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ABSTRACT 
Interacting with non-touchscreens such as TV or public dis
plays can be difficult and inefficient. We propose WATouCH, 
a novel method that localizes a smartwatch on a display and 
allows direct input by turning the smartwatch into a tangible 
controller. This low-cost solution leverages sensor fusion of 
the built-in inertial measurement unit (IMU) and photoplethys
mogram (PPG) sensor on a smartwatch that is used for heart 
rate monitoring. Specifically, WATouCH tracks the smart-
watch movement using IMU data and corrects its location 
error caused by drift using the PPG responses to a dynamic vi
sual pattern on the display. We conducted a user study on two 
tasks – a point and click and line tracing task – to evaluate the 
system usability and user performance. Evaluation results sug
gested that our sensor fusion mechanism effectively confined 
IMU-based localization error, achieved encouraging targeting 
and tracing precision, was well received by the participants, 
and thus opens up new opportunities for interaction. 

Author Keywords 
Smartwatch; Public display; Direct input; Tangible input. 

CCS Concepts 
•Human-centered computing → Human computer inter
action (HCI); Pointing devices; Pointing; 

INTRODUCTION 
Electronic displays are increasingly available at home (e.g., 
TV), workplace (e.g., presentation display), and public places 
(e.g., advertising or information boards) [1, 28]. This will be 
even more so with the emerging vision of ubiquitous displays 
on every glass in future cities [11]. However, not all displays 
are equipped with sensing systems, such as touchscreens and 
gesture sensors, as these sensors can be costly. Therefore, 
to interact with passive displays, existing solutions require 
additional controllers, such as keyboards, mouses, or mobile 
devices [3]. However, it may fall short of providing direct input 
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Figure 1. User grabbing and moving a smartwatch on top of a non-
touchscreen. The location of the smartwatch is continuously tracked 
with high frame rate and minimal delay using IMU. If the estimated lo
cation is different from the ground truth, the visual pattern beneath the 
watch will expand or shrink. The changes will be tracked by PPG sensor, 
and the pattern shift accordingly to minimize error caused by drift. 

[8, 37], leading to non-intuitive and inefficient interaction 
experiences on large or public displays. 

Pertinent research efforts have been made to enable direct 
input with displays, such as hand-based [6], head-based [18], 
and gaze-based pointing [40]. However, due to the lack of hap-
tic feedback, non-contact based pointing can be challenging 
and causes Midas Touch problem [31]. In contrast, interac
tion using a tangible controller offers touch sensation and 
affordance [12], although it requires specialized hardware. 

Informed by the fact that smartwatches or fitness trackers are 
becoming pervasive and can be easily taken off from one’s 
wrist by design [16, 24, 32], we propose an innovative input 
method, WATouCH, that exploits off-the-shelf smartwatch 
to achieve direct input on non-touchscreens, leveraging only 
built-in sensors. Our system allows users to grab and drag 
a smartwatch on a display as if using a puck or stylus, for 
point and click interaction (Figure 1). We can achieve fast and 
reliable tracking using the built-in sensors only and further 
leverage the touchscreen of the smartwatch for additional input. 
As such, our technique can be an intuitive, low-cost, and 
practical solution to non-touchscreen interaction. 

Specifically, we track a smartwatch using its inertial measure
ment unit (IMU) signals, and we correct the location error by 
leveraging photoplethysmogram (PPG) responses to a visual 
pattern displayed on the non-touchscreen and underneath the 
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smartwatch. This visual pattern follows the smartwatch, dy
namically expands if the location tracked by IMU is in low 
confidence, shifts towards the center of the smartwatch, and 
finally shrinks to minimize the error. Taken together, PPG 
and IMU signals can continuously localize the smartwatch on 
non-touchscreens. Our user study demonstrated that our sys
tem was well-received and showed encouraging performance. 
Our technique is a software-based only approach, thus can be 
adopted by fitness trackers and smartwatches in-the-wild. 

