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ABSTRACT
Animation, a common design element in user interfaces (UI),
can impact user engagement (UE) with mobile applications.
To avoid impairing UE due to improper design of animation,
designers rely on resource-intensive evaluation methods like
user studies or expert reviews. To alleviate this burden, we
propose a data-driven approach to assisting designers in ex-
amining UE issues with their animation designs. We first
crowdsource UE assessments of mobile UI animations. Based
on the collected data, we then build a novel deep learning
model that captures both spatial and temporal features of ani-
mations to predict their UE levels. Evaluations show that our
model achieves a reasonable accuracy. We further leverage
the animation feature encoded by our model and a sample set
of expert reviews to derive potential UE issues of a particular
animation. Finally, we develop a proof-of-concept tool and
evaluate its potential usage in actual design practices with
experts.
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INTRODUCTION
Animation is a widely adopted design element in mobile user
interface (UI). Defined as a visual change that is intentionally
constructed within an interface [32], animation can expand
the design space constrained by the physical form factor and
technical features of mobile devices [24]. Initially introduced
from cartoons [8], animation is proven to have the ability to
improve mobile UI usability and efficiency [32, 25]. In recent
years, researchers and designers have started to look more
deeply into the role of animation in driving user engagement

∗ Work done during Y. Jiang and Y. Liu’s internship at HKUST.

– a quality of user experience essential to user loyalty and
long-term success [26] – in mobile interaction settings [1].

User engagement (UE) is defined as the level of a user’s cog-
nitive, affective, and behavioral investment when interacting
with a digital system [39, 38]. Specifically, UE is an overarch-
ing construct that captures four dimensions of user experiences,
i.e., aesthetic appeal, focused attention, perceived usability,
and reward [38]. Prior research suggests that the interface of an
application compliments its content in producing an engaging
experience; if the interface fails to engage users, the content
may no longer matter [37]. Animation, as an integrated part
of mobile UI, can potentially affect all four aspects of user
engagement with the UI as a whole. For example, UI design
with more animations is perceived as more aesthetic and en-
gaging [18]. Likewise, a set of existing guidelines recommend
using animation to notify UI status changes for improving
website usability [25]. However, when embodied improperly,
animation might pose a negative impact. Hong et al. highlight
that only one animated item presented on a UI page can hold
users’ initial attention and thereby negatively affect their task
performance and perception [22]. As such, having a means
to assess user engagement with animation on mobile UI is
essential for designers, especially given the limited guidelines
available for mobile animation design.

Conventionally, designers evaluate their UI designs including
the integrated animations through user studies with target users
or design reviews with domain experts. While these evaluation
methods are informative, they requires extensive efforts and
time [56]. This issue motivates recent research efforts on
generating automatic assessment of design to provide rapid,
low-cost, and relatively reliable design feedback, especially in
the early design stages [35]. There have existed computational
models for measuring UI aesthetics [35], visual diversity [42],
and brand perception [55], to name a few. Although effective
in their designated domains, existing approaches may not be
readily applied to the assessment of user engagement with
mobile animation. First, the current methods only model user
perception on a single static UI page without taking dynamic
changes between consecutive UI pages into consideration [55].
Second, they tend to inspect only one aspect of user experience,
which limits the comprehensiveness of the assessment [42].
Third, most existing works lack the capability of identifying
reasons behind the prediction results generated by the model
and thus shed limited light on design improvements [48].
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Figure 1. The overview of our study pipeline. We first crowdsource UE assessments of 1021 mobile UI animations. We then build a two-stream deep
neural network model to predict UE levels of animation. We further leverage the animation feature encoded by our model and a sample set of expert
reviews to derive potential UE issues of a poor animation design.

To bridge these gaps, we propose a data-driven approach to
modeling overall as well as individual dimensions of user
engagement with mobile UI animation. It can further auto-
matically infer what aspects of an animation may potentially
hinder user engagement. To this end, we first adapt a stan-
dard UE scale and collect a dataset by crowdsourcing user
engagement assessments of 1021 mobile UI animations. We
then train a deep convolutional neural network on our dataset
to learn the features of mobile UI animation for predicting
their UE levels. We consider UI elements (e.g., UI images and
controls) and their transitions as integrated parts of animation
which may affect certain dimensions of UE with animation.
Our method thereby incorporates those information for pre-
diction by learning both the spatial and temporal attributes of
animation simultaneously via a two-stream model. With our
model, we achieve 71.4% precision on predicting “positive”
UE (greater than the median of the UE scale) and 80.7% preci-
sion on predicting “above average” UE (greater than the mean
of the crowdsourced UE scores).

Next, we take a step further to inform the possible animation
design issues that can result in poor engagement, so that de-
signers can reshape their products accordingly. Specifically,
we examine a subset of the animations rated with low UE
scores from our dataset with a group of UI/UX designers to
identify the UE-related design issues of each animation. We
calculate the similarity between a new animation and an anima-
tion from our subset using their feature representation encoded
by our built neural network. We then associate the new anima-
tion with a list of potential UE-related design issues attached
to its nearest neighbors according to the feature similarity.

