3) monotone f (S) ≤ f (T) for all S ⊆ T ⊆ N .

(4) submodular if f (S) + f (T) ≥ f (S ∪ T) + f (S ∩ T) for all
S ⊆ T ⊆ N .

All set valued functions in this paper are normalized and submodu-

lar, and submodular functions will always be assumed to be normal-

ized. The given function that we are optimizing over is nonnegative,

but other set-valued functions arise that are not necessarily non-

negative.

Submodularity can be understood intuitively in terms of “de-

creasing marginal returns”. To this end, we denote

fS (U)
def

= f (S ∪U) − f (S) for S,U ⊆ N .

fS (U) is represents the increase in value gained by adding U to S ,
and more succinctly called themarginal value ofU to S . Submod-

ularity (as defined above) is equivalent to saying that the marginal

value ofU is decreasing in S in the following sense:

fS (U) ≥ fT (U) for all S,T ,U ⊆ N with S ⊆ T .

For any submodular function f and set S , the marginal values

fS : N → R form a normalized submodular function. If f is

monotone, then fS is monotone and nonnegative. However, f being

nonnegative does not imply that fS is nonnegative.

We appeal to a continuous extension of f to Rn
≥0 called the “mul-

tilinear extension”, for which we introduce the following notation.

For a vector x ∈ Rn
≥0, we write S ∼ x to denote the random set

S ⊆ N that samples each e ∈ N independently with probability

min{xe , 1}. That is, we interpret x (after truncation) as the margins

of an independent sample. The multilinear extension of f , de-

noted F : RN≥0 → R, is the expected value of a random set drawn

according to x :

F (x) = E[f (S) | S ∼ x].

The name “multilinear extension” can be explained as follows.

We identify each set S with its incidence vector in {0, 1}N . Abusing

notation, we let S also denote its incident vector (when the meaning

is clear). Then we have F (S) = f (S) for every set S , and F is an

extension of f as a function of {0, 1}N . The “multilinear” comes

from the fact that F (x) is multilinear in x when x ∈ [0, 1]N .
As an expectation of f , F inherits many of the properties as f . f

is normalized, nonnegative, and monotone iff F is normalized, non-

negative and monotone, respectively. Submodularity translates to a

particular kind of concavity, as follows. We say that F ismonotone
concave if for any x ,v ∈ RN≥0 and δ > 0, the map

δ 7→ F (x + δv) is concave in δ .

Then f is submodular iff F is monotone concave. For example, if f
is submodular and monotonic, then

F (ϵx) ≥ ϵF (x) for all x ∈ RN≥0 and ϵ ∈ (0, 1).

A.2 Combinatorial Constraints
A set systemM = (N ,I) consists of a ground setN and a family

of subsets I ⊆ 2
N
. A set systemM = (N ,I) is an independence

system if I is nonempty and closed under subsets:

(a) ∅ ∈ I

(b) For S ⊆ T ⊆ N , T ∈ I implies S ∈ I.

A set S ∈ I is called an independent set. An independence system
is amatroid if it also satisfies the following augmentation property.

(c) If S,T ∈ I and |S | < |T |, then there is an element e ∈ T \ S
such that S + e ∈ I.

A base is a maximal independent set. By property (c), every base in

a matroid has the same cardinality, called the rank. More generally,

for any set S ⊆ N in a matroid M = (N ,I), every maximal

independent set in S has the same cardinality, called the rank
of S and denoted rank(S). The rank is a nonnegative, monotone

submodular function. The span of an independent set I ∈ I is the

set of elements e ∈ N such that either e ∈ I or I + e < I, where
I + e is a shorthand for I ∪ {e}. In general, the span of a set S is the

set of elements that do not increase the rank:

span(S) = {e ∈ N : rank(S + e) = rank(S)}.

Given a matroidM = (N ,I), there are two different ways to

modifyM of interest. Given a set S ⊆ N , the restriction ofM to S ,
denotedM∧S = (S,I ∧ S), has ground set S and independent sets

consisting of the independent subsets of S , I ∧S = {I ⊆ S : I ∈ I}.
The rank ofM ∧ S is precisely the rank of S .

