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ABSTRACT
Dirty data and deceptive design practices can undermine, in-
vert, or invalidate the purported messages of charts and graphs.
These failures can arise silently: a conclusion derived from
a particular visualization may look plausible unless the an-
alyst looks closer and discovers an issue with the backing
data, visual specification, or their own assumptions. We term
such silent but significant failures visualization mirages. We
describe a conceptual model of mirages and show how they
can be generated at every stage of the visual analytics process.
We adapt a methodology from software testing, metamorphic
testing, as a way of automatically surfacing potential mirages
at the visual encoding stage of analysis through modifications
to the underlying data and chart specification. We show that
metamorphic testing can reliably identify mirages across a
variety of chart types with relatively little prior knowledge of
the data or the domain.

Author Keywords
Information visualization; deceptive visualization;
visualization testing

CCS Concepts
•Human-centered computing → Visualization; Informa-
tion visualization;

INTRODUCTION
Visualizations, like all forms of communication, can mislead or
misrepresent information. Visualizations often hide important
details, downplay or fail to represent uncertainty, or interplay
with complexities in the human perceptual system. Viewers
often encounter charts produced by analytical pipelines that
may not be robust to dirty data or statistical malpractice. It is
straightforward to generate charts that, through deceit, acci-
dent, or carelessness, appear to show something of interest in
a dataset, but do not in fact reliably communicate anything sig-
nificant or replicable. We refer to the charts that superficially
convey a particular message that is undermined by further
scrutiny as visualization mirages.

In this paper, we present a conceptual model of these visual-
ization mirages and show how users’ choices can cause errors
in all stages of the visual analytics (VA) process that can lead
to untrue or unwarranted conclusions from data. Using our
model we observe a gap in automatic techniques for validating
visualizations, specifically in the relationship between data
and chart specification. We address this gap by developing a
theory of metamorphic testing for visualization which synthe-
sizes prior work on metamorphic testing [103] and algebraic

visualization errors [62]. Through this combination we seek to
alert viewers to situations where minor changes to the visual-
ization design or backing data have large (but illusory) effects
on the resulting visualization, or where potentially important
or disqualifying changes have no visual impact on the result-
ing visualization. We develop a proof of concept system that
demonstrates the validity of this approach, and call for further
study in mixed-initiative visualization verification.
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Figure 1. Visualizations that aggregate data can mask their underlying
data distributions, which can create mirages, as in this bar chart over
synthetic data. Not all distributions equally support the message that
sales in Y are reliably higher than X. For instance, this difference could
be driven by a single outlier (B), a possibly erroneously repeated value
(C), or be an artifact of high variability caused by low sample size (D).

VISUALIZATION MIRAGES
We define a visualization mirage as follows:

A visualization mirage is any visualization where the
cursory reading of the visualization would appear to sup-
port a particular message arising from the data, but where
a closer re-examination of the visualization, backing data,
or analytical process would invalidate or cast significant
doubt on this support.

A long sequence of contexts and decisions, from the initial
data curation and collection, to the eventual reader’s literacies
and assumptions, determine the message that a visualization
delivers. Mistakes, errors, or intentionally deceptive choices
anywhere along this process can create visualization mirages,
from dirty data [61] to cognitive biases [29]. Failures can
occur at an early stage, but not result in a mirage until a later
stage. For instance, missing data as a result of an error in data
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collection may be visible in a particular visualization, such as
univariate data in a dot plot, and so be unlikely to lead to an
error in judgment. Yet this data flaw may be invisible in a less
robust visualization-design such as a histogram [24]. Whether
the missing data results in a mirage is contingent on the choice
of eventual visualization design.

Mirages also depend on the reader’s task. What may be mis-
leading in the context of one task may not interfere with an-
other. For instance, bias in estimating angle caused by a poorly
selected aspect ratio [49] or improperly selected scales [17]
could potentially produce a mirage for a viewer interested in
correlation, but is unlikely to impact a viewer concerned with
locating extrema. Figure 1 shows how mirages can arise for
the task of comparing values in a bar chart: while the final bar
chart is identical for all for cases A-D, some of these cases
suggest statistical or data quality concerns that would cause a
reader to doubt the reliability or robustness of any conclusions
drawn from the direct comparison of values in the bar chart.

Not all errors in charting are mirages; for a viewer to be mis-
taken, the visualization must appear to credibly communicate
something. Errors that fail to generate visualizations (such as
software errors), or generate errors that are readily visible (e.g.
“glitch-charts” [2]) do not function as mirages: either there is
no illusory message to dispel, or the visualization has visible
irregularities that cast its accuracy into immediate doubt. We
also exclude charts which are intended to be consumed only
as art, that Ziemkiewicz et al. [136] place outside of the tradi-
tional rhetorics of information visualization, although many
artistic or ambient visualizations can and do persuade [82],
and so have the potential to mislead. We instead focus on
cases where the chart appears correct, but where tacit issues
in the analysis and generation pipeline have produced a mis-
match between the conclusions supported by the data and the
message communicated by the chart.

Mirages pose an important design problem: tools in the VA
process should help to augment [47] and enhance the reader’s
understanding of their data in such a way that the reader either
automatically avoids mirages or is alerted to them in a useful
manner. Simply alerting the reader to potential issues in a
given visualization may be sufficient to provoke skepticism or
follow-up analysis that would dispel the mirage.

In the next section we provide a narrative exemplifying how
mirages can arise in the course of an analysis session. We then
provide an in-depth discussion of the ways that mirages can
form and the problems they cause. We then consider prior
systems for addressing these errors, and introduce the use
of our Metamoprhic Testing for Visualization technique for
identifying visual encoding-based mirages. We substantiate
our technique through a computational experiment.

Illustration: World Indicators
Mirages arise in the ordinary process of visual analytics, and
can require significant effort or knowledge to detect and diag-
nose. We present a sample VA session and highlight mirages
based on real situations encountered by the authors. Through
this analysis we aim to answer a question: “What is the trend of
global energy usage over time and what drives this trend?" We
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Figure 2. Do we always see what we get? Here we show energy usage by
countries from the “World Indicators" dataset [43]. Even these simple
charts contain subtleties that can cause a careless analyst to make er-
rors that give way to mirages. For instance, the choice of aggregate can
make the trend in global energy usage appear to be either dramatically
increasing or decreasing in 2012. But neither line chart reveals the large
number of missing values in 2012, or the biased nature of the values that
remain.
focus on the “World Indicators" dataset [43] which consists of
per-country statistics from 2000-2012. We choose this dataset
because of its prior use in showing the value of visualization
to understand the trajectory of human development [98].