Lastly, we design a proof-of-concept application which in-
tegrates our model to support designers and developers in
investigating user engagement with their animation. We con-
duct interviews with five professional designers to envision the
potential usage of this tool in actual mobile animation design
settings, shedding light on the future development of more
supportive design tools. To the best of our knowledge, this is

the first work on computationally modeling user engagement
with mobile UI animation1.

Overall, this work makes three key contributions:

• We present the first data-driven approach to predicting user
engagement with mobile UI animation by a large-scale
crowd study and a computational model.

• We propose a novel deep neural network for learning the
spatial and temporal information of mobile animation and
predicting its user engagement level, which demonstrates a
reasonably accurate performance. The model further allows
us to infer potential UE-related design issues of typical
animation, generating insights into UI design improvement.

• We develop a proof-of-concept design tool for assessing
user engagement with mobile animation and conduct an
informal study with designers to envision the use of our
model in real design practices.

RELATED WORK

UI Animation
Animation has recently become a common element in mobile
UI [51]. The functions of animated design elements within
mobile UIs range from giving the user an illusion of inter-
acting with a naturally behaving object [28] to drawing user
attention [33]. Chevalier et al. list a total of 23 different roles
of UI animations, organized into the five categories i.e., keep-
ing in context, teaching aid, user experience, data encoding,
and visual discourse [10]. While it is generally agreed within
industry and research communities that animation can be a pro-
ductive aspect of UI designs, different studies have different
definitions of animation [36]. For instance, Kraft et al. define
animation as a series of varying images presented dynamically
according to user actions in ways that help the user perceive
a continuous change over time [28] while Thomas et al. take
animation as a feature describing the spatial movements of UI
elements [49]. In our work, we adopt the definition of anima-
tion as a visual change that is intentionally constructed within

1The project website is at http://home.cse.ust.hk/~zwual/aniUE



an interface [32]. This definition excludes visual changes
caused by errors or lack of design, as well as lengthy prede-
fined animated content such as videos or splash screens. The
definition encompasses both large-scale transitional anima-
tions between visual states (switching application screens) and
smaller visual changes (icon bounce upon selection). The
authors further give insight into design practices by emerging
existing guidelines of different platforms regarding animation
design [32]. As pointed out, however, there has been limited
research attention paid to animation in mobile interface design.

User Engagement with Animation
User engagement (UE) measures the degree to which users
become cognitively and affectively focused on media con-
tent [39]. It affects user loyalty, long term usage, retention,
and eventually the success of an application [26]. O’brien et al.
measure UE by four dimensions, including focused attention,
aesthetic appeal, perceived usability, and reward factor[43].
Animation turns out to be associated with all four aspects.

First, animations can guide the user’s attention by effectively
explaining visual changes to the user interface [46, 20]. Ac-
cording to Robertson et al. , interactive animations reduce the
user’s cognitive load by shifting it to the human perceptual
system [30]. It assists users in tracking elements and under-
standing visual changes on the screen by making the transition
between visual states smoother [30]. Second, animations can
affect the aesthetic appeal of the user interface [50]. For in-
stance, UI designs with more animations are often perceived as
more aesthetic [18]. By integrating animations, it can improve
the hedonic quality of the user experience [49, 52]. Third,
animations can increase the perceived usability of a user in-
terface. According to Chang and Ungar, when the motion of
user interface elements is realistic and convincing, users can
concentrate more on the task itself rather than the mechanics
of the interface [8]. Last, animations make the user experience
more rewarding, and therefore encourage users to continue
interacting with the interface. As Thomas et al. suggest, inter-
faces with well integrated and appropriately used animations
are rated as more motivating than those without [49]. Yet, in-
appropriate uses of animation may instead result in decreased
user engagement. For instance, inappropriate animations can
be distracting and therefore draw attention away from the task
at hand [49]. Likewise, animations may potentially appear
childish and therefore drive users away [49]. Hence, while
there are benefits to integrating animations in user interfaces,
they must be used appropriately to generate a positive effect.

Computational Assessment of UI
There have been works on modeling user perception and the
subjective feedback of user interfaces, e.g., the judgment of
aesthetics [35], visual diversity [4], and brand perception [55].
A typical way to achieve this is by compiling a set of visual
descriptors that depict a UI page, such as color, texture, and
organization [55]. Then they collect user perception data at
scale and construct the corresponding prediction models. The
hand-crafted features, however, may not be able to portray all
the aspects of UI, leaving room for improvement. Alterna-
tively, deep learning (DL) has demonstrated its decent perfor-
mance on learning representative features based on large-scale

data [29]. For example, Zhao et al. adopt a convolutional neu-
ral network to predict the look and feel of graphic designs. In
the domain of mobile UI design, DL-based methods have been
applied to predict the perceived tappability of interfaces [48]
and user performance of menu selection [31]. Despite the vital
role of UE in design, computational methods for modeling
UE remain under-explored. Some relevant studies infer UE
from logged interaction data [7] or from textual information of
social media data [45], but have not investigated the effect of
visual stimuli on UE. Meanwhile, none of the aforementioned
works, whose targets are static UI pages, can be generalized for
mobile animation as they do not consider dynamic UI changes.
Moreover, while most of the existing studies only provide
prediction scores, they lack the capability of offering detailed
feedback to facilitate the communications with designers [44].
To bridge these gaps, we present a novel deep learning model
which can predict UE level with mobile animation and further
provide feedback on potential UE issues of animation design.

