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ABSTRACT 
Artificial Intelligence (AI) plays an increasingly important 
role in improving HCI and user experience. Yet many chal-
lenges persist in designing and innovating valuable human-AI 
interactions. For example, AI systems can make unpredictable 
errors, and these errors damage UX and even lead to unde-
sired societal impact. However, HCI routinely grapples with 
complex technologies and mitigates their unintended conse-
quences. What makes AI different? What makes human-AI 
interaction appear particularly difficult to design? This paper 
investigates these questions. We synthesize prior research, 
our own design and research experience, and our observations 
when teaching human-AI interaction. We identify two sources 
of AI’s distinctive design challenges: 1) uncertainty surround-
ing AI’s capabilities, 2) AI’s output complexity, spanning from 
simple to adaptive complex. We identify four levels of AI sys-
tems. On each level, designers encounter a different subset 
of the design challenges. We demonstrate how these findings 
reveal new insights for designers, researchers, and design tool 
makers in productively addressing the challenges of human-AI 
interaction going forward. 
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CCS Concepts 
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INTRODUCTION 
Advances in Artificial Intelligence (AI) have produced exciting 
opportunities for human-computer interaction (HCI). From 
mundane spam filters to autonomous driving, AI holds many 
promises for improved user experiences (UX), and it enables 
otherwise impossible forms of interaction. This trend has 
led to the idea of AI as a design material in the research 
community, with the hope that HCI researchers and designers 
can effectively envision and refine new uses for AI that have 
yet to be imagined [13, 26, 58]. 
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The growing interest in how AI can improve UX implies that 
HCI designers have become skilled at integrating AI’s capa-
bilities into their practices. Interestingly, the research shows 
something else, that HCI designers largely struggle to envi-
sion and prototype AI systems [2, 3, 13, 18, 22, 26, 49]. For 
example, even simple AI applications can make inference er-
rors that are difficult to anticipate. These errors impact the 
intended user experience, and can sometimes raise serious ethi-
cal concerns or result in societal-level consequences. However, 
current HCI design methods meant to mitigate unintended con-
sequences (i.e. sketching and prototyping) can seem ill-fitted 
for AI. HCI professionals cannot easily sketch the numerous of 
ways an AI system might adapt to different users in different 
contexts [13, 58]. Nor can they easily prototype the types of 
inference errors a not-yet developed AI system might make 
[29, 42, 49]. 

Existing research frequently attributes these challenges to AI’s 
technical complexity, demand for data, and unpredictable inter-
actions [49, 26, 13, 42]. Less discussed is that HCI routinely 
grapples with complex, resource-intensive technologies us-
ing simple, inexpensive artifacts, e.g., paper prototypes and 
Wizard of Oz systems. What makes AI different and dis-
tinctly difficult to prototype? Equally important, designers 
routinely choreograph complex, dynamic, sometimes unpre-
dictable interactions, with a focus on mitigating technologies’ 
unintended consequences (e.g., [61]). What makes AI inter-
actions particularly difficult to sketch? A critical first step in 
designing valuable human-AI interactions is to articulate the 
unique qualities of AI that made it so difficult to design. 

The goal of this paper is to delineate whether, why, and how 
human-AI interaction is distinctly difficult to design and inno-
vate. The paper has four parts: 

1. We set the stage by cataloging the many human-AI interac-
tion design challenges that literature has reported as well
as solutions proposed.

2. We ask three provocative questions as a critique of current
related work. These questions serve as a springboard for
rethinking how to approach the question of why human-AI
interaction appears so difficult to design.

3. We synthesize our own research, including studies on the
challenges HCI practitioners faced when working with AI,
our insights from making AI things via research through de-
sign, and our insights from teaching students in human-AI
interaction design and innovation. This synthesis identified
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Figure 1: Mapping the human-AI interaction design challenges in the literature [58, 13, 26, 53] 
onto a user-centered design process (Double Diamond [10]) 

two sources of AI’s design complexities, and a framework 
that unravels their effects on design processes. 

4. We demonstrate the usefulness of the framework. Specifi-
cally, its usefulness to human-AI interaction designers, to 
researchers of AI’s HCI issues, and to AI design method 
innovators and tool makers. 

This paper makes three contributions. First, it provides a syn-
thesis of many human-AI interaction design challenges and 
emergent solutions in literature. Second, the provocation ques-
tions offer an alternative lens for approaching the human-AI 
interaction design challenge. We draw attention to AI’s design 
complexity rather than technical complexity; We draw atten-
tion to how AI hinders the interaction design process rather 
than the end product. Finally, our framework gives structure 
to the currently fuzzy problem space of human-AI interaction 
design. This provides a first step towards systematically un-
derstanding how HCI research might best choose to approach 
these problems going forward. 

RELATED WORK 
Recent research has become increasingly interested in the 
opportunities and challenges AI brings to HCI and UX de-
sign. As researchers produced a wealth of valuable, novel 
designs, they also reported encountering many challenges in 
the process [2, 3, 18, 26]. Some research has investigated 
challenges faced by UX practitioners who do not specialize 
in AI but who desire to integrate it into their practice [13, 
53]. Research has chosen a number of different frames for 
investigating these challenges including human-AI interaction 

. 

design, AI/machine learning as a design material, the design 
of intelligent systems, designing for/with data [6, 14, 37], and 
many more [33, 42, 43]. 