We begin our analysis by constructing a time series visual-
ization of energy usage. Figure 2a appears to show a sharp
decrease in energy usage in 2012, which may indicate a world-
wide shift towards sustainability initiatives. However, this
decrease is illusory, and is caused by a problem in curation:
there are far fewer records for 2012 than in previous years,
as shown in Figure 2b. To lessen the impact of these missing
values, we change from aggregating by SUM to aggregating
by MEAN. The resulting visualization, Figure 2c, now appears
to show the opposite trend: energy usage sharply increased in
2012. However, the missing records combined with our choice
of how to wrangle the data has created another mirage. The
only non-null entries for 2012 are OECD (Organisation for
Economic Co-operation and Development) countries. These
countries have significantly higher energy usage than other
countries across all years (Figure 2d).

Given these irregularities, we filter out 2012 and focus instead
on the gradual upwards trend in energy usage for the remain-
ing years. This upwards trend might indicate energy usage
corresponds with a general increase in the length and quality
of life. Figure 4a appears to support this hypothesis: world-
wide energy usage appears to be tightly correlated with life
expectancy. This, too, is a mirage. The y-axis of the chart has
been altered to make the rates of increase appear similar: while
average life expectancy only increased 4% from 2000-2011,
overall energy usage increased 30%. These y-axis manipula-
tions can bias viewers of the chart [17, 88], as can plotting two



Wrangling

How to prepare?
Aggregation type, filters

Curating

How to measure?
SQL query, instrumentation

Visualizing

How to Visualize?
Spec, render target

Reading

How to read?
Biases, task

Environment Data

Flawed data
Bad/Irrelevant Data

Misprepared Data
Wrong Aggregation

Malformed Image
Deception

Mirage

Prepared 
Data

A B

3 4 2

C

... ... ...

Image

A B C

Message

B >A > C?

Choices

Pipeline

Problems

Figure 3. Each stage in the VA process offers users agency but also presents an opportunity for errors, which can give way to mirages. We see errors
as occurring at the discrete stages of our pipeline (symbols), which are caused by the choices made by users (arrows). This framing allows us to identify
the dependencies between actions, errors they create, and ways that those errors can propagate to deceive the reader.

Mirage

a) Energy Usage vs Life Expectancy

Context

0M

0.5M

1M

1.5M

2M

2.5M

S
um

. E
ne

rg
y 

U
sa

ge

China

USA

b) Energy Usage by Country

2000 2002 2004 2006 2008 20102000 2002 2004 2006 2008 2010
0M

2M

4M

6M

8M

10M

12M

S
um

. E
ne

rg
y 

U
sa

ge

55

60

65

70

A
vg. Life Expectancy

Figure 4. Energy usage compared to life expectancy in the “World
Indicators" dataset [43] appear to be well correlated, but that inference
is an illusion driven by two significant outliers (the US and China) and
by a malicious manipulation of one of the y-axes (in particular starting
the right y-axis from 55 instead of 0).

potentially unrelated variables in the same chart [130]. We
would categorize the latter mirage, arising from the Reading
stage of our pipeline, to as Assumptions of Causality (see Table
2).

Moreover, aggregating all countries together obscures consid-
erable variability in the purported universal trend. When we
disaggregate the data and remove the dual-axis, we see that
much of the global growth in energy usage is attributed to
China (whose usage more than doubled across the time period
in question), moderated by a slight decrease in energy usage
in the United States Figure 4b. These countries dominate the
trend, with most of the remaining countries having relatively
flat trends when plotted in the same visual space.

In the absence of automated or semi-automated tools to high-
light potential concerns, it is up to the attention, skepticism,
domain knowledge, and statistical sophistication of the con-
sumer of the visualization to attempt to verify the accuracy
of what they are seeing. The visualizations themselves fail to
provide any indication of potential errors of interpretation, and
indeed many appear to present a clear, reasonable, and final
answer to the questions posed by the analyst.

WHERE DO MIRAGES COME FROM?
We show how choices can create errors and highlight the way
that those errors can propagate to become mirages in Figure 3.
Following Heer [48], we focus on moments of agency in the
visual analytic process (denoted in our diagram by arrows)
that can introduce failures either by themselves, or in concert
with other decisions, to generate visualization mirages. This
perspective gives us clues to the causal relationship between
choices and mirages, which is beneficial for automatically
surfacing these issues to the chart creator.

Our model builds upon pipeline-based descriptions of prob-
lems in the VA process [15, 89, 117, 120]. Our work most
notably expands upon Borland et al.’s [9] categorization of
where threats to validity arise in VA, Sacha et al.’s [99] model
of how visualization awareness and trust disseminate across
the sensemaking loops of the process, and Heer’s [48] descrip-
tion of the points of failure across the analytics process. While
we acknowledge that real-world analytics processes include
many cycles and nested sub-processes [89], our simplified
pipeline allows us to directly attribute errors to specific points,
and trace those errors to the resulting mirage. Errors in some
parts of this pipeline are more amenable to automation than
others. For instance, errors in reading may require statistical
education or critical reflection, whereas errors in data quality
or statistical analysis could be automatically surfaced.

Data-Driven Mirages
We use the term Curating to denote the entire process of col-
lecting, measuring, organizing, and combining data. Once
the datasets are created, the analyst must clean, filter, subset,
model, and shape the data into a form that is usable by the
visualization system. We refer to this step as Wrangling. The
efficacy of a visualization is limited by the quality and charac-
teristics of its backing data. Even the most well-designed chart
will be fundamentally flawed if the data on which it relies is
irrelevant, incomplete, or biased, or has been processed or
combined carelessly. The resulting “dirty data” (see Kim et
al. [61] for a taxonomic overview) can lead to mirages as in
Figure 5 and Figure 6. Tang et al. [112] describe the chal-
lenge of automatically detecting and understanding the ways
in which dirty data can create misleading trends as one of the
most important open problems in visualization.
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Figure 5. Data curation errors can cause mirages. The first chart
uses a case-sensitive filter to directly compare ‘A’ and ‘B’, hiding that
fact that many values were mistakenly entered as ‘a’ and producing the
impression that sales for ‘B’ are significantly higher than ‘A’. If these ‘a’
values are merged with ‘A,’ this apparent difference would reverse.