Our contribution is two-fold. We 1) repurpose a commercial 
smartwatch to allow direct input on non-touchscreens; 2) de
sign an effective localization method based on PPG and IMU 
signals and achieve fast and reliable tracking under natural 
hand movements. 

RELATED WORK 
This study is related to smartwatch interaction using IMU and 
PPG sensor and object tracking on display. 

Smartwatch Interaction using IMU or PPG Sensor 
As smartwatch becomes pervasive, there is an increasing num
ber of HCI studies on the smartwatch platform [33, 35]. One 
pertinent line of work related to ours is to leverage smartwatch 
as a three dimensional controller [50], using analog joystick 
[50] or by repurposing built-in IMU sensor [52]. Indeed, re
cent work also shown that the watchface can be detachable 
from the band [16, 24, 32] and repurposed for other use-cases. 
This is inline with our goal in this work. 

Most common uses of the IMU on smartwatch are for features 
such as step counting, activity recognition and for detecting 
the raise-to-wake gesture that turns on the display. Research 
also explored pointing interaction [13], 3DoF control [15] and 
gesture recognition [19, 43]. In contrast, we repurpose IMU 
to track the movement of smartwatch relative to a display. 

Besides the use of motion sensor, researcher has also inves
tigated the opportunities of repurposing the PPG sensor on 
smartwatch that is originally designed for blood and heart rate 
monitoring. For example, researchers exploited the PPG sig
nal for gesture recognition [4, 53]. In contrast, we repurpose 
it to track a visual pattern on unmodified display. 

Inspired by prior explorations, our work leverages built-in sen
sors on a smartwatch and extends the smartwatch functionality. 
Different from existing studies, we consider beyond the inter
play between user and smartwatch, and study the possibility of 
smartwatch cross-device interaction with non-touch displays. 

Tracking Object(s) on Display 
Object tracking methods for large-size displays can generally 
be categorized into non-vision and vision-based techniques. 
Common non-vision based techniques include capacitive sens
ing [27, 34, 36], magnetic field sensing [25, 30] and RFID [10, 
38]. However, these techniques often require custom sensors, 
display and modified objects such as adding or embedding 
tags (conductive material, magnets or RFID). 

Vision-based methods can be further clustered into method 
using external sensor(s) [9, 29, 47, 48] or built-in sensor on 
mobile devices [23, 49]. Since external camera(s) increases 

the cost and form factor of the system, we are more inter
ested in approaches using only built-in sensors that are readily 
available in consumer devices. 

Cross-device localization has also been studied using on-
device camera or light sensors. THAW [23] used the phone 
camera to capture a predefined gradient pattern on the dis
play and track its relative location while moving on top of the 
screen. Spatial tracking for hand-held devices has been stud
ied by using single [42] or multiple light sensors [21, 22] to 
perceive the high-frequency pattern generated by a projector. 

There were similar attempts for device localization that used 
light sensors to track the on-screen visual pattern [14, 39, 41, 
51]. Stanton et al. [39] used a RGB light sensor to track a color 
pattern . Sugimoto et al. [41] devised a tangible cube with five 
one-channel light sensors to track a gray-scale gradient pattern. 
Kawamoto et al. [14] reduced the number of light sensors to 
four and used accelerometer data for estimating the landing 
location when the device was grabbed into midair and placed 
again on the surface. In contrast, our method continuously 
estimates the on-screen location of smartwatch from both the 
IMU and PPG signals. More importantly, prior studies relied 
on either multiple light sensors or a multi-channel sensor, 
while our method is able to achieve fast localization using 
the built-in IMU and PPG sensor without any modification or 
additional equipment. 

SENSOR BACKGROUND 
This section provides a brief explanation of each sensing 
modality (PPG and IMU) that we employ in our tracking 
technique and the issues arise when only one type of sensor is 
used to estimate location on a display. 