To better unpack what is known about the challenge HCI re-
searchers and practitioners face when working with AI, we 
cataloged these challenges and their emergent solutions. To 
gain a new perspective of this work, we mapped the chal-
lenges and solutions to the familiar double diamond design 
process used to describe user-centered design (Figure 1) and 
to a diagram displaying a lean startup process with its focus 
on producing a minimal viable product (MVP) (Figure 2), a 
design approach becoming more popular with the growing use 
of agile software development. 

UX Design Challenges of AI 
Across HCI and UX communities, researchers and practition-
ers have reported challenges in working with AI at almost 
every step of a user-centered design process. From left to right 
on Figure 1, they reported: 

• Challenges in understanding AI capabilities (first divergent 
thinking stage): Designers frequently report that it is dif-
ficult to grasp what AI can or cannot do. This hampers 
designers’ brainstorming and sketching processes from the 
start [13, 26, 51, 56]. 

• Challenges in envisioning many novel, implementable AI 
things for a given UX problem (in both divergent thinking 
stages): AI-powered interactions can adapt to different users 
and use contexts, and they can evolve over time. Even when 
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Figure 2: Mapping UX design challenges of AI in prior research on a technology-driven design innovation process [41, 5] 

designers understand how AI works, they often found it 
difficult to ideate many possible new interactions and novel 
experiences with much fluidity [13, 58]. 

• Challenges in iterative prototyping and testing human-AI 
interaction (in both convergent thinking stages): One core 
practice of HCI design and innovation is rapid prototyp-
ing, assessing the human consequences of a design and 
iteratively improving on it. HCI practitioners cannot mean-
ingfully do this when working with AI. As a result, AI’s 
UX and societal consequences can seem impossible to fully 
anticipate. Its breakdowns can be especially harmful for 
under-served user populations, including people with dis-
abilities [45]. 
HCI researchers have tried two approaches to addressing 
this challenge. One approach is to create Wizard of Oz sys-
tems or rule-based simulators as an early-stage interactive 
AI prototype (e.g. as in [11, 30, 40, 44]). This approach 
enables HCI professionals to rapidly explore many design 
possibilities and probe user behaviors. However, this ap-
proach fails to address any of the UX issues that will come 
from AI inference errors because there is no way to simu-
late these errors [52]. The second approach is to create a 
functioning AI system, and deploy it among real users for a 
period of time [53]. This time-consuming, field-trial proto-
typing process enables designers to fully understand AI’s 
intended and unintended consequences. However, it loses 
the value that comes from rapid and iterative prototyping. 
This approach does not protect teams from over-investing 
in ideas that will not work. It does not allow them to fail 
early and often. 

• Challenges in crafting thoughtful interactions (in the last 
convergent thinking stage): Designers struggled to set user 
expectations appropriately for AI’s sometimes unpredictable 
outputs [4]. They also worried about the envisioned designs’ 
ethics, fairness, and other societal consequences [13, 26]. 

• Challenges in collaborating with AI engineers (through-
out the design process: For many UX design teams, AI 

technical experts can be a scarce resource [19, 53]. Some 
designers also found it challenging to effectively collaborate 
with AI engineers, because they lacked a shared workflow, 
boundary objects, or a common language for scaffolding 
the collaboration [19, 28, 52]. 

Propelled by these challenges, a few researchers speculated 
that, when working with AI, designers should start with an 
elaborate matching process that pairs existing datasets or AI 
systems with the users and situations that are most likely to 
benefit from the pairing [5, 51]. This approach deviates from 
more traditional user-centered design in that the target user 
or UX problem is less fixed. It is more similar to customer 
discovery in an agile development process that focuses on 
the creation and continual evaluation of a minimal viable 
product (MVP) [41]. In this light, we also mapped the human-
AI interaction design challenges onto an MVP innovation 
process. However, it seems a similar set of design challenges 
that curbed user-centered design also thwarted technology-
driven design innovations (Figure 2, from left to right), for 
example: 

• Challenges in understanding AI capabilities; 
• Challenges in mapping out the right user stories and user 

cases of a “minimum viable" AI system, or envisioning how 
it can be applied in less obvious ways [13]; 

• Challenges in collaborating with AI engineers. 

We found no agreed-upon set of root causes or themes around 
which we can easily summarize these challenges. Some re-
searchers suggested that AI systems’ technical complexity 
causes the interaction design problems [9]. Some considered 
the unpredictable system behaviors as the cause [26]. Some 
argued that AI appeared to be difficult to design because AI is 
just “a new and difficult design material," suggesting that over 
time, known HCI methods will likely address these challenges 
[13]. Others argued that user-centered design needs to change 
in order to work for AI [19, 51]. These proposals rarely share 
key citations that indicate emerging agreements. 