Design-Driven Mirages
Once the data are in a proper form, the next step is to render
the data in some human-legible way. We refer to this step
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Figure 6. Wrangling and curation errors can cause mirages. In this syn-
thetic example, the decision to aggregate hides three months of missing
data, and gives the impression that sales were down in 2010Q4.
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Figure 7. Visualizations can be grammatical yet deceptive. Changes
to Men’s 100-meter dash world record over the last century. The left
image suggests that there hasn’t been much change in that time, yet the
image on the right shows a consistent pattern of improvement. The rel-
evant effect size (is a 1 second improvement important or not?) can be
exaggerated or hidden by the designer’s choice of axis.

as Visualizing. The last step is then for a human to read,
interpret, and comprehend the resulting design. This Reading
involves the literal decoding of the visual variables in a chart
to retrieve the values of interest, as well as reasoning about the
importance of the patterns identified in the data and updating
prior beliefs based on new information.

Many visualization designs are known to be deceptive or prone
to misinterpretation, as in Figure 7 [11, 12, 13, 14, 23, 52, 110,
121]. Pandey et al. [88] find that commonly discussed errors
such as truncated y-axes and size/area confounds impact sub-
jectively assessed trends and differences in values. Kong et
al. [65, 66] find that slanted and biased chart titles can im-
pact how the data are later recalled. Cleveland et al. [17] find
that scale alterations can bias the perception of correlation in
scatterplots, and Newman & Scholl [85] find that bar charts
create a bias when viewers estimate the likelihood of sam-
ples. These deceptive practices, and the biases they induce,
can create mirages. In addition, prior knowledge or priming
can result in viewers having different interpretations of the
same data [131]. Inattention to accessibility may also create
mirages. For instance, designers that are not mindful of color
vision deficiencies can create visualizations that communicate
markedly different messages to different audiences [90].

Mirages at the Intersection of Data and Design
The data and visualization may not have problems on their
own, yet still create mirages when combined. For instance,
Correll et al. [24] describe how data errors, including outliers
and missing values, may fail to be detectable in univariate
visualizations only for certain design parameters. Zgraggen et
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(a) Trulia crime map [114]

Context

(b) White collar crime map [68]
Figure 8. Crime maps typically are generated by 911 calls and police
reports, which capture only a subset of criminal activity. White collar
and financial crimes are often excluded from these maps; their inclusion
paints a different picture of locations in the city where the most crimes
occur. The choice of which data to include or exclude, and biases in how
these data are collected, can control the message of the chart.

al. [133] found that, in systems without visualizations of sta-
tistical uncertainty or control for robustness, many “insights”
reported from a sample of a dataset failed to be true of the
larger dataset. In Simpson’s paradox [4, 45] patterns can
appear to reverse based on the level of aggregation. Lee et
al. [69] describe the drill-down fallacy wherein ignoring ex-
planatory variables during the process of filtering can result
in erroneous claims of causality. There has been relatively
little scholarship formalizing the problems that can occur in
the specific relationship between data and chart [50, 62, 63,
74], which entails a corresponding gap in testing strategies for
automatically probing for problems.

Other Sources of Mirages
Reading errors can occur in conjunction with other parts of
the pipeline, such as with Curation errors. For instance, bi-
ases and assumptions on the part of the chart creators and
readers can skew the resulting messages gleaned from charts
[29, 116]. Without appropriate context, readers often believe
charts present an objective view-from-nowhere [46], as op-
posed to their inherently persuasive and subjective role. A
visualization may address the right problem but be doing so
using the wrong data set, or there may be a mismatch between
assumptions about the data and the data itself, as in Figure 8.
The people creating the dataset (or choosing what data are
collected) can significantly impact the analytic process [19, 27,
87]. Even representations that present reliable data in a faith-
ful manner are not free from potential mirages. A reader may
have previously seen a chart which emphasized facets of the
data, anchoring them to their earlier understanding and caus-
ing them to misunderstand the current chart. There are myriad
additional ways that mirages can arise in the VA pipeline. In
the Table 2 we compile a list of errors that can create mirages,
and describe the method by which we compiled those errors.
We include a subset in Table 1.

EXISTING VISUAL ANALYTICS TESTING TOOLS
Mirages are dangerous because the reader is unaware of them.
Automated or semi-automated systems could alleviate this
danger by surfacing potential mirages as a way of encouraging
data skepticism and re-analysis of the elements underlying a



Table 1. Examples of errors resulting in mirages along different stages of our analytics pipeline, sorted by the analytical step we believe is responsible for
the resulting failure in the final visualization, and colored following Figure 3. This list is not exhaustive, but presents examples of how decision-making
at various stages of analysis can damage the credibility or reliability of the messages in charts. A longer version of this table with additional mirages is
included in our supplemental materials.

Error Mirage

C
ur

at
in

g Missing or
Repeated Records

We often assume that we have one and only one entry for each datum. However, errors in data entry or integration can result in missing or repeated values
that may result in inaccurate aggregates or groupings (see Figure 6). [61]

Outliers Many forms of analysis assume data have similar magnitudes and were generated by similar processes. Outliers, whether in the form of erroneous or
unexpectedly extreme values, can greatly impact aggregation and discredit the assumptions behind many statistical tests and summaries. [61]

Spelling Mistakes Columns of strings are often interpreted as categorical data for the purposes of aggregation. If interpreted in this way, typos or inconsistent spelling and
capitalization can create spurious categories, or remove important data from aggregate queries. (See Figure 5) [124]

Drill-down Bias We assume that the order in which we investigate our data should not impact our conclusions. However, by filtering on less relevant variables first the impact
of later variables can be hidden. This results in insights that address only small parts of the data, when they might be true of the larger whole. [69]

W
ra

ng
lin

g Differing Number
of Records by
Group

Certain summary statistics, including aggregates, are sensitive to sample size. However, the number of records aggregated into a single mark can very
dramatically. This mismatch can mask this sensitivity and problematize per-mark comparisons; when combined with differing levels of aggregation, it can
result in counter-intuitive results such as Simpson’s Paradox. [45]

Cherry Picking Filtering and subsetting are meant to be tools to remove irrelevant data, or allow the analyst to focus on a particular area of interest. If this filtering is too
aggressive or if the analyst focuses on individual examples rather than the general trend, this cherry-picking can promote erroneous conclusions or biased
views of the variables. Neglecting the broader data context can result in the Texas Sharpshooter Fallacy or other forms of HARKing [18]. [35]