Photoplethysmogram (PPG) 
PPG sensor is included in many wearable devices such as 
smartwatches (e.g., Apple Watch, WearOS) and fitness track
ers (e.g., Fitbit). It is generally used for heart rate and blood 
oxygenation monitoring, whereas some researchers have ex
plored further use cases such as sleep tracking, diabetes de
tection, or gesture detection. A PPG sensor consists of one or 
multiple light sensitive photodiodes and light emitters. While 
different types of emitter are viable, common wearable devices 
in consumer market preferred green light emitter [20] because 
it is more robust to user movement and environmental lighting. 

The principle of PPG sensing is based on light reflection and 
refraction. When light travels through biological tissues, it 
is more strongly absorbed by blood. Therefore, changes of 
blood flow can be captured by the PPG sensor as the changes 
of light intensity. In this work, we are the first to repurpose 
smartwatch’s built-in PPG sensor for localization on display. 

Inertial Measurement Unit (IMU) 
An IMU typically contains accelerometer, gyroscope and mag
netometer, which captures device acceleration, angular ve
locity and magnetic north, respectively. The data from these 
sensors are fused together to achieve robust three degree-of
freedom orientation tracking through sensor fusion approach. 

Specifically, tracking position using IMU alone is notoriously 
difficult [5, 45] to achieve. The position must be derived 
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Figure 2. Simplified step-by-step tracking of our IMU + PPG sensor fusion technique, please refer to video figure for slow motion recording. From left 
to right: a) Initial state, visual pattern is right below the smartwatch. b) The smartwatch has been moved over a distance. c) The visual pattern follows 
the smartwatch using IMU based distance calculation but there is drift and the estimated location is different from actual smartwatch location. d) The 
visual pattern expands gradually until the PPG sensor of the smartwatch sees either region of the visual pattern. e) The visual pattern moves towards 
the smartwatch so that the middle region is right beneath the PPG sensor. f) The visual pattern shrinks until it is fully hidden beneath the smartwatch. 

from acceleration through double integration. Acceleration 
is first integrated once to yield velocity, and then integrated 
again to yield position. This dead reckoning process through 
double integration means that even the tiniest measurement 
errors coming from noise or bias will result in a quadratically 
increasing error in the final position measurement, also known 
as drift. In practice, to alleviate the impact of drift, location 
tracking may be corrected by a secondary modality such as 
GPS [44] or under task-specific constraints such as zeroing 
velocity [5] errors during each stride, when the foot is detected 
as stationary [26]. 

DESIGN AND IMPLEMENTATION 
In summary, we propose to track the on-screen location of a 
smartwatch using PPG and IMU sensor fusion. Essentially, 
we perform double integration on the device acceleration to 
measure the movement. To correct for drift, we show a visual 
pattern on the screen at the estimated location. We then recog
nize the relative location of the smartwatch to the visual pattern 
based on its PPG responses. This relative location further in
forms the adjustment of the visual pattern, whose on-screen 
location is used as the estimate of smartwatch location. 

Location Initialization Using PPG Responses 
One straightforward approach to localize the smartwatch is 
to flash the display with gray-code sequence [21, 22], al
lowing the PPG sensor to decode its location directly. We 
implemented a similar method that iteratively searches the 
smartwatch location, starting from the whole screen area and 
a narrower region after each iteration (Figure 3). However, 
given that common display has limited refresh rate (60Hz), 
this method can only estimate a coarse position every few 
frames, which is not fast enough for interactive purposes (it 
takes ~400ms to achieve a spatial precision of ~100 pixels 
after three iterations). It is also overly intrusive, as the whole 
display will be consumed, blocking all other UI elements or 
background images temporarily. Nonetheless, this is useful 
for the initial localization when the smartwatch touches the 
display for the first time, and then the system can switch to 
continuous tracking afterward. 

Designing the Dynamics of Circle Visual Pattern 
We designed a circular visual pattern consists nine regions 
(eight quadrants + one middle circle, see Figure 2). Each area 

Figure 3. Flashing the whole screen with grid to search and localize 
the initial location of the smartwatch iteratively. From left to right, this 
figure depicts three iterations. 

has a different shade of color or brightness that can be robustly 
recognized by the PPG sensor. The sensor we used (PAH8011 
as in most of recent WearOS smartwatches) is not sensitive 
to color but only brightness. We opt for only low brightness 
so that the pattern appears dark and visually less intrusive. In 
idle time, only the center circle (most likely hidden beneath 
the smartwatch) is shown so as to reduce visual intrusiveness. 