Paper 174 Page 3



CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Facilitating Human-AI Interaction Design 
HCI researchers have started to investigate how to make it 
easier to design and innovate human-AI interactions. We 
identify five broad themes in this body of work: 

1. Improving designers’ technical literacy. An emerging con-
sensus holds that HCI and UX designers need some tech-
nical understanding of AI to productively work with it. 
Designer-facing AI education materials have become avail-
able to help (e.g. [8, 20, 22, 23]). However, substantial 
disagreement remains in what kinds of AI knowledge are 
relevant to UX design, and in how advanced a technical 
understanding is good enough for designers [9, 48, 54]. 

2. Facilitating design-oriented data exploration. This body 
of work encourages designers to investigate the lived-life 
of data and discover AI design opportunities [6, 7, 14]. For 
example, [37] investigated users’ music app metadata as 
a material for designing contemplative music experience; 
[24] explored the design opportunities around intimate so-
matic data. Notably, this body of work often used terms 
like data-driven or smart systems; It was not always clear 
when the authors specifically aimed at AI. 

3. Enabling designers to more easily “play with" AI in sup-
port of design ideation, so as to gain a felt sense of what 
AI can do. This work created interactive machine learning 
(iML) tools and rule-based simulators as AI prototyping 
tools, for example, Wekinator for gesture-based interactions 
[1] and the Delft AI Toolkit for tangible interactions [49]. 
Currently, almost all iML tools are application-domain-
specific. In order to make the systems accessible to de-
signers and maximally automate data prepossessing and 
modeling, these systems had to limit the range of possi-
ble in/outputs, therefore focused on particular application 
domains [38, 39]. 

4. Aiding designers in evaluating AI outputs. In recent years, 
technology companies have proposed more than a dozen 
human-AI interaction principles and guidelines (See a re-
view here [47]). These guidelines covered a comprehensive 
list of design considerations such as “make clear how well 
the system can do, what it can do" [4] and “design graceful 
failure recovery" [21]. 

5. Creating AI-specific design processes. Some researchers 
have proposed that AI may require design processes less 
focused on one group of users, and instead on many user 
groups and stakeholders [15]; processes focused less on 
fast, iterative prototyping, and instead on existing datasets 
and functioning AI systems [51]; or processes focused less 
on one design as the final deliverable to engineers, and 
instead on closer, more frequent collaborations [19]. 

These themes demonstrated the remarkable heterogeneity of 
approaches researchers have taken to address the challenges 
around human-AI interaction design. Similar to most design 
methods published within HCI research, we found no empir-
ical evaluations of the proposed design tools, guidelines, or 
workflows. It is difficult to control for and measure improve-
ments in a design process to show that a method is producing 

better designs. Throwing AI into the mix only seems to in-
crease this challenge. 

THREE QUESTIONS FOR PROVOCATION 
We wanted to articulate whether, why, and how AI is distinctly 
difficult to design. The preceding review of related work re-
vealed a remarkable set of insights and approaches to this 
complex problem space. Now we step back and critically ex-
amine this rich body of research in order to more holistically 
understand AI’s resistance to design innovation. What has 
research missed? Can we see gaps or emerging opportuni-
ties across this work? Our reflection of the related work led 
to three provocative questions. These questions served as a 
springboard for rethinking how we might further advance our 
understanding of AI’s design challenges. 

What is AI? 
One critical question has been absent from the research dis-
course around human-AI interaction: What is AI? Or rather, 
what should count as AI as it relates to HCI and UX design? 
Prior literature has used a range of poorly-defined terms, such 
as machine learning systems, intelligent/smart systems, AI-
infused systems, and more. The research discourse on under-
standing machine intelligence as a technological material is 
sometimes mixed with intelligence as an experiential factor. 

Locating the elusive concept of AI is difficult. What is com-
monly referred to as AI encompasses many disconnected tech-
nologies (e.g., decision tree, Bayesian classifier, computer 
vision, etc.). The technical boundary of AI, even in AI re-
search communities, is disputed and continuously evolving 
[46, 50]. More importantly, an actionable, designerly under-
standing of AI is likely to be very different from a technical 
definition that guides algorithmic advances. 

Yet discussing AI’s design challenges without any bounding 
seems problematic. What makes a challenge distinctly AI 
and not a part of the many challenges designers regularly 
face in HCI and UX work? Current research does not always 
make this distinction. For example, Amershi et al. systemat-
ically evaluated 20 popular AI products and proposed a set 
of guidelines for designing human-AI interactions [4]. These 
guidelines include “make clear what the system can do" and 
“support efficient error correction". These seem important to 
AI systems, but they also seem to be issues that designers 
must address in systems with no AI. What is less clear is if AI 
requires specific considerations in these areas. 

What Are AI’s Capabilities and Limits? 
Designers need to understand the capabilities and limitations 
of a technology in order to know the possibilities it offers for 
design [17]. Engineers create new technological capabilities; 
designers create new, valuable products and services with 
existing technological capabilities and limitations [34]. 