VALIDATING THE ADAPTED USER ENGAGEMENT SCALE

User Engagement Scale
The User Engagement Scale (UES) is a standard survey widely
adopted to measure user engagement [38]. We employ the
short version of UES, which consists of 12 statements measur-
ing four dimensions of engagement. The 12-item scale is orig-
inally proposed for website design and tested on e-shopping
experience. Though with a certain level of generality, not all
of the current items are entirely suitable for evaluating mobile
animation. Therefore, we adjust some of the items to fit our
context. In particular, for measuring focused attention, we do
not include any item measuring long-term experience due to
the short duration of mobile animation. We instead replace
such an item “I lost myself in this experience.” with “This ani-
mation holds my attention.” used by [54]. Further, we modify
some wording of the original statements to fit our context. The
detail of the adapted UES is shown in Table 1.

Study Description and Data Analysis
To provide a structural validation of the adapted UES, we de-
ploy an online study on Amazon Mechanical Turk 2 with 378
crowd workers. The participants are restricted to US residents
to avoid cultural difference. We first ask the participants about
their basic demographic information including gender, age,
and the experience with mobile application. Then, we assign
seven mobile animations, randomly sampled from Rico3 [13],
to each participant to rate using the adapted UES questionnaire.
The animations are sampled in a way that they cover the seven
common types of animations [36]. We show the participants a
starting page of an animation with the user interaction (e.g., a
tap or scrolling) highlighted and then an animated gif of the
consequent effect. Such setting is to mitigate possible effects
introduced by other non-animation-related factors, e.g., the
function of the app, individual behavior habits, etc. Also, pre-
senting interaction flow with animation effects in the form of
a video is a common practice in app store (e.g. Google Play)
to attract potential users. Once respondents view an anima-
tion, they respond to 13 user engagement questions, including

2https://www.mturk.com/
3http://rico.interactionmining.org/



Table 1. Details and statistic description of the user engagement scale adapted from [38].
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Figure 2. The user engagement score distribution of the collected ani-
mation. The score is in 5-point Likert scale from strongly disagree to
strongly agree (0 being “strongly disagree”).

a pair of quality control questions to filter out unreliable re-
sponses, by indicating their level of agreement on a 5-point
Likert scale from “0. strongly disagree” to “4. strongly agree”.
We screen out submissions which: 1) provide contradictory
answers to quality control questions, or 2) present answers in
some systematic patterns such as “0 1 2 3 4”. To eliminate
potential bias caused by prior experience, in the following
analysis, we exclude the responses from workers who reported
to have used the associated applications before. Eventually,
we secure the ratings from 215 participants (136 males and
agemean = 30.98), which meets the recommended sample size
(i.e., greater than 200 participants) for factor analysis [23].

Bartlett’s test shows the significant factorability of the col-
lected data (χ2 = 332.48, p < .001), and the average Kaiser-d f
Meyer-Olkin factor adequacy measure indicates good suitabil-
ity (overall MSR = 0.83). To test the validity of the items, we
conduct confirmatory factor analysis (CFA) using structural
equation modeling. The Cronbach’s alpha values for all items
are above the recommended 0.7 value, indicating good relia-
bility. We thus conclude that the adapted 12-item scale is valid
for measuring user engagement with mobile animation.

MODELING MOBILE ANIMATION ENGAGEMENT

Data Preparation
For constructing the computational model, we collect a large
scale of user engagement data regarding mobile animation
measured by the adapted UES.

Data Collection
We perform a similar crowdsourcing experiment as described
in the previous section (Sec.3.2). The difference in this exper-
iment is that we randomly sample another 1021 animations
from the apps in Rico dataset. Rico contains apps of diverse
quality (with different user ratings) from Google Play. The
animations chosen from different apps cover seven common
animation types [36]. Following the practice described in
Sec.3.2, each animation is rated by at least five crowd workers
on the adapted user engagement scale (as shown in Table 1).
Each worker is assigned to three animations. The animation
duration ranges from 1s to 12s. After removing unreliable
responses based on the aforementioned criteria, we eventually
secure 5106 individual assessments from 1702 participants
(970 males and Agemean = 32.18). For each animation, we
aggregate the scores from different raters by majority voting.