Localizing Inside Visual Pattern Using PPG Responses 
As illustrated in Figure 2, there are three possible states and 
adjustment strategy for the visual pattern: 

1.	 PPG sensor leaves the visual pattern – expand the size of 
the visual pattern. 

2.	 PPG sensor stays inside any of the eight quadrants – shift 
the visual pattern towards that direction. 

3.	 PPG sensor stays inside the middle circle – shrink the size 
of the visual pattern. 

As shown in Figure 2, in case of (1), the pattern will expand 
its size by 2% every next frame until it is being seen by the 
PPG sensor again. (2) Once any of the eight outer quadrants 
is detected, the visual pattern will shift towards that direction. 
(3) When the PPG sensor sees the middle circle continuously, 
the pattern will shrink its size by 2.5% every next frame. 

We extract the max PPG signal difference within a rolling 
window (10 PPG frames, 50ms) as feature to classify the 
watch location among the 11 classes, including 9 regions in 
the visual pattern, screen background, and unknown. The 
pattern also blinks every two frames so that it will not be 
confused with static background image. After taking into 
account the refresh rate and and pixel response time, we can 
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achieve stable detection using only 3 display frames at 60Hz 
(common display refresh rate), which is 10 sensor frames at 
200Hz (PPG sampling rate), or 50ms. 

We chose a minimum size of visual pattern in our implementa
tion for user study. The smaller the middle circle, the higher 
the attainable accuracy (not smaller than the PPG sensor size, 
which is ~2x3 mm). However, a small visual pattern takes a 
longer time to converge due to network delay and feedback 
loop. To balance the trade-off between speed and accuracy, 
we set the diameter for the middle circle to 150 pixels (~32 
mm) for the user study session, which is smaller than typical 
smartwatch diameter and thus can be hidden beneath it. 

Limitation of Using PPG Responses only 
However, using a single PPG sensor to track movement suffers 
from inherent limitations. For one, it is insufficient to track 
the orientation of the device, which is why previous work used 
at least four to five photodiodes to achieve this. 

Secondly, no matter using single or multiple photodiodes, this 
tracking method of using PPG alone will suffer from limited 
tracking speed, depending on the pattern size, as noticed by 
previous work as well [22, 39]. For example, if the movement 
within one frame exceeds the radius of the visual pattern, the 
photodiode will lose sight of the visual pattern, and hence lose 
tracking. To alleviate this problem, both the sensor sampling 
rate and the display refresh rate have to be rather high, and 
motion-to-photon latency has to be low. Increasing the pattern 
size can mitigate the issue to a certain extend, but a large 
pattern shown on screen can be overly intrusive to the user. 

Localizing with PPG and IMU Fusion 
This is why our approach does not rely solely on PPG sensor 
tracking. To address this limitation, we further utilize IMU 
for both position and orientation tracking. Yet, IMU has its 
own limitations (drift and noise), as we explained in the afore
mentioned sensor background section. These issues become 
worse when the hardware specification is limited, as we aim 
to repurpose built-in sensors of an off-the-shelf smartwatch. 

Our technique uses assumptions of users performing impulse 
movement (akin to gait) to constrain the problems of drift, 
where integral drift is corrected each time the device is station
ary using zero velocity update [5], and position error corrected 
by PPG tracking method. Hence, our proposed fusion tech
nique aims to seamlessly combine these two types of sensor 
while alleviate the issues from each independent sensor. 

We first remove the startup bias by a quick calibration, as the 
sensor measurement has an offset bias during startup, i.e., the 
difference between the real value and the output. Then the 
linear acceleration (100Hz, with gravity removed) is passed 
through a low-pass filter. We apply a threshold and zeroing 
the velocity errors [5] when the acceleration is lower than 
the threshold. This process will cause small movement not 
being detected by IMU-based localization method. Instead, 
this small movement will be detected by the PPG method. 
Finally the acceleration is integrated once to yield velocity, 
and integrated again to yield position. When the smartwatch 
decelerates and acceleration drops below the threshold, we 
stop integrating the acceleration and zeroing the velocity. 