The second modification is contraction. Give a set S ⊆ N ,

the contraction of M to S , denoted M/S = (N/S,I/S), has
ground set N/S = N \ span(S), lemmand independence is de-

fined by the rank function rankS (T) = rank(S +T) − rank(S). Al-
ternatively, one can choose any base B of S , and define I/S by

IS = {T ⊆ N/S : B ∪T ∈ I}.

87

Parallelizing Greedy for Submodular Set Function Maximization... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

A good working example of a matroid is the graphic matroid.
Here the ground set corresponds to the edges of some graph

G = (V ,E), and a set of edges is independent if they form a forest.

The bases of this matroid are the spanning forests in the graph. Re-

stricting a graphic matroid to a set of edges is the graphic matroid

over the subgraph induced by these edges. Contracting a set of

edges corresponds to the graphic matroid over the minor obtained

by contracting each of these edges.

A particular useful property ofmatroids, first observed by Brualdi

[12], is the following.

Lemma A.1. Let I , J be two independent sets with |I | ≥ |J |. Then
there exists an injection π : J \ I → I \ J such that for all e ∈ J ,

I − π (e) + e ∈ I.

Brualdi’s exchange mapping easily implies the following, which

is in a slightly more convenient form for us.

Lemma A.2. Let S1, S2, · · · , Sk be a sequence of sets in a matroid

M = (N ,I) such that Si ⊆ N \ span
(
Si−1

)
for each i . For any

independent set I ∈ I, one can partition T ∩ span

(
Sk

)
into sets

{T1, . . . ,Tk } such that for each i ,Ti ⊆ N \ span
(
Si
)
and |Ti | ≤ |Si |.

A.2.1 Combinations of Matroids. We optimize over matroids and

combinations of matroids, such as intersections of matroids and

more generally matchoids. A matroid intersection is an inde-

pendence system M = (N ,I) where I =
⋂
i
Ii for a collec-

tions matroidsMi = (N ,Ii) with the same set. Matroid intersec-

tions generalize bipartite matchings and arboresences. Amatchoid
M = (N ,I) is an independence system defined by a collection of

matroidsMi = (Ni ,Ii), where Ni ⊆ N for each i , with indepen-

dent sets

I = {S : S ∩ Ni ∈ Ii for all i}.

For k ∈ N, a k-matroid intersection is an intersection of k matroids,

and a k-matchoid is a matchoid where each element e ∈ N par-

ticipates in at most k of the underlying matroids. A k-matroid is

of course a k-matchoid. A k-matchoid can be recast as a matroid

intersection by extending each underlyingMi = (Ni ,Ii) to all of

N by allowing any extra element e ∈ N \Ni to only be spanned by
itself. The number of matroids in the matroid intersection may be

much larger than k , which matters only because the approximation

ratios depend on k .
Matroid intersections and matchoids still carry some of the struc-

ture and notions of matroids. Suppose a matchoid or matroid inter-

section is defined by the matroidsM1, . . . ,Mk . One can define a

function span : 2
N → 2

N
by

span(S) =
k⋃
i=1

spani (S)

where for each i , spani is the span function associated with the ith
matroid. This span function still has the following properties of

span functions for matroids:

(1) span(S) ⊆ span(T) for S ⊆ T .
(2) If S ⊆ N and e < span(S − e) for all e ∈ S , then S ∈ I.

There notions of restricting and contract a matroid intersection

or matchoid are still well-defined, by taking the restriction or con-

traction in each of the underlying matroids, and recombining the

restricted or contracted matroids into a matroid intersection or

matchoid.

Canonical examples of 2-matroid intersection are bipartitematch-

ings and arborescences. An example of a 2-matchoid is a matching,

and an example of a k-matchoid is a matching in a hypergraph of

rank k . In a matching (bipartite or general), the span of an edge

set S is the set of all edges incident to some edge in S . Contracting
an edge corresponds to removing both endpoints and all incident

edges.

REFERENCES
[1] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and An-

dreas Krause. 2014. Streaming submodular maximization: massive data sum-

marization on the fly. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 -
27, 2014. 671–680.