Crowd Data Analysis
Figure 2 illustrates the distribution of overall user engagement
scores across the selected animations (Mean = 2.28, SD =
0.64). Among the four dimensions of user engagement, FA
has the lowest average score (Mean = 1.94, SD = 0.67) whereas
AA is the most positively rated (Mean = 2.51, SD = 0.51). The
scores of PU (Mean = 2.31, SD = 0.70) and RF (Mean = 2.34,
SD = 0.49) sit in the middle.

We further examine whether the raters’ perception of UE with
animation is consistent. We adopt the intraclass correlation
coefficient (ICC) [5], a standard measure for quantifying the
degree to which a fixed number of raters have consistent judg-
ments. The result (ICC1k = .708; 95% conf. interval is .699 to
.716; F(11231, 44928) = 3.424; p<.001) suggests a good con-
sistency level in user rating on the measurement according to
a standard guideline [11]. This demonstrates a high degree of
reliability of the crowdsourced data, although there still exists
a certain level of disagreement. The statistics also shows that
the participants have the highest agreement on AA (ICC1k=
.714) and the lowest consistency in PU ratings (ICC1k = .650),
indicating a more compatible perception of aesthetics than on
the other three dimensions.

Model Construction
To predict user engagement with mobile UI animations,
we build a deep-learning-based computational model. An
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Figure 3. An illustration of our semantic temporal segment strategy. In
this example, our algorithm divides a typical loading animation into five
sequential segments according to their frame similarity. The result seg-
ments serve as the input of the spatial network while their differences
between consecutive frames serve as the temporal input.

overview of the model is presented in Figure 4. Overall, we
use a two-stream neural network, adapted from an existing
method for video analysis [47], which accepts spatial and tem-
poral descriptors of a given mobile UI animation as input and
produces the prediction of its user engagement level as output.

Network Input: Spatial and Temporal Descriptors
Inspired by [47], we utilize a two-stream neural network struc-
ture which decouples the source stimuli into spatial and tem-
poral representations for better modeling performance. More
specifically, we design our model to accept the two following
features of mobile UI animations as input: 1) an encoding of
spatial features such as color and layout, and 2) an encoding
of temporal features that describe the dynamic changes within
and between UI pages.

The original TSN method developed for video data [47], how-
ever, cannot be readily applied to model UI animation for
several reasons. First, prior works [47, 53] use a randomly
sampling strategy that randomly selects video segments as the
model inputs. When applied to mobile UI animations, this
sampling strategy can lead to significant information loss as it
might miss some of the key frames that are influential on user
engagement perception. Second, a UI animation is usually
composed of a series of actions of different durations. For
example, a sign-in animation commonly consists of a long
loading sequence followed by a short page switch. A ran-
dom sequence sampling method is incapable of capturing such
duration variations, which have the potential to significantly
impact on user engagement [24]. Moreover, those randomly
sampled segments may not capture notable transitions between

key frames while prior research has indicated the critical role
of transition in shaping user engagement [25].

To tackle these challenges, we introduce a semantic temporal
segmentation strategy to extract the informative spatial and
temporal features of a mobile UI animation. In particular,
we segment the animation based on frame similarity. Each
segment represents a subsequence of the animation with its
duration measured by the number of frames it contains. Our al-
gorithm for segmenting the sequences evolves from K-Means
clustering. Upon the original K-Means algorithm, we im-
pose an additional constraint to ensure that each segment is
composed of consecutive frames and all segments maintain
sequential order. Specifically, for a given mobile UI animation
A = {a1,a2, ...,an}, where ai denotes the ith frame of A, we
segment it into K segments {S1,S2, ...,Sk}. The average of the
frames denotes the center of each segment. In each iteration of
our algorithm, we traverse all the frames sequentially, compar-
ing the distances between each frame and the segment centers
to sort the frames into separate segments. In this way, two con-
secutive frames will be assigned to different segments if they
have a large pixel-wise difference. Empirically we find that
good initialization is essential for convergence. Therefore, we
use K-Means clustering to initialize all our segment centers.

We use the centers of the resultant segments as our spatial input
features; meanwhile, we take the RGB differences between the
resultant segment centers as our temporal input. While optical
flow is used as temporal feature for video data in the original
TSN paper [47], we adopt RGB-diff since we empirically
find that it works better than optical flow for animation in
our task. An illustration of our feature encoding procedure
is shown in Figure 3. The first row of this figure shows the
raw animation frames with the second row illustrating the
generated segments. The third row presents the center of each
segment, which together serves as the input of the spatial
network. Meanwhile, their differences, as displayed in the
fourth row, will be taken as the input of the temporal network.
In this presented example, the segmentation strategy captures
different actions of the animation. The first screenshot depicts
the initial page, the second and third capture a sliding behavior,
whereas the fourth one illustrates a loading process, and the
last one presents the post-loading action.

Model Architecture
Figure 4 presents our model architecture. We leverage a two-
stream framework to predict user engagement with mobile
UI animations. One of our network streams processes the
spatial descriptor of animation, and the other processes the
temporal descriptor. Their output are fused at the end as the
final prediction result.