This method works well for a short period (about one second) 
while the drift is within acceptable range. For a long distance 
movement, the drift becomes high and the estimated position 
might differ greatly from the ground truth. In this case, we rely 
on the PPG method as explained above to correct and recover 
the true position. All in all, these two mechanisms combine 
seamlessly to achieve a fluid tracking experience, as shown in 
Figure 2 and video figure. In addition, the smartwatch’s gyro
scope can be used for rotation tracking, and the smartwatch’s 
touchscreen can be used as a magic lens [2] for see-through 
and allow high precision touch within the tracked area. 

However, for continuous tracking, the smartwatch needs to 
be dragged on the surface most of the time. WATouCH sup
ports tracking when the device leaves the display for a limited 
amount of time (about 1 second). After that, it will start drift
ing and its location needs to be corrected by the visual pattern 
by placing it back on the surface (as shown in video figure). 

USER STUDY 
In order to evaluate the tracking accuracy of our approach 
based on sensor fusion of PPG and IMU, we conducted a 
user study aim to evaluate the feasibility of the approach and 
compare the result to the gold standard – a computer mouse, 
which we conducted a baseline study before our method. In 
this study, participants performed two tasks – a point and click 
and a line tracing task. 

Participants 
We recruited 12 participants (two female) from our local office, 
age ranging from 20 to 30 (Mean: 26.6). All participants were 
right handed and were seated during the study. The two parts 
study took about one hour and participants were compensated 
for a reward equivalent to $40. 

Apparatus 
We connected a Samsung Galaxy Tab S4 Android tablet to a 
generic, non-touchscreen 27 inches monitor (P2718EC, Fox-
conn, 2560x1440 resolution) using USB-C. The monitor was 
laid flat on an office desk. We used an Android WearOS smart-
watch (Armani Exchange Connected) with the strap removed. 
The green light emitter was taped to prevent the automatic 
brightness adjustment. A wireless mouse (Logitech MX mas
ter) was used for the baseline study by connecting directly to 
the Android tablet using Bluetooth connection. 

The tablet and smartwatch were connected to a WiFi router. 
The measured data from the smartwatch were stored in net
work packet and sent to the tablet at 100Hz (the highest rate of 
linear acceleration sensor on the smartwatch), using UDP pro
tocol to reduce latency. Each packet is 26 bytes, and it contains 
PPG result, x-y velocity, yaw, click status and timestamp. 

Procedure 
We first introduced the technique to the participants and al
lowed them to practice for 3 minutes. During this time, we 
provide feedback to help them to become more accurate. 

Study I: Point and Click 
The primary study was a point and click task. There were 9 
cross-hair targets in a 3x3 pattern distributed over the display 
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area (Figure 1). The horizontal and vertical distance between 
each target were set to 950 pixels and 550 pixels, respectively, 
to account for different combinations of distance between each 
trial. The radius of each target was 100 pixels (approximately 
2.1 cm on the 27 inches monitor, pixel pitch of 0.21 mm). 

We set the four corner targets plus the middle target as the 
starting point and the remaining targets as the ending point. 
We used a special indicator for starting point to guide the 
participants to place at the starting location for the next trial. 
In total, there were 5 x 8 = 40 trials per session. In each 
trial, participants first placed the smartwatch on the starting 
point, touched anywhere on the smartwatch’s touch display 
(the watch flashed green, and the tracker pattern started shrink
ing), moved it to the ending point (highlighted in cyan), and 
touched again to end (the watch flashed cyan). Each partic
ipant went through four sessions in this task, among which 
the first session was the baseline study using a wireless mouse 
and the next three sessions using a smartwatch. 