Analyst Degrees
of Freedom

Analysts have a tremendous flexibility in how they analyze data. These “researcher degrees of freedom” [40] can create conclusions that are highly idiosyn-
cratic to the choices made by the analyst, or in a malicious sense promote “p-hacking” where the analyst searches through the parameter space in order to
find the best support for a pre-ordained conclusion. A related issue is the “multiple comparisons problem” where the analyst makes so many choices that at
least one configuration, just by happenstance, is likely to appear significant, even if there is no strong signal in the data. [40, 91, 133]

Confusing
Imputation

There are many strategies for dealing with missing or incomplete data, including the imputation of new values. How values are imputed, and then how these
imputed values are visualized in the context of the rest of the data, can impact how the data are perceived, in the worst case creating spurious trends or group
differences that are merely artifacts of how missing values are handled prior to visualization. [106]

V
is

ua
liz

in
g Non-sequitur

Visualizations
Readers expect graphics that appear to be charts to be a mapping between data and image. Visualizations being used as decoration (in which the marks are
not related to data) present non-information that might be mistaken for real information. Even if the data are accurate, additional unjustified annotations could
produce misleading impressions, such as decorating uncorrelated data with a spurious line of best fit. [23]

Overplotting We typically expect to be able to clearly identify individual marks, and expect that one visual mark corresponds to a single value or aggregated value. Yet
overlapping marks can hide internal structures in the distribution or disguise potential data quality issues, as in Figure 11. [24, 77, 81]

Concealed
Uncertainty

Charts that do not indicate that they contain uncertainty risk giving a false impression and may cause mistrust of the data if the reader realizes the information
has not been presented clearly. Readers may incorrectly assume that data is high quality or complete, even without evidence of this veracity. [35, 78, 99, 106]

Manipulation of
Scales

The axes and scales of a chart are presumed to straightforwardly represent quantitative information. However, manipulation of these scales (for instance,
by flipping them from their commonly assumed directions, truncating or expanding them with respect to the range of the data [17, 20, 23, 88, 95], using
non-linear transforms, or employing dual axes [63, 13]) can cause viewers to misinterpret the data in a chart, for instance by exaggerating correlation [17],
exaggerating effect size [20, 88], or misinterpreting the direction of effects [88]. [13, 17, 20, 23, 63, 88, 95]

R
ea

di
ng Base Rate Bias Readers assume unexpected values in a visualization are emblematic of reliable differences. However, readers may be unaware of relevant base rates: either

the relative likelihood of what is seen as a surprising value or the false discovery rate of the entire analytic process. [22, 91, 133]
Inaccessible
Charts

Charts makers often assume that their readers are homogeneous groups. Yet, the way that people read charts is heterogeneous and dependent on perceptual
abilities and cognitive backgrounds that can be overlooked by the designer. Insufficient mindfulness of these differences can result in miscommunication. For
instance, a viewer with color vision deficiency may interpret two colors as identical when the designer intended them to be separate. [71, 90, 129]

Anchoring Effect Initial framings of information tend to guide subsequent judgements. This can cause readers to place undue rhetorical weight on early observations, which
may cause them to undervalue or distrust later observations. [53, 95]

Biases in
Interpretation

Each viewer comes to a visualization with their own preconceptions, biases, and epistemic frameworks. If these biases are not carefully considered cognitive
biases, such as the backfire effect or confirmation bias, can cause viewers to anchor on only the data (or the reading of the data) that supports their preconceived
notions, reject data that does not accord with their views, and generally ignore a more holistic picture of the strength of the evidence. [26, 27, 35, 116, 122]

particular chart. An essential focus of our work is developing
methods for automatically detecting mirages that occur in the
relationship between data and design. In the following section
we locate this work within prior techniques for verifying the
correctness of analyses at different points in the pipeline.

Data Verification
There are a variety of approaches for automatically detecting
data quality issues. Many systems employ combinations of
statistical algorithms, visualizations, and manual inspection to
detect and correct data quality issues [59]. Most relevant to our
approach, Muşlu et al. [84] employ the metaphor of continu-
ous testing to detect potential data quality concerns, the Vizier
system [10] surfaces data “caveats” that might indicate data
quality concerns., and Hynes et al. [55] propose a data linter
and find that many common datasets for use in training and
evaluating machine learning models contain elementary data
quality issues. Wang & He [124] propose an automated error
detection system for tables based on statistical analyses. Sal-
imi et al. [100] describe a system for automatically detecting
bias in analytical queries. Barowy et al. [5, 6] present systems
for debugging data in spreadsheets. A mixed-initiative data

wrangling metaphor is present in a variety of systems [60, 93,
108] as well as in commercial solutions [111, 113].

Visualization Verification
Visualization research has not solved the problem of visual-
ization designs responding correctly and clearly to important
changes in the underlying data, while not exaggerating trivial
changes. While there has been some work from the scientific
visualization community on verifying the correctness of im-
ages [64], there has been little work [41, 56] on analyzing
correctness in basic charts. Rogowitz [96, 97] explore how mi-
nor alterations to color maps can result in different perceptions
of patterns in visualizations. Wickham et al.’s [126] “line-up”
protocol in which viewers look at a collection of charts with
randomized data and one with the actual data, and are tasked
with identifying the chart containing the real data. Hofmann
et al. [51] use reliability at performing this task as a proxy
for the statistical power of a visualization [51]. Visualizations
where graphical inference is unreliable suggest that either the
statistical pattern of interest is not robust or that the visualiza-
tion design employed is insensitive to such patterns. Proposed
mixed-initiative solutions to issues of robustness involve sup-
plementing visualizations with additional metrics that indicate



their reliability [8, 119, 134], or performing pre-analyses to
automatically detect potential concerns in a dataset [45]. Lun-
zer et al. [72] explore the robustness of a visualization by
superimposing alternative chart configurations.

Other Techniques for Visualization Skepticism
Avoiding known deceptive practices is often instantiated
through carefully selected defaults [35] in visualization author-
ing or through recommendation systems (such as in Tableau’s
“Show Me” [75] or Moritz et al.’s Draco [83]). To our knowl-
edge, no system exists that automatically detects or surfaces
deceptive elements of a visualization design itself.