The network stream for processing spatial features consists of
a 34-layer network, using a standard ResNet architecture [19]
followed by an FC layer and Softmax activation and finally
makes a loss-level prediction. The temporal network stream
also contains a similar structure. Different from the spatial
network, we include an attention mechanism in between the 34-
layer ResNet and the FC layer. It is for allowing the model to
attend to the more informative parts of the input [2]. With the
attention mechanism, the operation on the extracted temporal
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Figure 4. The overview of our proposed two-stream network for predicting UE with mobile UI animation. One of the Resnet network streams processes
the spatial descriptor of an animation, and the other processes the temporal descriptor. Their output are fused at the end as the final result.

features can be represented as follows:

Out = H(G([F(d1), l1], [F(d2), l2], ..., [F(dK−1), lK−1])) (1)

di denotes the extracted temporal features, which is equiva-
lent to the difference between the segment centers of Si, and
Si+1. li denotes the length of the corresponding segments. F
denotes the ResNet feed-forward operation. G takes in the
ResNet output plus the duration [F(di), li] and combines all
the segments with an attention mechanism in order to get a
comprehensive interpretation of the UI animation sequence. H
is an FC layer with Softmax activation that makes a loss-level
prediction based on the outputs of the attention mechanism.

Let fi = [F(di), li] denote the ResNet output plus duration
corresponding to the ith segment. The attention mechanism
will produce a weight combination of the fis as follows:

K exp(w fi)G( f1, f2, ..., fK) = ∑ αi fi, where αi = (2)
i=1 ∑K

j=1 exp(w f j)

w denotes a weight, which will be learned in the training
process. With the attention mechanism, the network is able to
assign a higher weight to the more critical temporal features.

Model Training
We first filter out the animations with inconsistent crowdsourc-
ing ratings (the standard deviation is above top 5%). This
leaves us with 997 animations in our dataset. We label all
animations with a rating above the mean score as “above aver-
age” and those below as “below average”. We also label all
animations with a rating above the median of the UE scale
as “positive” and below as “negative” to provide another clas-
sification of UE level. 71% of the animations is labeled as
“positive”. These two classifications provide two different eval-
uation perspectives. The former indicates whether the UE of
a given animation is generally positive in terms of the scale,
whereas the latter shows whether it is better than half of the
stimuli in the entire dataset.

We randomly split the whole dataset into a training set (60%),
a validation set (20%), and a testing set (20%). Each animation
is resized to 280×158. To augment the training data size for
avoiding overfitting, we randomly crop each animation into
the size of 224×126 and perform horizontal frame flipping.
The Softmax activation function we include as part of the
last layer generates a predicted probability. The probability
indicates how likely the model perceives the animation as
“above average” (or “positive”). The spatial and temporal
streams are trained separately by minimizing the cross-entropy
loss between the predicted values and our labels. We also
incorporate a triplet loss to boost the loss convergence [21].
After training, we fuse the two network streams together by
averaging their output. For loss optimization, we use the Adam
optimizer [27] with a learning rate of 0.001 and a batch size of
64. A dropout ratio of 50% and weight decay with rate 0.0001
are applied to alleviate model overfitting. We build our model
using Pytorch [40] and train it on two Nvidia GTX 1080 Ti
GPUs. The training process is terminated at the epoch when
the models achieve the optimal performance on the validation
set. Then the trained models are evaluated on the test set.

Model Precision Recall F-score

TSN-Spatial 63.0% 59.4% 61.2%
TSN-Temporal 57.9% 62.3% 60.0%

Our-Spatial 67.3% 62.3% 64.7%
Our-Temporal 68.1% 60.4% 64.0%
TSN-Fusion 60.2% 69.8% 64.6%
Our-Fusion 71.4% 70.0% 70.7%

Table 2. Performance of proposed models compared to the baseline
(TSN [47]) on predicting whether UE with an animation is above average

Model Evaluation
In Table 2 and 3, we compare our models to the original two-
stream network (TSN) [47] in terms of predicting whether UE
with an animation is “above average” and whether UE with an
animation is “positive”, respectively. To quantify the model



Model Precision Recall F-score

TSN-Spatial 79.4% 71.8% 75.4%
TSN-Temporal 78.9% 57.7% 66.7%

Our-Spatial 79.7% 92.3% 87.0%
Our-Temporal 79.0% 91.7% 84.9%
TSN-Fusion 79.3% 73.3% 78.0%
Our-Fusion 80.7% 96.8% 88.1%