Study II: Line Tracing 
11 out of the 12 participants from the first study participated 
in the second study. The second study was a line tracing 
task. There were eight types of lines and shapes, including 
four directional lines, rectangle, triangle, circle and sine wave. 
Therefore, there were 5 rounds x 8 shapes = 40 trials for each 
session. In each trial, participants first placed the smartwatch 
on the starting point, touched anywhere on smartwatch’s touch 
display, dragged the device along the shown path, and tapped 
again at the end point. Similar to the first study, each partici
pant went through two sessions of this task, among which the 
first session was the baseline study using a wireless mouse and 
the second session using a smartwatch. 

Results 
Participants produced 1920 click trials and 880 drawn shapes. 

Result I: Point and Click Spatial Accuracy and Speed 
The spatial precision for click is shown in Figure 4. 95% con
fidence ellipses are drawn for the nine crosshair targets. Error 
vs. travel distance plot and time vs. travel distance plot are 
shown in Figure 5. The average error (Euclidean distance) 
from target center is 34.6 pixels with mouse and 54.7 pixels 
with smartwatch. Average minimum button diameter neces
sary to encompass 95% of clicks is 60.8 pixels (~12.8mm) 
with mouse and 95.2 pixels (~20.0mm) with smartwatch. 

The mean completion time of a trial is 1115 ms with mouse 
and 3041 ms with smartwatch. It is worth noting that the 
movement time in the wireless mouse condition is used as 
a reference rather than a direct comparison. This is because 
mouse uses relative pointing with cursor acceleration and 
conceivably leads to a shorter time than that of WATouCH, 
which requires moving a tangible object physically on a large 
surface. As shown in Figure 5 (bottom), the time to click on a 
target increases with the travel distance for both input devices. 
The other factor that contributes to the longer completion time 
with smartwatch is the waiting time for the visual pattern to 
converge. For longer distances, the drift becomes considerably 
larger, therefore the visual pattern has to expand, shift, and 
shrink, and thus resulted in a longer completion time. 

Figure 4. Scatter plot of user click distributions for the two input devices 
we tested. (Top) Baseline result using wireless mouse. (Bottom) Result 
using smartwatch as tangible controller. 95% confidence ellipses are 
shown in red. Axis units in pixel. 

Figure 5. Top: Error (Euclidean distance, px) vs. travel distance (px), 
Bottom: Completion time (ms) vs. travel distance (px). 

Figure 6. Example lines drawn by participants in the line tracing task. 
(a) Baseline result using a wireless mouse. (b) Well drawn examples us
ing a smartwatch. (c) Less well drawn examples using a smartwatch. 
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Result II: Line Tracing Spatial Accuracy and Speed 
There are four lines and four shapes in the line tracing ex
periment. Following the previous practice [7], we calculated 
the absolute Euclidean distance from the closest point on the 
ideal path as metric to measure the distance error. On average, 
participants deviated from the ideal path by 57.3 pixels (SD = 
31.8) when using the smartwatch, compared to 25.1 pixels (SD 
= 16.5) when using a wireless mouse. Example lines drawn 
by participants can be seen in Figure 6. The lines and shapes 
drawn by the smartwatch are recognizable. 

In our current implementation, drawing a long path can be 
challenging due to the accelerometer drift. When drawing the 
shapes, participants made pauses at turning points to allow the 
visual pattern to shift and converge. 

Participants Feedback 
Participants rated their experience using the NASA-TLX on 
a 5-point Likert scale, as depicted in Figure 7 (lower score is 
better) and a further four subjective questions (Figure 8). It 
can be seen that the load across all parameters is low, and the 
technique is generally well-received. 

Since our study was conducted with the participants seated, 
some participants questioned the easiness if they have to use 
the smartwatch on a vertical display (TV or public display). 
They concerned it could be difficult to grab and tap the smart
watch’s touchscreen at the same time in a vertical display 
setting. Participants also worried that they might accidentally 
drop the device. One participant was reluctant to use his own 
smartwatch to slide on a public display, as he said: “I don’t 
want to scratch my smartwatch and the PPG lens”. Due to 
the form-factor of the smartwatch, it requires at least two to 
three fingers to grip. Participants compared this to using a 
touchscreen where only one finger is needed. 