[2] Ashwinkumar Badanidiyuru and Jan Vondrák. 2014. Fast algorithms for maximiz-

ing submodular functions. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014. 1497–1514.

[3] Eric Balkanski, Adam Breuer, and Yaron Singer. 2018. Non-monotone Submodular

Maximization in Exponentially Fewer Iterations. CoRR abs/1807.11462 (2018).

http://arxiv.org/abs/1807.11462 To appear in NIPS, 2018.

[4] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2017. The limitations of

optimization from samples. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017. 1016–1027.

[5] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2018. An Optimal Ap-

proximation for Submodular Maximization under a Matroid Constraint in

the Adaptive Complexity Model. CoRR abs/1811.03093 (Nov. 2018). https:

//arxiv.org/abs/1811.03093

[6] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2019. An Exponential

Speedup in Parallel Running Time for Submodular Maximization without Loss

in Approximation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019.
283–302.

[7] Eric Balkanski and Yaron Singer. 2018. The adaptive complexity of maximizing a

submodular function. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018.
1138–1151.

[8] Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. 2015. The

Power of Randomization: Distributed Submodular Maximization on Massive

Datasets. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015. 1236–1244.

[9] Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. 2016. A

New Framework for Distributed Submodular Maximization. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA. 645–654.

[10] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. 2011. Linear-work

greedy parallel approximate set cover and variants. In SPAA 2011: Proceedings
of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011), Rajmohan

Rajaraman and Friedhelm Meyer auf der Heide (Eds.). ACM, 23–32.

[11] Allan Borodin, Joachim von zur Gathen, and John E. Hopcroft. 1982. Fast Parallel

Matrix and GCD Computations. Information and Control 52, 3 (1982), 241–256.
Preliminary version in FOCS, 1982.

[12] Richard A. Brualdi. 1969. Comments on bases in dependence structures. Bulletin
of the Australian Mathematical Society 1, 2 (1969), 161–167.

[13] Niv Buchbinder and Moran Feldman. 2016. Constrained Submodular Max-

imization via a Non-symmetric Technique. CoRR abs/1611.03253 (2016).

arXiv:1611.03253 http://arxiv.org/abs/1611.03253

[14] Niv Buchbinder, Moran Feldman, and Roy Schwartz. 2015. Online Submodular

Maximization with Preemption. In Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015. 1202–1216.

[15] Niv Buchbinder, Moran Feldman, and Roy Schwartz. 2017. Comparing Apples

and Oranges: Query Trade-off in Submodular Maximization. Math. Oper. Res. 42,
2 (2017), 308–329. Preliminary version in SODA, 2015.

[16] Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. 2015. A tight

linear time (1/2)-approximation for unconstrained submodular maximization.

88

http://arxiv.org/abs/1807.11462
https://arxiv.org/abs/1811.03093
https://arxiv.org/abs/1811.03093
http://arxiv.org/abs/1611.03253
http://arxiv.org/abs/1611.03253

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Chandra Chekuri and KentQuanrud

SIAM J. Comput. 44, 5 (2015), 1384–1402.
[17] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. 2011. Maximiz-

ing a Monotone Submodular Function Subject to a Matroid Constraint. SIAM J.
Comput. 40, 6 (2011), 1740–1766.

[18] Amit Chakrabarti and Sagar Kale. 2015. Submodular maximization meets stream-

ing: matchings, matroids, and more. Math. Program. 154, 1-2 (2015), 225–247.
Preliminary version in IPCO, 2014.

[19] T.-H. Hubert Chan, Zhiyi Huang, Shaofeng H.-C. Jiang, Ning Kang, and Zhi-

hao Gavin Tang. 2018. Online Submodular Maximization with Free Disposal.

ACM Trans. Algorithms 14, 4 (2018), 56:1–56:29. Preliminary version in SODA,

2017.

[20] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. 2015. Streaming Algo-

rithms for Submodular Function Maximization. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part I. 318–330.