Interestingly, AI’s capabilities and limitations have not been 
the focus of current research. Instead, most work has fo-
cused on getting designers to understand how AI functions 
(2.1 theme 1). This is quite different from the traditional ways 
of moving new technology from research to design practice, 
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which assume designers do not need to understand the tech-
nical specifics of the technology. In addition, research has 
produced many rule-based and Wizard of Oz simulators to 
help designers better understand AI’s design opportunities 
(themes 2 and 3). Little is known about whether these systems 
can sensitize designers to AI’s limitations realistically. This 
motivates the question: Can an articulation of AI’s capabilities 
foster a more incisive examination of its design challenge? 

Why Is Prototyping AI Difficult? 
AI brings challenges to almost all stages of a typical design 
process. However, the proposed AI design methods and tools 
have mostly focused on the two ends of this creative process 
(Figure 1 and 2); either helping designers to understand what 
AI is and can do generally, or enhancing the evaluation of the 
final design. The central activities of an interaction design pro-
cess, i.e. sketching and prototyping, are under-explored. Re-
search through Design (RtD) projects are rare when it comes 
to designing and innovating human-AI interaction [51]. 

Sketching and prototyping may constitute a fruitful lens for 
understanding AI’s design challenges. They are cornerstones 
of any design process. It is through sketching and prototyping 
that designers understand what the technology is and can do, 
engage in creative thinking, and assess and improve on their 
designs. Interrogating why is it difficult to abstract AI-powered 
interactions into sketches and prototypes may shed light on 
how the other tangled design challenges relate to each other. 

METHOD 
We set out to investigate whether, why, and how human-AI 
interaction is uniquely difficult to design and innovate. We 
want to construct a framework that provides meaningful struc-
ture to the tangled challenges identified in prior research. The 
preceding provocation questions informed how we advance 
towards this goal: We first worked to identify an operational 
bounding of AI. Within this bounding, we curated a set of 
human-AI interaction sketching and prototyping processes as 
case studies. We synthesized these case studies, in searching 
for a coherent, useful framework. 

One limitation of this work is that the case studies are mainly 
from our own research/design/teaching experiences. This is 
neither a representative sample nor a comprehensive one. The 
meta-analysis nature of our research goal calls for an extensive 
collection of AI design projects, ideally covering all kinds of 
AI systems for all kinds of design contexts. This is beyond 
what one paper can achieve. The synthesis of our experience 
and the resulting framework are intended to serve as a moder-
ate first step in this direction. 

An Operational Bounding of AI 
The definitions of AI generally fall into two camps [27, 32, 50]. 
One describes AI as computers that perform tasks typically 
associated with the human mind (“AI is whatever machines 
haven’t done yet” [25]). The other defines AI in relation 
to computational mechanisms. We chose a widely-adopted 
definition from the latter camp, because our focus is AI the 
technology, rather than what people perceive as “intelligent”. 

In this work, AI refers to computational systems that in-
terpret external data, learn from such data, and use those 
learnings to achieve specific goals and tasks through 
flexible adaptation. [27] 

Importantly, we did not intend to draw a technical boundary of 
what counts as AI here. We also do not consider this definition 
as valuable for HCI practitioners in working with AI. Instead, 
we used this definition only to examine whether the systems 
that are technically considered as AI indeed require new HCI 
design methods. For example, this definition describes AI 
as “learning" from data, yet does not specify what counts 
as “learning." (It remains an issue of debate in technical AI 
communities.) Therefore in our synthesis, we considered the 
challenges designers reported in working with a full range of 
data-driven systems, including machine learning, classic ex-
pert systems, crowd sourcing, etc. We then examined whether 
the challenges are different across the spectrum from systems 
that we all agree “learned" from data to those that we all agree 
did not. This way, we started to separate the design challenges 
that are unique to AI and those HCI routinely copes with. 

UX Design Processes as Data 
Within this bounding, we curated a set of AI design process 
from our own research, design, and teaching experience. All 
projects described below except teaching have been published 
at DIS and CHI. We re-analyzed the data collected across 
these projects for the purpose of this work. Below is a brief 
overview of these projects. 

Designing the UX of AI Applications 
First, we draw on our many years of experience in design-
ing a wide range of AI systems, from simple adaptive user 
interfaces [58, 12], to large-scale crowd-sourced transporta-
tion systems [59]; from clinical decision supports [57, 55] to 
natural language productivity tools [52, 60, 16]. These expe-
riences enabled us to give a firsthand account of the design 
challenges of AI, as well as a felt understanding of the solution 
that naturally emerged from the process. 

Studying UX Practitioners 
We have studied HCI/UX practitioners and their AI engineer 
collaborators in two projects. The first project focused on 
novice AI product designers [56]. We interviewed 14 product 
designers/managers and surveyed 98 more to understand how 
they incorporated, or failed to incorporate, AI in their products. 
We also interviewed the 10 professional AI engineers they 
hired to better understand where and how designers sought 
help. The second project focused on experienced UX practi-
tioners [54]. We interviewed 13 designers who had designed 
AI applications for many, many years, in order to understand 
how they work with AI differently compared to working with 
other technologies. Synthesizing and contrasting the findings 
across these two studies, we were able to see how novice and 
expert designers approached designing AI differently. 