Regarding intuitiveness, the majority of the participants found 
the technique intuitive, given that the tracking speed could 
be improved in a future version. With respect to social ac
ceptability, the majority of the participants were willing to 
use this technique in public, and they did not feel awkward, 
assuming that future smartwatch can be easily detachable. 
For intrusiveness, e.g., “does the flickering pattern cause eye
strain, headache or dizziness?” all participants did not find 
the flickering intrusive. Only some participants reported that 
it was intrusive when the visual pattern became too large and 
blocking a large area of the screen content. 

POTENTIAL USE CASES 
WATouCH enables direct input on non-touchscreens, and thus 
opens up a number of interaction possibilities. We envision 
that it can be used to perform pointing, dragging, and selecting 
in, but not limited to, the following use cases: 

Interacting with public displays - Although non-touch pub
lic displays have been pervasively used for advertising [28] 
in a variety of places, including airport, shopping mall, and 
exhibition, the way that they convey visual messages pas
sively to users confine the degree of user engagement. There 
is a pressing need to make such displays interactive and en
gaging. Interactive ads and game demo can be two obvious 

Figure 7. NASA Task Load Index (TLX) subjective ratings for both 
tasks. A lower score is better. 

Figure 8. Extra subjective questions including intuitiveness, enjoyable, 
willingness and intrusiveness. A higher score is better. 

applications. WATouCH allows for intuitive walk-up-and-use 
interaction in an ad hoc fashion. Users can interact with non
touchscreens by direct input using smartwatch as if using a 
stylus or a puck. This natural interaction design can encourage 
user engagement, enhance user experience, and thus boost 
the advertisement effect. For example, users can play a quick 
game and earn rewards on digital signage at a bus stop while 
waiting for a bus. Similarly, users can browse the list of shops 
in a mall, get a coupon, and enjoy the shopping experience. 

Gesture typing on smart TVs - Text input on TV displays 
using a remote or game controller is often challenging, inef
ficient, and even frustrating. WATouCH allows users to drag 
over a virtual keyboard on the TV display, and the estimated 
trajectory of hand movement can be parsed by the system and 
used for gesture typing (shape writing) [17]. This can provide 
a marked improvement on typing throughput on the TV dis-

Figure 9. Applications. (Left) Selecting and highlighting text in a pre
sentation slide. (Right) Inputting text using on-screen gesture keyboard. 
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plays (Figure 9 (right)). By doing so, it is easier for users to 
type complete keywords rather than initial alone, or multiple 
keywords to achieve a precise search. 

Operating on tangible tabletops - A tangible tabletop can 
be useful in a work space or entertaining space, such as be
ing deployed on collaboration desks, coffee tables, or exhi
bition tables in museum, but it often has high entry cost to 
setup. WATouCH repurposes any display and off-the-shelf 
smartwatches as a low-cost tangible tabletop. Because the 
smartwatch also contains gyroscope, it can be used as a rotat
able dial for painting and music application. Furthermore, the 
smartwatch screen can be leveraged as a magic lens [2] for 
see-through or display additional information. 

Presenting in meetings - During a meeting or a discussion, 
one may want to highlight, draw notes, or change slides di
rectly on the presentation display (Figure 9 (left)). In such 
cases, WATouCH allows the users to directly “touch” the dis
play with their smartwatch, so that they do not have to go back 
and forth to the presentation machine. 

DISCUSSION AND LIMITATIONS 
This is the first study to our knowledge that achieves direct 
input on non-touchscreens by repurposing a smartwatch. WA-
TouCH uses a new localization method based on PPG and 
IMU sensor fusion. It is a promising technique as it relies on 
existing sensors available on a smartwatch, and it provides the 
sense of direct input and manipulation for users. 