Even if visualization designs are not deceptive, our cognitive
biases can still cause us to make incorrect or unjustified as-
sumptions about the data [29]. Similar to our work, Wall et al.
[122] propose a system that automatically augments a visual
analytics system with warnings about cognitive biases that
may be present in the current course of analysis. In a later
work Wall et al. [123] describe a design space of strategies for
mitigating bias in visual analytics systems.

Mirages can occur in ways that are difficult or perhaps even
impossible to detect in an automatic way, relying as they do
on potentially idiosyncratic misreadings or omissions in chart
interpretation. To that end, automatic methods such as ours
could be augmented by tools for introspection that can help
identify biases and perceptual problems. Dörk et al. [31] con-
struct a four point system for critically analyzing infographics.
Lupi [73] prompts chart makers to reconsider their relationship
with their data and rendered image. Wood et al. [127] ask
visualization designers to engage with potential problems orig-
inating at different stages in the design process through linted
design-schemas, which ask designers to answer questions from
a variety of sources including D’Ignazio & Klein’s [26] Femi-
nist Data Visualization, such as “How do I communicate the
limits of my categories in the final representation?"
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Figure 9. Metamorphic Testing For Visualization connects directly to our
pipeline in Figure 3 by combining algebraic visualization design [62] and
metamorphic testing [103]. Our tests alter either the way that the data
are manipulated, or the design of the final visualization, with the ex-
pectation that (in-)significant changes to the design or data will result in
corresponding (in-)significant changes to the final visualization. Failures
indicate sensitive or unanticipated choices that can result in mirages.

METAMORPHIC TESTING FOR VISUALIZATION
Our review of the visual analytics testing literature suggests
that there has been comparatively less consideration towards
detecting errors that occur in the relationship between data and
chart, as in Figure 9. Prior work principally focuses on embed-
ding best practices through automatic chart recommendation
rather than validating existing charts. To address this gap we
combine a concept from the software engineering community,
metamorphic testing, which focuses on detecting errors in
contexts that lack a truth oracle, with work from Kindlmann

& Scheidegger’s Algebraic Visualization Design (AVD) [62],
to form a notion of metamorphic testing for visualization.

Algebraic Visualization Design
Under the AVD framework, trivial changes to the data (such
as shuffling the row order of input data) should result in trivial
changes in the resulting visualization, and important changes
in the visual appearance of the visualization should only oc-
cur as a result of correspondingly important changes in the
backing data. These assertions are formalized in a commuta-
tivity relation, which describes the properties of an effective
visualization across potential data transformations:

v ◦ r2 ◦α = ω ◦ v ◦ r1

D1 R1 V1

D2 R2 V2

r1

α

v

ω

r2 v

(1)

Where Di is the original data, ri a change in representation,
Ri a representation of data, v the visualization process, and Vi

the resulting image. α is a change to the data which should
commute with the corresponding change to the visualization,
denoted ω. Failures of these assertions can result in “hallu-
cinators” (visualizations that look dramatically different de-
spite being backed by similar or identical data, such as in
Figure 10) and “confusers” (visualizations that look identical
despite being backed by dramatically different data). In the
worst case, visualizations can be completely non-responsive
to their backing data, functioning as mere number decorations
and creating what Correll & Heer [23] refer to as visualization
“non-sequiturs.” These AVD failures directly tie to our notion
of mirages (as they can result in visualizations that are fragile,
non-robust, or non-responsive), but, by providing a language
of manipulations of data and visualization specification, lend
themselves to mixed-initiative or automatic testing. AVD pro-
vides a useful framework for designing tests that detect failures
that require little domain knowledge. We can simply induce
trivial or non-trivial data change, and check for corresponding
changes in the resulting visualization.
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Original Permuted

Figure 10. Radar charts are often used to compare the skills of job
candidates [36]. Here we show two radars of the programming language
skills for a hypothetical job candidate. One axis ordering seems to sug-
gest that the candidate is skilled in one area, while the other suggests
that their skills are varied. The change in meaning based on a arbitrary
design parameter is an AVD hallucinator [62].

Metamorphic Testing
In complex software systems it can be difficult or prohibitively
expensive to verify whether or not the software is producing
correct results. In the field of software testing distinguishing
between correct and incorrect behaviour is known as the “test
oracle problem” [7]. The metamorphic testing (MT) ideology



attempts to address this challenge by verifying properties of
system outputs across input changes [103]. Rather than check-
ing that particular inputs give correct outputs, MT asserts
that properties called metamorphic relations should remain
invariant across all appropriate metamorphoses of a particular
data set. MT has been successfully applied to a wide variety
of system domains including computer graphics [30], deep
learning [103], and self-driving cars [135].

We now consider an example from computer graphics for
motivation. Donaldson et al. [30] make use of MT to identify
bugs in graphics shader compilers. They do so by selecting a
shader, making changes to the code that should not affect the
rendered image (such as introducing code paths that will never
be reached), and checking if the resulting images are the equal
after execution. They formalize this technique by asserting
that the following equation should be invariant:

∀x : p( fI (x)) = fO(p(x)) (2)

where x is a given shader program, p a shader compiler, fI
perturbations to the input, and fO changes to the output (usu-
ally the identity under their framework). The definition of
equality in MT plays a significant role in the effectiveness of
its analysis. Donaldson et al. use χ2 distance between image-
histograms as a proxy for image equality. Using this approach
they found over 60 bugs in commercial GPU systems.

Applying Metamorphic Testing
We now introduce the idea of use metamorphic testing as
a mechanism to verify individual visualizations. Tang et al.
[112] describe visualization as the function vis(Data,Spec).
This suggests two key aspects across which we can execute
metamorphic manipulations: alterations to the data and alter-
ations to the design specification. This perspective has the
advantage that we can test a wide variety of types of visual-
ization without knowing much about the chart being rendered.
For instance, in Figure 11, introducing a trivial morphism (in
this case a reduction in mark opacity) with the expectation
that it should have relatively little change on the resulting
graph reveals a chart error. We observe that Equation 2 is
isomorphic to AVD’s commutativity relation, Equation 1. MT
is a concrete way to test the invariants of systems in general,
whereas AVD describes the types of invariance-failures that
occur with visualizations specifically. Observing this over-
lap we define a Metamorphic Test for Visualization (MTV)
as a function parameterized by an equality measure (Eq), an
input perturbation (α), a visual perturbation (ω), which evalu-
ates a tuple of data and chart specification (denoted as a pair
as x), and returns a Boolean. We describe this function in
pseudo-Haskell:

MTV :: (Eq, α,ω) ⇒ (spec,data) ⇒ Boolean
MTV(Eq, α,ω)x = Eq(v(α(x)),ω(v(x))) (3)

We leave v, the visualization system, out of the parameteriza-
tion because we are interested in testing for problems in the
relationship between data and chart specification, as opposed
to validating the system mapping chart specification to data
space (which we assume to be error free). This formulation

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0

10

20

30

40

50

60

P
re
ci
pi
ta
ti
on

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0

10

20

30

40

50

60

P
re
ci
pi
ta
ti
on

Mirage Context

Figure 11. The lack of a set aggregation for the precipitation axis results
in many bars being overplotted in the same visual space (and so causing a
potential misinterpretation as only the maximum value for each category
is visible). While we could test for this error by directly consulting the
visual specification of the chart, not all charts (or even bar charts) are
inherently invalid simply because they fail to include an aggregate. A
morphism could detect this issue without this constraint. For instance,
we would assume that reducing the opacity of marks in a chart would
result in a visually similar chart to the full opacity version. A violation
of this assumption indicates overplotting.

Original Permuted Difference

Figure 12. Shuffling the input data can reveal potential mirages. Here we
consider a scatterplot drawn from the “World Indicators" dataset [43]
(left), we permute the input data (center), and construct a the pixel differ-
ence (right). This reveals a property of this spec and data combination
that it is not resilient to order permutation. In the language of AVD, this
chart has a hallucinator. The difference here is due to overdraw: inte-
rior regions of the central cluster may or may not be visible among the
dominant classes depending on the order in which the data are rendered.

clearly describes the relationship between expectation and per-
mutation in a manner that we believe allows for concise and
unambiguous descriptions of invariance tests.

To our knowledge MT has not previously been used in visual-
ization contexts, though there has been prior work that uses im-
plicitly related techniques. Guo et al. [45] use a metamorphic-
like strategy to detect instances of Simpsons’s paradox in a
visual analytics system. McNutt et al.’s [79] visualization
linting system touches on MT-adjacent techniques as a way to
identify some AVD failures. Chiw et al. [16] use MT to vali-
date the correctness of a compiler for a scientific visualization
DSL. Our approach is closely related to techniques that use
bootstrapping, randomization, or other statistical procedures
to reveal various properties [1, 5, 6, 76], such as Gotz et al.’s
[41] “Inline Replication” analysis of the visual impact of “al-
ternative” analyses and tests for the reliability of a given chart,
or Dragicevic et al.’s [32] “Multiverse Analysis.”

Proof Of Concept
We implemented a proof of concept system for inducing mor-
phisms on static Vega-Lite [101] specs and their backing data
in order to identify potential mirages or unreliable signals
in charts. Our primary goal in this system is to demonstrate
the validity of our metamorphic testing concept. Our proof
of concept focuses on Vega-Lite because of its advantageous
API, although our techniques are applicable in principle to
any charting system. In the following subsections we present
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Figure 13. We apply our MTV: Bootstrap test to to the quartet of dis-
tributions shown in Figure 1, shown here in (i). In each case we execute
our test N = 100 times. We create 100 new potential bar charts by re-
sampling from all the data that are aggregated into each bar. We show
the results of this test in (ii-iV) by overlaying each low opacity “poten-
tial” bar chart on top of each other. Large “fuzzy” bands indicate that
the specific values in the chart are not robust to resampling. We sort
our bar charts into two categories: “passes” (iii) where the original in-
sight that AVG X > Y is preserved, and “fails” where this insight is not
preserved (iv). A high number of passes indicate a robust insight.

a set of metamorphic tests for visualization (MTVs). Each
test should have predictable impacts on the resulting image.
Failing to adhere to a prediction (and hence violate an MT
relation) can indicate an error in the backing data or visual
specification of the chart, pointing to a potential mirage. We
include a visual explanation of each of the transformations
involved in the following tests in Figure 15.

MTV: Shuffle
We assert that changes to the order of the input data should not
change the rendered image. Our detection technique is a pixel
differencing algorithm for which we select a tunable thresh-
old in order to reduce the number of false-positives. More
formally, in this test we take Eq to be a maximum number of
pixels differing between the rendered images, α to be a permu-
tation of the order of the input rows, and ω to be the identity.
This test allows us to detect over plotting, as exemplified in
Figure 12, as drawing overplotted groups in different orders
will result in visually different charts. Not all overplotting is
necessarily indicative of a mirage, but alerting the user to its
presence can be useful across many chart types.

MTV: Bootstrap
We assert that the apparent patterns in visualizations should
be robust: that is, a particular relationship should continue
to be present across minor changes [24, 72]. In this test we
focus on bar charts as it allows us a greater degree of nu-
ance in constructing our detector. We take Eq to be the same
order of heights in the bar chart, α to be a bootstrap sam-
ple [34] of all the rows within each of the bars in the chart,
and ω to be the identity. Bootstrapping allows us to test for
variability in a relatively parameter-free way across a wide

variety of data distributions and complexities. We identify
which input rows to modify through a backward provenance
algorithm [128] that links each mark to the input tuples that
describe it. Because bootstrapping relies on random sampling,
we adapt our metamorphic testing to statistical view, in which
we execute Equation 3 a large N number of times and define a
pass as a sufficiently large ε fraction of passing sub-tests. To
our knowledge this approach of using aggregated randomized
metamorphisms is novel within metamorphic testing, though
it bares a close resemblance to Guderlei et al.’s [44] statis-
tical metamorphic testing, which tests functions containing
randomness as opposed to using randomness to test functions
as we do. This application of the bootstrap to visualization
validation also bares a close resemblance to Gotz et al.’s [41]
Inline Replication technique, but focuses less on the variabil-
ity of a particular measure but more on the fragility of the
actual visualization itself. Through this technique we are able
to identify when visualizations are liable to be dependent on
outliers or small number of divergent records are driving dif-
ferences between aggregates, as in Figure 13. The specific
tuning of N and ε is task, application, and encoding dependent
and warrants further investigation.