Teaching UX Design of AI Applications 
Another set of observations come from our teaching. We 
hosted a series of Designing AI workshops. Each workshop 
lasted for a day, with one instructor working with 2-3 students. 
The instructor first gave a half-hour introduction to AI, and 
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then provided students with a dataset and a demonstrational AI 
system. Students were asked to design new products/services 
with these materials for an enterprise client. 26 HCI Master 
students from two universities attended the workshop. All of 
them had little to no technical AI background. Throughout the 
series, we experimented with different ways of introducing AI. 
We observed how students used the AI technical knowledge in 
their design, where and how they struggled, and which chal-
lenges they were able to resolve with known design methods. 

We also taught a one semester design studio course: Designing 
AI Products and Services. Approximately 40 undergraduate 
and master students took the course. About half of them had a 
computer science or data science background. In comparison 
to the workshops, the course allowed us to observe students 
working with a more diverse set of AI systems and design tasks, 
e.g. designing crowd as a proxy for AI, designing simple UI 
adaptions, designing natural language interactions. 

Data Analysis 
With this diverse set of design processes and observations, 
we synthesized a framework meant to give structure to the 
many challenges around human-AI interaction design. We 
started by proposing many themes that might summarize these 
challenges. We then analyzed the emergent themes via affinity 
diagramming, with a focus on the characteristics of AI that 
may scaffold a full range of design challenges. Specifically, 
we critiqued these frameworks based on three criteria: 

• Analytical leverage: The framework should effectively scaf-
fold a wide range of AI’s design opportunities and chal-
lenges. It should help separate design challenges unique to 
AI from others; 

• Explanatory power: The framework should help researchers 
articulate how a proposed design method/tool/ workflow 
contributes to the challenges of human-AI interaction de-
sign, and the limits of its generalizability. 

• Constructive potential: The framework should not only 
serve as a holder of AI’s known challenges and solutions; It 
should also provide new insights for future research. 

We proposed and discussed more than 50 thematic constructs 
and frameworks. The three authors, an external faculty, and an 
industry researcher participated in this process. All have spent 
at least 5 years researching AI and HCI. We also presented 
this work to two research groups. One included about 40 
HCI researchers. The other included 12 machine learning 
researchers. They provided additional valuable critiques and 
helped us refine the framework. 

THE FRAMEWORK 
Our synthesis identified two attributes of AI that are central 
to the struggles of human-AI interaction design: capability 
uncertainty (uncertainties surrounding what the system can 
do and how well it performs) and output complexity (com-
plexity of the outputs that the system might generate). Both 
dimensions function along a continuum. Together they form a 
valuable framework for articulating the challenges of human-
AI interaction. This section describes the framework. In the 
next section, we demonstrate its usefulness. 

Two Sources of AI Design Complexity 

Capability Uncertainty 
When speaking of the capabilities of AI, we broadly refer 
to the functionality AI systems can afford (e.g. detect spam 
emails, rank news feeds, find optimal driving routes), how 
well the system performs, and the kinds of errors it produces. 
The capabilities of AI is highly uncertain. We illustrate this by 
walking through the lifetime of an AI system, moving from an 
emergent algorithmic capability in AI research labs to situated 
user experience in the wild (Figure 3, left to right). 

AI’s capability uncertainty is at its peak in the early design 
ideation stage, when designers work to understand what de-
sign possibilities AI can offer generally. This is not easy 
because there exists no catalog of available AI capabilities. 
What might seem like a blue-sky AI design idea may suddenly 
become possible because of a newly available dataset. The 
performance of a deployed AI system can constantly fluctuate 
and diverge when it gains new data to improve its learning. 
This great uncertainty in AI’s capabilities makes it difficult for 
designers to evaluate the feasibility of their emergent ideas, 
thereby hindering their creative processes. 

The range of AI’s available capabilities includes more than the 
capabilities of existing AI systems. It includes any AI things 
that are technically feasible. When envisioning AI systems 
that do not yet exist, designers face additional capability uncer-
tainties. For example, designers may choose to harvest their 
own dataset from users’ traces of interaction. This approach 
gives designers a relatively high degree of control over the 
data they will eventually work with. However, it is often very 
difficult to estimate how long it might take to collect enough 
high-quality data and to achieve the intended functionality. 
Designers frequently worked with user-generated data in order 
to understand available AI capabilities. To understand AI’s 
capabilities, to a great extent, is to understand this gap between 
what the data appear to promise and the AI system built from 
that data can concretely achieve. As one expert designer we 
interviewed describes: To understand what AI can do is to 
conceptualize “a funnel of what (data and/or system) exists 
and what is possible." [53] 

Alternatively, designers may choose to leverage existing AI 
libraries or pre-built models to address their design problem 
at hand. These systems free designers from the data troubles 
and allow them to get a felt experience of the AI interactions. 
Unfortunately, these toolkits represent a very narrow subset of 
the whole landscape of AI capabilities. 

What AI can do for a UX problem at hand becomes clearer 
once a functioning AI system is built. For most systems trained 
on self-contained datasets, designers can measure their per-
formance and error modes, and then make design choices 
accordingly. However, this performance is limited by any 
biases present in a dataset and should only be viewed as an 
initial estimate (system performance in Figure 3). 