Experiment results showed that WATouCH is well received by 
the participants. Although comparing with mouse, WATouCH 
falls short of control precision and speed. This can conceivably 
be improved by an additional filtering mechanism to refine the 
trajectory or high-level gesture classifier to recognize a user’s 
intention. Encouragingly, WATouCH can achieve sufficient 
pointing precision for visual targets in a touch-based graphical 
user interface. 

For dragging, WATouCH works well for short and medium 
distances, which can be the most common cases for natural 
hand movements in the comfort zone. For the longer distance, 
localization error due to IMU drift requires the visual pattern to 
expand and correct for IMU estimation based on PPG sensing, 
and it makes the input slower than dedicated input devices. 
This issue increases the difficulty of drawing a shape, where 
pausing is required. 

Identifying Hardware Challenges 
In the course of our study, we identified some challenges. 

This first challenge is the sampling rates of sensors and dis
plays. Although the PPG sensor we explored (PAH8011) has 
a sampling rate of 200Hz, which is fast enough for continuous 
tracking, the effective tracking rate is inherently limited by 
the underlying display characteristics, in particular, the refresh 
rate and pixel response time. Most common displays (TVs and 
monitors) only have a 60Hz refresh rate, and a non-negligible 
pixel response time, i.e., latency for a pixel to change from one 
color to another. Taking into account the flickering (for dis
tinguishing between static background and our visual pattern) 
and pixel response time, we can achieve reliable detection at 

three display frames (50ms, 10 PPG frames at 200Hz sampling 
rate). Other displays, such as iPad or gaming monitors that 
have a higher refresh rate and lower pixel response time, can 
increase tracking speed, and hence improves robustness and 
reduces intrusiveness (flickering will be less obvious). 

The second challenge is motion-to-photon latency [54], mostly 
caused by WiFi network latency (with occasional packets drop 
when using UDP) and display input lag. We see Bluetooth low 
energy as a suitable option to minimize such latency. 

The third one comes from the ambiguity between the regions 
in the visual pattern. Since the PPG sensor has a size of 
~2x3mm, it can be trapped on the edge between two regions of 
the visual pattern, where the sensor sees two different regions, 
and hence the estimated result fluctuates between states. To 
avoid this issue, we shift the visual pattern in a small step in a 
randomized direction, much like Pixel shifting [46] technique 
used in smartphone’s always-on display to avoid burn-in. The 
feature was turned off in the user study because of the quick 
shifting is not imperceptible to the user. 

Lastly, we noticed that the PPG sensor we used (PAH8011, 
used in most of the recently launched WearOS smartwatches) 
has a built-in feature that automatically changes the emitter 
intensity based on the reflected light. This affects our measure
ment, therefore we blocked the emitter using adhesive tape 
for fast prototyping. In practice, the green light or automatic 
intensity adjustment feature can be disabled in the low-level 
Android system. 

Future Work 
In future work, we aim to improve the tracking speed by apply
ing the Kalman filter and compare with touchscreen system. 
Battery consumption is an important factor that requires atten
tion and effort to make WATouCH practical at scale. Tracking 
multiple devices simultaneously will be useful, especially for 
tangible tabletops. Data transfer is another avenue for future 
research. Finally, we would like to explore more use cases 
and applications such as tangible tabletop and cross-device 
interaction. 

CONCLUSION 
We presented a novel method for repurposing and combining 
the built-in PPG and IMU sensors in off-the-shelf smartwatch 
for accurate location tracking on unmodified, non-touchscreen 
displays. The results from our user study showed that partici
pants can use the system with minimal training. WATouCH 
produces a viable precision of target selection in touch-based 
graphical user interface, with a comparable precision to that 
of a wireless mouse. As the first work of repurposing smart-
watch for direct input on non-touchscreens, it leads to useful 
insights of technical challenges and achieves promising results 
to encourage future studies. WATouCH also enables new in
teraction possibilities when a wireless mouse or touch input 
is not readily available, such as interacting with public dis
plays, ad hoc presentation on a TV, or tangible interaction on 
a tabletop. With a further improvement of tracking speed, we 
envision that this technique can be well-received at scale and 
be included in commercial smartwatches and fitness trackers 
without hardware modification. 
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