[21] Chandra Chekuri and Kent Quanrud. 2018. Parallelizing greedy for submodular

set function maximization in matroids and beyond. CoRR abs/1811.12568 (2018).

arXiv:1811.12568 http://arxiv.org/abs/1811.12568

[22] Chandra Chekuri and Kent Quanrud. 2019. Submodular Function Maximization

in Parallel via the Multilinear Relaxation. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019. 303–322.

[23] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2010. Dependent Random-

ized Rounding via Exchange Properties of Combinatorial Structures. In 51th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA. 575–584.

[24] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2014. Submodular function

maximization via the multilinear relaxation and contention resolution schemes.

SIAM J. Comput. 43, 6 (2014), 1831–1879.
[25] Alexander L. Chistov. 1985. Fast parallel calculation of the rank of matrices over

a field of arbitrary characteristic. In Fundamentals of Computation Theory, FCT
’85, Cottbus, GDR, September 9-13, 1985. 63–69.

[26] Alina Ene and Huy L. Nguyen. 2016. Constrained Submodular Maximization:

Beyond 1/e. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA.
248–257.

[27] Alina Ene and Huy L. Nguyen. 2017. A Nearly-linear Time Algorithm for Sub-

modular Maximization with a Knapsack Constraint. CoRR abs/1709.09767 (2017).

http://arxiv.org/abs/1709.09767

[28] Alina Ene and Huy L. Nguyen. 2019. Submodular Maximization with Nearly-

optimal Approximation and Adaptivity in Nearly-linear Time. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,
San Diego, California, USA, January 6-9, 2019. 274–282.

[29] Alina Ene, Huy L. Nguyen, and Adrian Vladu. 2018. Submodular Maximization

with Matroid and Packing Constraints in Parallel. CoRR abs/1808.09987v2 (Nov.

2018). http://arxiv.org/abs/1808.09987v2

[30] Alina Ene, Huy L. Nguyen, and Adrian Vladu. 2018. Submodular Maximization

with Packing Constraints in Parallel. CoRR abs/1808.09987v1 (Aug. 2018). http:

//arxiv.org/abs/1808.09987v1

[31] Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. 2018. Non-

monotone Submodular Maximization with Nearly Optimal Adaptivity Complex-

ity. CoRR abs/1808.06932 (2018). arXiv:1808.06932 http://arxiv.org/abs/1808.06932

[32] Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. 2018.

Submodular Maximization with Optimal Approximation, Adaptivity and Query

Complexity. CoRR abs/1807.07889 (2018). arXiv:1807.07889 http://arxiv.org/abs/

1807.07889

[33] U. Feige. 1998. A Threshold of ln n for Approximating Set Cover. 45, 4 (July

1998), 634–652. Preliminary version in STOC, 1996.

[34] Moran Feldman, Christopher Harshaw, and Amin Karbasi. 2017. Greed Is Good:

Near-Optimal Submodular Maximization via Greedy Optimization. In Proceedings
of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands,
7-10 July 2017. 758–784.

[35] Moran Feldman, Amin Karbasi, and Ehsan Kazemi. 2018. Do Less, Get More:

Streaming Submodular Maximization with Subsampling. CoRR abs/1802.07098

(2018). arXiv:1802.07098 http://arxiv.org/abs/1802.07098

[36] Moran Feldman, Joseph Naor, and Roy Schwartz. 2011. A Unified Continuous

GreedyAlgorithm for SubmodularMaximization. In IEEE 52ndAnnual Symposium

on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011. 570–579.

[37] Yuval Filmus and Justin Ward. 2014. Monotone Submodular Maximization over a

Matroid via Non-Oblivious Local Search. SIAM J. Comput. 43, 2 (2014), 514–542.
Preliminary version in FOCS, 2012.

[38] Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. 1978. An

analysis of approximations for maximizing submodular set functions—II. In

Polyhedral combinatorics. Springer, 73–87.
[39] Chien-Chung Huang, Naonori Kakimura, and Yuichi Yoshida. 2017. Streaming

Algorithms for Maximizing Monotone Submodular Functions under a Knapsack

Constraint. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley,
CA, USA. 11:1–11:14.