Some AI systems continue to learn from new data after deploy-
ment (labeled as “deployed system performance over time” in 
Figure 3). In the ideal case, the system will “grow," integrating 
new insights from new data and adapting flexibly to more va-
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rieties of users and use contexts. Unfortunately, the new data 
might also drive system performance in the wrong direction. 
Tay, the Twitter bot, provides an extreme example [36]. More 
typically, the system’s performance improves for users and use 
contexts that have produced rich data. It performs worse for 
less frequent users and less typical situations. That the system 
capability can constantly evolve, fluctuate, and diversify is 
another part of AI’s capability uncertainty. 

Finally, user profiles and use contexts could also impact an AI 
system’s capability. Many context-aware and personalization 
systems fall into this category. Consider the social media 
news feed ranker, Amazon shopping recommendations, and 
ride-hailing app’s driver-rider matching as examples. It is not 
difficult to conceptualize what these systems can do in general 
(e.g. ranking news, recommending items); however, it is no 
trivial task to envision, for a particular user in a particular 
use context, what error the AI system might make, and how 
the user might perceive that error in-situ. Anticipating the 
situated, user-encountered capability of AI is difficult, yet it 
is fundamental to user experience design. 

Output Complexity 
The second source of human-AI interaction challenges con-
cerns what an AI system produces as a possible output. While 
capability uncertainty is responsible for the HCI design chal-
lenges around understanding what AI can do, AI’s output 
complexity affects how designers conceptualize the system’s 
behaviors in order to choreograph its interactions. 

Many valuable AI systems generate a small set of possible 
outputs. Designing interactions for these systems is similar 
to designing for non-AI systems that generate probabilistic 
outputs. A face detection tool, for example, outputs either 
“face" or “not face." To design its interactions, the designer 
considers four scenarios: when a face is correctly detected 
(true positive), when no face is detected (true negative), when 
there is no face and a face is mistakenly detected (false posi-
tive), and when the image contains a face but the system fails 
to detect it (false negative). Designers consider each condition 
and design accordingly. 
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When designing systems that produce many possible outputs, 
sketching and prototyping become more complex and cog-
nitively demanding. Imagine designing the interactions of a 
driving route recommender. How many types of errors could 
the recommender possibly produce? How might a user en-
counter, experience, and interpret each kind of error, in various 
use contexts? How can interaction design helps the user to 
recover from each error elegantly? Some simulation-based 
methods or iML tools can seem necessary for prototyping 
and accounting for the route recommender’s virtually infinite 
variability of outputs. The route recommender exemplifies the 
many AI systems that produce open-ended, adaptive outputs. 
The traditional, manual sketching and prototyping methods 
struggle to fully capture the UX ramifications of such systems. 

The system outputs that entail most design complexities are 
those that cannot be simulated. Consider Siri as an exam-
ple. Similar to route recommenders, Siri can generate infinite 
possibilities of outputs. Yet unlike route recommenders, the 
relationship between Siri’s in- and outputs follow complex 
patterns that cannot be concisely described. As a result, rule-
based simulators cannot meaningfully simulate Siri’s utter-
ances; nor can a human wizard. We refer to such AI system 
outputs as “complex.” 

Notably, output complexity is not output unpredictability. 
While prior research often viewed AI systems’ unpredictable 
errors as causing UX troubles, we argue that AI’s output com-
plexity is the root cause. Let us illustrate this by considering 
how designers might account for AI errors when designing 
two different conversational systems. One is Siri. The other 
is a system that always replies to user requests with a random 
word picked from a dictionary. While highly unpredictable, 
the interactions of the latter system can be easily simulated 
by a random word generator. Then following a traditional 
prototyping process, designers can start to identify and miti-
gate the AI’ costly errors. In contrast, Siri’s outputs are only 
quasi-random, therefore resist abstraction or simulation. To 
date, it remains unclear how to systematically prototype the 
UX of such systems, in order to account for its breakdowns. 

Figure 3: The conceptual pathway translating between AI’s capabilities and thoughtful designs of human-AI interaction. AI’s 
capability uncertainty and output complexity add additional steps (the colored segments) to a typical HCI pathway, make some 
systems distinctly difficult to design. Designers encounter these challenges from left to right when taking a technology-driven 
innovation approach; right to left when following a user-centered design process. 
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Two Complexity Sources Taken Together 
Prior research has identified a wealth of human-AI interaction 
design challenges. These challenges stem from AI’s capability 
uncertainty and output complexity. For instance, designers 
struggled to understand what AI can and cannot do even when 
they understood how AI works [13]; This is because the ca-
pabilities of an AI system can be inherently uncertain and 
constantly evolving. Designers struggled to rapidly prototype 
human-AI interaction [52] because the interactions of two 
mutually adaptive agents resist easy abstraction or simula-
tion. Designers struggled to follow a typical user-centered 
design workflow when designing human-AI interactions [19, 
51]. This is because the central point of a double diamond 
process is to identify a preferred future, a defined design goal 
that existing technologies can achieve. However, AI systems 
have capabilities that do not fully take shape until after deploy-
ment, so the preferred future can seem like “a funnel of what’s 
possible", rather than what is concretely achievable. 