Table 3. Performance of proposed models compared to the baseline
(TSN [47]) on predicting whether UE with an animation is positive

performance, we provide the standard metrics of precision,

recall, and F-score ( 2∗precision∗recall ) [14].precision+recall

For predicting “above average” UE, our proposed spatial-
only network and temporal-only network both outperform
the single-stream baselines for all three metrics. Compared
to the single stream models, our fusion model achieves an
even higher precision, recall, and F-score (71.4%, 70.0%, and
70.7% respectively). It also significantly outperforms the base-
line fusion model which only reaches a precision of 60.2%,
a recall of 69.8%, an F-score of 64.6%. Additionally, we
compare the temporal attention models with and without the
incorporation of the segment duration. The results shows that
the one with segment duration performs better (2.6% improve-
ment on F-score), indicating the benefit of animation timing
on UE prediction. Likewise, for predicting “positive” UE with
animation, our proposed spatial-only and temporal-only net-
work stream models both beat the single-stream baselines on
all three metrics. Our fused model also performs better than
the baseline fused model across the board. Meanwhile, the
precision of predicting the “negative” class is 93.1%. In all,
we show that user perception of UE with mobile animation
can be computationally predicted with a reasonably accurate
performance. Moreover, the comparative results indicate the
effectiveness of our proposed sequential sampling strategy and
attention mechanism in capturing animation characteristics for
inferring UE levels. While the average fusion brings signif-
icant improvement for our proposed models, such effect on
TSN baselines is much weaker. It is possibly because with the
poorer performance of TSN, the outcome contains more noise
and thus achieves less improvement after fusion.

We also investigate our model’s performance across the four
UE dimensions: focused attention (FA), perceived usability
(PU), aesthetic appeal (AA), and reward factor (RF). We train

50 50
FA FA

F-Score %

(a) Above/Below Average (b) Positive/Negative

F-Score %

PU PUAA AARF RF

70 70
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75 75

95 95
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Figure 5. Our fusion model’s F-score performance across different UE
dimensions.

and evaluate our model on each of the four dimensions using
the same settings detailed in the Model Training section. The
results are presented in Figure 5 for predicting “above average”
and “positive” UE. It shows that in both settings, our fusion
model yields the highest F-score on predicting Aesthetic Ap-
peal (AA) and the lowest for Perceived Usability (PU). One
possible explanation is that the user ratings we collect for the
AA of an animation are more consistent than those of the PU,
as reported in the previous section (Section 4.1.2). Given more
varied and ambiguous data, it is naturally more difficult for the
a computational model to make accurate predictions. Another
possible explanation is that while AA is perceived purely from
the appearance of an animation, PU is also related to user
interactions [18]. Since our model makes predictions based
entirely on spatial and temporal features extracted from ani-
mations, users’ experience with actually interacting with the
interface, which is a component of PU, may be more difficult
to encode than just its visual appearance.

To better understand our model’s effectiveness on character-
izing mobile animations, we visualize the features of the ani-
mations in our dataset embedded by our model. Specifically,
we collect the model’s 512-dimension output before the last
FC layer as the encoded feature representation of each anima-
tion. We then project them onto a 2-D space using the tSNE
method [34], an optimization-based dimensionality reduction
technique. tSNE is suitable for visualizing high-dimensional
data as it can reliably represent the distances between data
points [34]. The result is shown in Figure 6. Examining the
data points, we find that similar types of animations tend to
appear in close proximity to one another. For instance, the
points representing loading animations generally tend to be
neighbors while locating far apart from the points for sliding
animations. This suggests that the feature representation of the
animations generated by the model may potentially be used to
differentiate between distinct types of animations.

IDENTIFYING POTENTIAL UE RELATED DESIGN ISSUES
From designers’ perspective, just being able to assess whether
an animation is engaging may not be insightful enough to get
informed on how to reshape their animation design. Therefore,
we propose to automatically identify the potential UE issues of
a poor animation design. The most straightforward method to
achieving this goal is by analyzing the features that contribute
to the model. However, this means is yet to be practically
effective due to the black-box nature of deep learning mod-
els [16]. Alternatively, we can train another model to predict
the reasons leading to poor UE with animation or mine user
reviews from app store to infer UE issues. However, these
methods both require a large dataset of high-quality expert
reviews or online app comments. Instead of the above options,
we adopt a weakly supervised method which utilizes the fea-
ture representations encoded by our UE prediction model and
the data from a small scale expert interview. It is based on
the manifold assumption that the animations sharing similar
features in constructed high-level space bare similar strength
and weakness [57]. Overall, we first conduct expert interviews
to identify the reasons why animation from a subset of our col-
lected data has poor user engagement. Based on the feedback,
we compile a list of potential issues for each animation in the



Table 4. The summary of the UE related issues given by five expert designers.

Loading Popping up Sliding
InputInputInput NeighborsNeighborsNeighbors

Figure 6. tSNE visualization of the embedded animation features. For a
given animation, its neighbors tend to be the similar type of animations
while those distant from it are often significantly different animations.

subset. Given a new animation with poor user engagement,
we then associate the animation with a list of potential issues
using nearest neighbor search in terms of feature similarity.

Expert Interviews
We conduct semi-structured online interviews with five pro-
fessional designers. They are recruited from technology com-
panies via personal social media or word of mouth and are
required to have at least two-year industrial experience with
UI/UX design projects. The interview with each participant
lasts around two hours. From our original dataset, we sample
100 animations with low user engagement scores. In the inter-
view, we present these animations together with their crowd-
sourced UE scores one by one to the participants, and ask them
to comment on the potential reasons why the animations were
not engaging to users. We perform thematic analysis [6] on
the interview transcripts and compile the feedback into a list
of potential UE issues for the sampled animations. A summary
of the final themes is presented in Table 4.