MTV: Contract Records
Figure 1 demonstrates how aggregates can usefully summarize
information but they can also mask data problems, such as
differing number of records, sampling issues, and repeated
records. In this test we examine the robustness of measures
in the context of potentially dirty data. Just as in the previous
test, we focus on categorical bar charts and take ω to be the
identity, and Eq to be bar height order. Our new α identi-
fies the minimum number of records that make up a bar, and
contracts the number of records constituting all other marks
down to that minimum through sampling without replacement.
Just as in the previous test we also deploy a randomization
procedure to probe the central tendency of this measure. If all
bars have similar samples sizes, and this sample size is suffi-
ciently large, and the aggregation method sufficiently robust
to extreme values, this procedure ought to result in reasonably
similar charts. This test therefore allows us to detect variability
caused by sampling issues and other problems relating to dif-
fering number of records. Additionally, through this morphism
we are able to detect some additional AVD confusers, such
as Correll et al.’s [23] non-sequitur visualizations and some
sorts of overdraw, such as the one described in Figure 11, as
non-responsiveness to removing substantial amounts of data
indicates a chart’s insensitivity to its backing data.

MTV: Randomize
Parameterized tests may not capture subtle relationships be-
tween variables. Anand et al. [1] use randomized non-
parametric permutation tests to assess the relative likelihood
of different visual patterns in scatterplots. We adopt this test
by randomizing the relationship between two variables. As
with the prior two tests, we focus on categorical bar charts,
taking ω to be the identity, and Eq to be bar height order. Our
α is then a random permutation of the value and category
assignments. Unlike with the previous tests, we expect that
if the signal is not particularly robust, the charts will be rela-
tively similar: destroying the relationship between variables



would not change the chart much. A high proportion of highly
dissimilar charts indicates significant relationships between
category and value. This test can reveal mirages related to
sampling error and signal-to-noise ratios. The test described
in Figure 11 might also be achieved through randomization.

Simulation Results
We conducted a set of simulations to see whether mirages
caused by data errors could be reliably detected by our meta-
morphic tests. To that end, we generated a series of synthetic
data sets. Similar to Zgraggen et al.’s [133] test on the relia-
bility of insights from visual analytics, each data set consisted
of two subsets sampled from two Gaussian distributions, X
and Y , with n = 50, µ = 50, σ = 10. These points were visu-
alized as a categorical bar chart of means, as in Figure 1. We
would expect any difference in the height of the bars to be
non-robust and unreliable; any significant differences between
the two categories would be a mirage. To assess the utility of
our metamorphic tests we then varied the parameters of the
generating Gaussian for Y to induce more or less robust group
differences.

(i) mean: We vary µ for Y ’s Gaussian. We expect this
to produce more “reliable” differences and that MTV:
Randomize will excel at identifying this change.

(ii) sample size: We vary n of Y ’s Gaussian. We expect
MTV:Contract Records to excel at identifying large dif-
ferences in sample size.

(iii) outlying values: We add k outliers to Y , generated by
sampling uniformly from [1.5× IQR+Q3,3× IQR+Q3].
We expect MTV: Bootstrap to excel at this task.

(iv) variance: We vary σ of Y ’s Gaussian. We expect MTV:
Bootstrap to excel at identifying the increased variability.

We generated 30 datasets for each of the 4 alterations across 5
effect sizes, for a total of 30×4×5 = 600 datasets. We then
tested the resulting charts with each of the MTVs described
above, excluding MTV: Shuffle, which did not yield any vari-
ability in the output. Our datasets, as well as a prototype tool
for exploring our tests, are available at https://osf.io/je3x9.

Figure 14 shows the results of our simulation. Each column is
a different parameter we varied when generating the data, and
each row is a different MTV. Boxes around the cells indicate
tests we expected to be especially relevant for detecting the
relevant manipulation. The y-axis for each chart is the variance
in bar height. High variance indicates that the bar values are
highly unstable or unreliable.

In general, the impact of our morphisms became larger as the
severity of our data manipulations increased: the fragility of
the values in a given bar chart increases as the means become
closer together, the sample size shrinks, outliers are added, or
the variability increases. The exception is the randomize test,
where we would expect less variability as the two distributions
become more similar: high variability in this case is an indi-
cation that there is a true signal that is being disrupted by our
morphism. As with AVD, we expect significant changes to
our data to result in correspondingly significant changes in our
charts: failures to do so should invite skepticism in the viewer.
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Figure 14. The results of our metamorphic tests on 600 simulated two-
column bar charts (bar charts not-shown). We ran each test following
our randomized MT approach with N = 100, and measured the variance
in difference in bar height. A metamorphic visualization linter would
flag charts with high variance flag for further examination. Note that
in the sample size variation higher effect size means a lower number of
points, this emulates under-sampled data.

While we recognize that our simulation does not fully capture
the utility of our proposed metamorphic tests, we present these
initial results as evidence that our tests can be used as measures
for the robustness of signals in visualizations.

DISCUSSION
We believe that MT offers a useful complement to directly
testing data or chart specifications, as it requires a smaller
set of assumptions and parameters than statistical tests, and
is portable across visualization toolkits. We see the types of
visualization tests described here as being analogous to testing
methods from software engineering. Direct tests, like unit
tests, verify isolated properties (for instance, that quantitative
axes begin at ‘0’ in bar charts); while metamorphic tests, like
integration tests, look to see that the whole image is work-
ing as desired. We believe that, in tandem, these validation
approaches offer an effective way to target a wide variety of
charting errors arising in the Wrangling and Visualizing steps
of visual analytics. This work is a first foray into an investiga-
tion into mixed-initiative verification of visualizations. There
are a number of interesting challenges in this space including
effective presentation of automated results, development of
faster and more effective analysis techniques, and capturing
additional domains and tasks. Even so, our testing regime
can be extended to new instances of known visualization bi-
ases: there are many morphisms we can induce to test for
areas of concern. For instance, many choropleth maps are not
particularly informative [22]: by replacing the data with base
rates, we can test for the strength of geospatial trends. As with
graphical inference [51, 126], by replacing the data in a given
chart with data generated under a null hypothesis, we can test
for the detectability of important patterns.

UX/UI Challenges
Software analysis systems are only effective if they catch er-
rors in a manner that improves the quality of the work being
performed, which is contingent on being trusted by their users.
Our proof-of-concept system follows the interface pattern of a
software linter. Linters are a type of software analysis tool that

https://osf.io/je3x9


usually employ static analysis to catch semantic and stylistic
programming bugs, like a spell-checker for code [58] (al-
though some lint systems have moved into non-programming
domains [5, 37, 55, 67, 79, 92, 127]). Like McNutt & Kindl-
mann [79], we find linters to be a useful paradigm for describ-
ing correctness in visual analytics. They are typically designed
with the perspective that it is better for the user to be alerted
to a non-existent bug (false-positives) than to miss a real one
(false-negative), and allow the user to opt out of particular
checks when they know better. Jannah [57] explores a linting
metaphor for alerting users to data quality issues preceding
data exploration. We believe that this type of granular and
polite [125] control over analysis is a good fit for the level of
detail and accuracy that our system can provide.