Figure 3 maps the challenges onto the translation process be-
tween technological capabilities and user experience. When 
taking a user-centered design approach, designers will en-
counter the challenges from the right to left. Taking a 
technology-driven design innovation approach, from left to 
right. This diagram explains why a similar set of design chal-
lenges appeared to have thwarted both technology-driven and 
user-centered AI design processes. 

AI’s evolving capabilities and adaptive behaviors have made 
it a particularly powerful material for HCI and UX design. 
The same qualities also bring distinctive design challenges. 
Human-AI interaction design and research, therefore, should 
not simplistically reject AI’s capability uncertainty or out-
put complexity/unpredictability. Rather, it is important to 
understand how to leverage these distinctive qualities of AI 
for desirable human ends, while minimizing their unintended 
consequences. 

Figure 4: The AI design complexity map. 
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USING THE FRAMEWORK 
In this section, we demonstrate the usefulness of the frame-
work. Specifically, its usefulness to human-AI interaction 
designers (section 6.1), to researchers of AI’s HCI issues (6.2), 
and to AI design method innovators and tool makers (6.3). 

Four Levels of AI Systems 
The framework can help expose whether and how a given AI 
system is difficult to design with traditional HCI design pro-
cesses and methods. Existing HCI sketching and prototyping 
methods can sufficiently cover level one systems, systems with 
known capability with few possible outputs. New challenges 
emerge when designers work with systems that produce a 
broad set of possible outputs, and when the deployed system 
continues to learn from new user data. Therefore, for practi-
tioners, the framework can help identify the low-hanging fruit 
in integrating AI into their practice. For HCI researchers, the 
framework can help identify the unique challenges of human-
AI interaction design and make a targeted contribution. 

To make the framework easier to use as an analytical tool, 
we summarized four levels of AI systems according to their 
design complexity (Figure 5). We demonstrate its usefulness 
using Levels 1 and 4 systems as examples since they represent 
the two extremes of AI’s design complexity. The design chal-
lenges of Level 4 are also a superset of issues encountered in 
Levels 2 and 3. 

Level One: Designing Probabilistic Systems 
Level one systems learn from a self-contained dataset. They 
produce a small, fixed set of outputs. For example, face detec-
tion in camera apps, adaptive menus that ranks which option 
the user is more likely to choose, text toxicity detectors that 
classify a sentence as profane or not. Designers can design 
the UX of these systems in similar ways as designing non-
AI, probabilistic systems. They are unlikely to encounter the 
distinctive challenges of human-AI interaction design. 

Consider this design situation: a design team wants to help 
online community moderators to more easily promote civil 
discourses by using a text classifier that flags toxic comments. 

� No particular challenges in understanding AI capabilities: 
By playing with the system, the designers can develop a 
felt understanding of what the classifier can and cannot 
do. Because the system will not learn from new data, this 
understanding will remain valid post-deployment. 

� No particular challenges in envisioning novel and tech-
nically feasible designs of the technology: Designers can 
easily imagine many use scenarios in which the flagging-
profane-text functionality can provide value. 

� No particular challenges in iterative prototyping and test-
ing: Because the outputs of the system are limited (profane, 
not profane), designers can enumerate all the ways in which 
the interactions may unfold (false positive, false negative, 
etc.) and making interactive prototypes accordingly. 

� No particular challenges in collaborating with engineers: 
Once the designers understand the functionality and the 
likely performance and errors of the classifier, they can 
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Figure 5: Four levels of AI systems according to design complexity. 

design as usual and provide wireframes as a deliverable to 
engineers at the end of their design process. 

Language toxicity detection is a complex technical problem 
at the frontier of AI research. However, because the system’s 
capabilities are bounded and the outputs are simple, existing 
HCI design methods are sufficient in supporting designers in 
sketching, prototyping, and assessing its interactions. Lan-
guage toxicity exemplifies level one systems; They are valu-
able, low-hanging fruits for HCI practitioners to integrate into 
today’s products and services. 

Level Four: Designing Evolving, Adaptive Systems 
Level four systems learn from new data even after deployment. 
They also produce adaptive, open-ended outputs that resist 
abstraction. Search engines, newsfeed rankers, automated 
email replies, a recommender system that suggests “items you 
might like," would all fit in this category. In designing such 
systems, designers can encounter a full range of human-AI 
interaction design challenges. Consider the face recognition 
system within a photos app. It learns from the photos the user 
uploaded, clusters similar faces across photos, and automat-
ically tags the face with the name inferred from the user’s 
previous manual tags. 

� Challenges in understanding AI capabilities: The system’s 
performance and error modes are likely to change as it 
learns from new images and tags. Therefore it is difficult to 
anticipate what the system can reliably do, when and how 
it is likely to fail. This, in turn, makes it difficult to design 
appropriate interactions for these scenarios. 

� Challenges in envisioning novel and technically feasible 
designs of the technology: Re-imagining many new uses 
of a face-recognition-and-tagging tool – beyond tagging 
people on photos – can be difficult. This is because its capa-
bilities are highly evolved and specialized for its intended 
functionality and interactions. 