Specifically, we organize the identified UE issues around the
four dimensions of UE (i.e., FA, PU, AA, and RF), and then
into three sub-categories animation, component, page. Anima-
tion refers to UE issues associated with the animation itself
(e.g., speed and direction of movement). Component refers
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Figure 7. The interface of AniLens. Designers can upload an animation
on the left panel (a). Then the corresponding results including the pre-
dicted UE level (b) and potential UE related design issues (c) will show
up on the right.

to UE issues related to the UI components (e.g., the graphic
style of the button), whereas the UE issues associated with a
UI page or the transition between UI pages fall into Page. In
Table 4, we sort the UE issues listed within each subcategory
according to their frequency mentioned by experts. Across
the three subcategories, animation related UE issues are dis-
cussed the most by the expert participants. The most frequently
mentioned issues in the FA, PU, AA, and RF are “redundant
animation,” “misused animation,” “not aesthetically appealing
enough,” and “animation not smooth enough” respectively.
More details can be found in Table 4.

Inferring Potential UE Issues
Given a new animation with a low predicted UE level, we em-
bed it into the feature representation generated by our model.
The feature encoding is the 512-dim output before the last
FC layer of the network. With the feature vector, we search
the closest neighbor examples in the sample set based on L2
distance and return the top UE related issues associated with
the neighbors. To evaluate the effectiveness of this approach,
we perform a five-fold cross validation across the collected
review dataset with 80% training and 20% validation data. The
results show that our method can achieve 60.6% accuracy for
Top-5 performance, which significantly outperforms random
guessing (14.3%). This reveals that the introduced method can
effectively infer the potential UE-related issues of animation
with a reasonable accuracy. As such, our model has the poten-
tial to help designers improve their animation designs. Despite
the presented effectiveness of our method, we are aware that
the selected datapoints may not be sufficient enough to cover
all the cases. In future studies, it is worth evaluating how our
method performs with an extended dataset.

A DESIGN TOOL AND ITS EVALUATION
We develop AniLens, a proof-of-concept web application with
our built-in model for designers and developers to assess their

mobile animation design. The interface is implemented in
Javascript supported by a Python back-end server. It takes
a mobile animation in GIF format as input and outputs the
model’s predicted engagement results (whether “positive” and
whether “above average”) on the overall UE as well as each
of the four dimensions. If the animation receives a “negative”
or “below average” assessment, AniLens further generates
a list of five UE issues potentially associated with the given
animation. The interface of AniLens is shown in Figure 7.

To attain overall feedback of AniLens and envision its poten-
tial use in actual design settings, we conduct semi-structured
interviews with another five mobile UI/UX designers (D1-D5).
Following the same process mentioned in Sec.5.1, we recruit
the participants who have at least two-year mobile UI/UX
design experience in industrial companies via personal invita-
tion or word of mouth. During the interview, we walk them
through AniLens and collect informal feedback on its two
main features: predicting UE levels of an animation and pro-
viding suggestions on fixing the animation design predicted to
have low UE. We also ask the designers to envision how they
would utilize such a tool in actual design practice. Overall, the
designers are excited about AniLens and share their expecta-
tion of improvement. Particularly, we identify the following
themes through thematic analysis [6].

Potential Usage in Design Practice
The designers respond positively towards the two features pro-
vided by AniLens. For example, D2 expresses his interest in
the tool that, “I like this idea of getting automatic feedback.
It would be very inspiring for me to know how users might
perceive my animation designs, especially for the ones I’m
not confident about”. D3 adds that, “I would love to use the
tool for quick sanity check to see if the design has some basic
faults.” The designers further mention that they can easily
foresee various uses of AniLens in their design practices. First,
AniLens could help them investigate different dimensions of
animations for a comprehensive diagnosis, e.g., “in a navi-
gation app design, perceived usability is more essential than
appeal. So with the tool, I would be more strict on usability
levels while its aesthetics just needs to meet the baseline.”(D4)
Second, the results could be used as a source for design vali-
dation. “ When I want to convince clients or managers of my
animation design, it could be extremely helpful to show them
the positive prediction results.”(D1) Third, the tool could aid
designers in fixing their problematic animation by prioritizing
the possible UE issues. “With an unshaped animation design
and a tight project deadline, I can get quick hints from the
tool on which aspect should be primarily focused on. I will
first look at the worst dimension in the prediction and find the
related issues from the suggestion list.”(D5).