[40] Oscar H. Ibarra, Shlomo Moran, and Louis E. Rosier. 1980. A Note on the Parallel

Complexity of Computing the Rank of Order n Matrices. Inf. Process. Lett. 11,
4/5 (1980), 162.

[41] Richard M. Karp, Eli Upfal, and Avi Wigderson. 1986. Constructing a perfect

matching is in random NC. Combinatorica 6, 1 (1986), 35–48.
[42] Richard M. Karp, Eli Upfal, and Avi Wigderson. 1988. The Complexity of Parallel

Search. J. Comput. Syst. Sci. 36, 2 (1988), 225–253. Some results appeared in

preliminary work in STOC, 1985 and FOCS, 1985.

[43] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. 2015.

Fast Greedy Algorithms in MapReduce and Streaming. TOPC 2, 3 (2015), 14:1–

14:22. Preliminary version in SPAA, 2013.

[44] Paul Liu and Jan Vondrák. 2018. Submodular optimization in the MapReduce

model. CoRR abs/1810.01489 (2018). http://arxiv.org/abs/1810.01489 To appear in

SOSA 2019.

[45] Vahab S. Mirrokni and Morteza Zadimoghaddam. 2015. Randomized Composable

Core-sets for Distributed Submodular Maximization. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015. 153–162.

[46] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. 2016.

Fast Constrained Submodular Maximization: Personalized Data Summarization.

In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016. 1358–1367.

[47] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-

drák, and Andreas Krause. 2015. Lazier Than Lazy Greedy. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. 1812–1818.

[48] Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. 2018. Streaming

Non-Monotone Submodular Maximization: Personalized Video Summarization

on the Fly. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. 1379–
1386.

[49] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. 2016.

Distributed Submodular Maximization. Journal of Machine Learning Research 17

(2016), 238:1–238:44. Preliminary version in NIPS, 2013.

[50] Ketan Mulmuley. 1987. A fast parallel algorithm to compute the rank of a matrix

over an arbitrary field. Combinatorica 7, 1 (1987), 101–104. Preliminary version

in STOC, 1986.

[51] H. Narayanan, Huzur Saran, and Vijay V. Vazirani. 1994. Randomized Parallel

Algorithms for Matroid Union and Intersection, With Applications to Arbores-

ences and Edge-Disjoint Spanning Trees. SIAM J. Comput. 23, 2 (1994), 387–397.
Preliminary version in SODA, 1992.

[52] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of approxi-

mations for maximizing submodular set functions – I. Math. Prog. 14, 1 (1978),
265–294.

[53] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh,

Aidasadat Mousavifar, and Ola Svensson. 2018. Beyond 1/2-Approximation

for Submodular Maximization on Massive Data Streams. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. 3826–3835.

[54] Alexander Schrijver. 2003. Combinatorial optimization: polyhedra and efficiency.
Vol. 24. Springer Science & Business Media.

[55] HasslerWhitney. 1935. On the abstract properties of linear dependence. American
Journal of Mathematics 57, 3 (1935), 509–533.

89

http://arxiv.org/abs/1811.12568
http://arxiv.org/abs/1811.12568
http://arxiv.org/abs/1709.09767
http://arxiv.org/abs/1808.09987v2
http://arxiv.org/abs/1808.09987v1
http://arxiv.org/abs/1808.09987v1
http://arxiv.org/abs/1808.06932
http://arxiv.org/abs/1808.06932
http://arxiv.org/abs/1807.07889
http://arxiv.org/abs/1807.07889
http://arxiv.org/abs/1807.07889
http://arxiv.org/abs/1802.07098
http://arxiv.org/abs/1802.07098
http://arxiv.org/abs/1810.01489

	Abstract
	1 Introduction
	1.1 Overview of Techniques
	1.2 Further Discussion and Related Work

	2 Greedy Sampling
	3 Iteration by Greedy Blocks
	3.1 Beyond Matroids

	4 Multilinear Amplification
	4.1 Monotone Multilinear Amplification
	4.2 Nonnegative Multilinear Amplification

	A Preliminaries
	A.1 Submodular Functions
	A.2 Combinatorial Constraints

	References