� Challenges in iterative prototyping and testing: The sys-
tem’s capabilities evolve over time as users contribute more 
images and manually tags, challenging the very idea of 
rapid prototyping. 

� Challenges in collaborating with engineers. The system 
requires a closer and more complex HCI-AI collaboration 
than as in a traditional double-diamond process. Engineers 
and designers need to collaborate on understanding how the 
face-recognition performance will evolve with users’ newly 
uploaded photos and tags, how to mitigate the AI’s potential 
biases and errors, as well as how to detect AI errors from 
user interactions so as to improve system learning. 

Face recognition and tagging are a relatively mature technol-
ogy that many people use every day. However, because its 
capabilities are constantly evolving and the outputs are di-
verse, systematically sketching, prototyping, and assessing the 
UX of face tagging remains challenging. It exemplifies level 
four systems; These are opportune areas for HCI and RtD 
researchers to study human-AI interaction and design, without 
getting deeply involved in technological complexities. 
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Figure 6: An example of the framework in use. Using the framework, researchers can easily outline the problem space of a 
human-AI interaction issue of their interest, for example, the issue of AI fairness. 

The Anatomy of AI’s HCI Issue 
For researchers who study specific human-AI interaction de-
sign issues (e.g. fairness, intelligibility, users’ senses of con-
trol, etc.), the proposed framework gives a preliminary struc-
ture to these vast issues. Take as an example the challenges 
surrounding accounting for AI biases, a challenge that many 
critical AI systems face across application domains such as 
healthcare and criminal justice. Building a “fair" AI applica-
tion is widely considered as difficult, due to the complexity 
both in defining fairness goals and in algorithmically achiev-
ing the defined goals. Prior research has been addressing these 
challenges by promoting interaction design guidelines [4, 35]. 

Our framework provides a more holistic structure to the prob-
lem space of “AI fairness” (Figure 6). It illustrates that the 
current work has mostly focused on building “a fair AI sys-
tem pre-deployment”; that algorithmic fairness is only part 
of the whole “AI fairness” problem space. There is a real 
need for HCI and AI research in collaboratively translating 
fairness as an optimization problem into a feature of AI the 
socio-technical system (Figure 6, blue segment), and into a 
situated, user experience of fairness (yellow segment). The 
framework suggests a tentative agenda for these important 
future research topics. 

Implications for Design Methods and Tools 
Finally, the proposed framework intends to allow for a more 
principled discussion on how to support human-AI interaction 
design practice. It can help identify the core challenges AI 
brings to HCI practice across application domains. It can help 
researchers to articulate the contribution of their emergent 
AI design methods/tools/workflows as well as their scope of 
generalizability. Finally, it can provide new insights into how 
to address the remaining challenges. 

We consider UX prototyping methods of AI as an example. 

1. Identifying root challenges. Current research typically 
attributes the difficulty of prototyping AI to AI’s technical 
complexity or reliance on big data. However, HCI routinely 
grapples with complex, resource-intensive technologies using 
simple prototypes. What makes AI unique? Our framework 
suggests that the root challenges are that AI’s capabilities are 
adaptive and its outputs can autonomously diverge at a massive 
scale. Such systems problematize the conventional HCI proto-
typing methods that treat technology’s affordance as bounded 
and interactions prescriptive. These methods can work when 
prototyping AI as an optimization system in the lab (level one). 
They could fail in fully addressing AI’s ramifications over time 
as a real-world, sociotechnical system. 

2. Articulating the contributions and limits of emergent design 
methods/tools/processes. To make prototyping human-AI 
interaction easier, researchers have created simple-rule-based 
simulators [49, 7]) as AI prototyping tools. Mapping the 
characteristics of rule-based interactions onto the AI design 
complexity map (Figure 5), it becomes evident that rule-based 
simulators are most effective in prototyping level 1-2 systems. 
They can be particularly valuable for systems that generate a 
broad set of outputs (level 2) where traditional, manual pro-
totyping methods struggle. However, rule-based simulators 
cannot easily prototype systems that autonomously learn from 
user-generated data (level 3-4). These are living, sociotechni-
cal systems; the rules that map their inputs to outputs evolve 
in complex ways over time. 

3. Providing new insights for future research. Framing level 3 
and 4 AI systems as living, sociotechnical systems reveal new 
insights into how we might more effectively prototype their in-
teractions. For example, CSCW research has investigated how 
to prototype workplace knowledge sharing systems whose af-
fordance co-evolves with its users’ behaviors, the interactions 
among its users, and the organizational contexts at large [31]. 
These are too living, sociotechnical systems with uncertain 
capabilities and complex outputs. This body of work, though 
not typically considered as related to AI, could offer a valuable 
starting place for considering how we might design prototype 
human-AI interactions in the wild, over time. In this light, the 
proposed conceptual framework offers actionable insights for 
addressing the challenges of prototyping AI methodologically. 

CONCLUSION AND ACKNOWLEDGEMENT 
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Prior research often attributed these challenges to AI’s algo-
rithmic complexity and unpredictable system behaviors. Our 
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this common assumption. We encourage fellow researchers to 
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