Directions for Tool Improvement
Our participants point out several directions for improving
AniLens. Two of them (D2 and D5) hope that the tool could
also take in a batch of animations from an application as a
whole and generate an overall UE prediction. It is for ensuring
the high “consistency and smoothness of consecutive anima-
tions” (D3). Such capacity could be achieved by detecting



individual animations from the batch and aggregating their pre-
dicted UE levels. Meanwhile, D5 demands more fine-grained
prediction results. While AniLens only provides the predicted
UE levels, D5 hopes to get precise UE value as it can facil-
itate direct comparison between two animations falling into
the same UE level. We could extend AniLens by integrating
another prediction model for regressing UE value, which how-
ever, requires vast high-quality crowd data with balanced UE
score distribution. Moreover, D4 wishes AniLens to present
some examples that have the same UE issues as the input
animation. Because adding such examples can allow more
intuitive understanding of the identified issues than presenting
textual information alone, avoiding “improper interpretation
of the results”. To achieve so, we could augment AniLens in
a way that it will display several similar animation examples
from the expert annotated pool labelled with the same issue
when a user clicks on one of the suggested UE issues. Besides,
D1 and D2 mention that in actual practice, an animation can
be saved in different formats, such as animated images in GIF,
a sequence of images in JPEG, and even video formats (e.g.,
AVI and MPEG4). They suggest that AniLens should afford
different formats of animation as input, which could be done
by incorporating a format conversion function into AniLens.

DISCUSSION & FUTURE WORK
In addition to the usage as an assessment tool mentioned in
the previous section, our computational model can also be
applied in many other contexts. For instance, our model can
automatically suggest a high-quality reference set of exem-
plary animations, so that designers do not need to manually
screen out bad animation examples when searching for design
materials online. Additionally, we see the development of our
model as a step towards automatic generation of UI animation
designs. The prediction results of our model can potentially
serve as a design criterion in the objective function of a gener-
ative model. Moreover, our methodology for building a UE
predication model for mobile animation is easily extensible
to other design domains where animation plays a critical role
(e.g., web design and AR/VR applications).

Although our model is reasonably accurate, we acknowledge
that there is still room for improvement to support wider ap-
plication scenarios. First, our model may not factor in all
the characteristics of mobile animation which can affect user
engagement. For example, our current model cannot well cap-
ture semantic information contained within UI. While prior
research has demonstrated, for instance, that images of human
faces have an effect on user engagement [3], our current model
cannot handle such indicators and has lower precision in this
case. Likewise, as discussed earlier in Model Evaluation sub-
section, our model only considers spatial and temporal features
of a mobile animation, while perceived usability also depends
on the user’s interactions with the interface. One potential
solution to this issue would be by incorporating more rele-
vant features, e.g., face descriptors and logged user interaction
data, into our engagement prediction model. Second, despite
promising performance with the embedded 34-layer ResNet,
in the future, we can consider trying other common network
architectures (e.g., the deep recurrent neural nets prior research
has shown decent performance on time-series sequential data

[15]). Further, as noted in the data collection section, the UE
ratings we collected are not always consistent. Although we
aggregate the judgments from five raters to alleviate poten-
tial subjective biases, there are other possible means to deal
with inconsistent data for improving model performance. For
example, in addition to using a 5-point Likert scale, we may
ask crowd workers to perform pairwise comparisons between
UI designs in order to avoid individual scale differences [12].
We could also investigate whether existing methods for han-
dling noisy and subjective data, such as bootstrapping [41]
and co-teaching [17], can boost the performance of our model.

There are also several directions for future work. Besides user
engagement, there exist other qualities that define user experi-
ence with mobile animations, such as time perception [24] and
brand perception [55]. We might apply the same methodology
to computationally model these qualities. Besides, mobile UI
animations in our current dataset are all from Android applica-
tions. We are interested in exploring whether our model can
be generalized to other platforms, such as iOS applications.
Moreover, we simulate the experience with animation by pre-
senting participants the animation effect caused by an user
interaction instead of asking them to actually interact with the
animation. Although such setting is to mitigate possible ef-
fects introduced by non-animation-related factors, we plan to
investigate the potential gap between the simulated and actual
experience. Last but not least, prior work has highlighted that
the use of design tools varies across designers with different
level of expertise [9]. We speculate that novices will rely
more on our tool compared to experts. Studying such behavior
differences in using our tool can guide us to provide more
customized support. It would be insightful to evaluate Anilens
in the actual design settings with both experts and novices.

CONCLUSION
In this paper, we present a data-driven approach to assisting de-
signers in examining user engagement (UE) with their mobile
UI animation designs. We first crowdsource a UE assessment
dataset of 1021 animations based on a validated UE scale.
Then based on the collected data, we design and train a deep
model that performs reasonably well in predicting the level
of UE with mobile UI animations.To further aid designers in
improving their mobile UI animations, we allow the automatic
identification of potential UE related issues of an animation
by utilizing the animation feature encoded by our model and
data from small-scale expert interviews. Finally, we build
AniLens, a proof-of-concept tool for designers and developers
to assess and improve UI animation designs. We evaluate the
potential usage of AniLens in real-world design settings with
five professional UI/UX designers, who respond positively.
Overall, our work can benefit designers by enabling automatic
animation design assessment and provide the implications on
the future development of computational design tools.
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