The optimal UI paradigm for expressing these computation-
ally measured notions of correctness requires future research.
While we believe that linters are a strong first foray into this
topic, they are not without flaws. Srinivasan et al. [107] con-
struct a system which presents statistical facts relevant to in-
dividual charts across the data exploration process. Users
tend to interpret the presence or absence of these facts as en-
dorsement or criticism. Future systems will need to carefully
mitigate false-positives (so users do not ignore advice when it
is valuable) and to clearly articulate false-negatives (so users
know when to act on system output). As Sacha et al. [99]
point out, striking the right balance is critical for maintaining
user trust in the system. An important challenge is designing
analytic rules that detect problems that meaningfully change
the message of the visualization (mirages), and verifying that
those rules work in practice. This is in contrast to rules derived
from aesthetic preference, which are common in collections
of guidelines, such as rules disallowing pie charts [25, 79, 80]
regardless of their effectiveness for some tasks [94].

Limitations & Future Work
An appealing component of lint systems is that they are typ-
ically very fast. Our current methodology relies on boot-
strapping and other statistical techniques which can cause a
significant delay in the user receiving feedback (sometimes
up to tens of seconds for very large data). Constructing a
visualization linting system that addresses these performance
challenges (perhaps in the vein of Muşlu et al.’s [84] continu-
ous data integration system) is an intriguing systems problem.
Some types of mirages do not make sense to metaphorically
test. For instance, Pandey et al. [88] describe that flipped axes
can lead to flipped understandings of the real message. While
it is possible to design a metamorphic test to identify this type
of mirage, it is simpler to query the chart specification directly,
rather than induce a morphism and test for difference. Some of
our tests address errors that are already well known and well
studied, such as overplotting [81]. Some of our tests involve
image diffing or other burdensome computations, which will
likely be slower and more prone to error than an equivalent
system for directly testing for overplotting.

In future work we would like to more fully develop our tool to
validate a wider range of chart designs and types. We believe
it would be most useful to apply our system to ad hoc charting
systems, such as Altair [118] or LitVis [127], which both con-

sume vega-lite as charting engine. Following Donaldson et
al. [30], our examples focused on tests where ω is set to be to
be the identity for simplicity. In future work we intend to ex-
plore the class of αs that have predictable and computationally
measurable ωs that are not equal to the identity. Visualization
linters could be deployed as a continuous integration step that
would verify that publicly displayed charts are mirage free.

The full space of visualization mirages is vast, and covers com-
plex ground like critical reasoning, cognitive biases, and in-
equality. There are some mirages that may never be amenable
to testing or verification, especially not in as straightforward a
way as issues driven by outliers or sampling error. Even for
the subset of mirages for which testing is appropriate, extend-
ing MT to other parts of our pipeline model may require new
assessment techniques. For instance, Kong et al. [65] explore
how differing titles affect comprehension of data, and Xiong
et al. [131] explore how different primings about the data do-
main can bias how the data are interpreted. These sorts of
morphisms can directly influence the creation of mirages but
may be hard to algorithmically detect. We suggest handling
this with a mixed initiative process of visualization certifica-
tion, in which users answer questions about visualizations that
have had various morphisms automatically applied to their
data or chart specifications.

Conclusion
In this paper we introduce the idea of a visualization mirage:
a visualization that provides an inference which, upon more
detailed examination, disappears or is cast into doubt. To
understand the origin of mirages we construct a conceptual
model for identifying causal links between choices made in
the visual analytics process and the downstream effects on
reader comprehension. We improve on prior work on decep-
tive visualizations by describing errors that propagate across
the visual analytic process and that are not encapsulated in
a single aspect or part. Through this collection of ideas we
describe a landscape of issues in the visual analytics process,
the problems to user understandings they cause, and how they
might be resolved. To address this final point, we introduce
the idea of using Metamorphic Testing as a mechanism for
automatically detecting mirages arising from the relationship
between data and visual encoding. We provide evidence of
the validity of this idea by constructing a prototype system
that is able to discern an intriguing class of errors. We believe
our model and testing approach provide ample starting ground
for future work on automated detection of subtle errors in
visualization, as well as validating the design of visualizations
based on the relationship between their data and design.
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Figure 15. A visual explanation of the morphisms used in each of the metamorphic tests described in the main paper. In each section of the figure
we start off with an initial table of values, marked Original, and then perform an example transformation, marked accordingly. As each of these
transformation involves randomness, we can only make test-level assertions against them in the aggregate.

APPENDIX
This appendix includes an expanded version of Table 1 from
the main paper, shown here as Table 2. For reasons of space
we could include only a small set of visualization mirages in
the main paper: we expand on that list here, drawing from
potential errors that can occur in more steps of the visual an-
alytics pipeline, as in Figure 16. While this expanded table
includes additional examples, we recognize that many compo-
nents of these mirages draw on entire fields of inquiry from
statistics, cognitive psychology, and critical theory. As such,
we do not claim that this table is complete either, but simply
a more exhaustive list of errors, guided by existing work in
visual analytics research. The categories in this table and the
papers that constitute it were assembled through an iterative
and organic search process. We created a series of successive
models which captured different aspects of the types of errors
described in various papers, but settled on the pipeline model
described in the main paper for its simplicity and its sugges-
tively. We looked for papers that described errors arising at
decisions points immediately adjacent to stages in our pipeline
as well as those in the intersection of multiple decision types.
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Figure 16. A variation on the visual analytics pipeline discussed in the
main paper. In this version of the diagram we emphasize the way that
errors in different stages can coalesce and interact to provide various
sorts of errors.



Table 2: An expanded collection of examples of errors resulting in mirages
along different stages of our analytics pipeline, sorted by the analytical
step we believe is responsible for the resulting failure in the final visual-
ization, and colored following Figure 16. Just as we highlight in the table
in the main paper, this list is not exhaustive. Instead it presents examples
of how decision-making at various stages of analysis can damage the
credibility or reliability of the messages in charts.

CURATING ERRORS

Error Mirage
Forgotten Population
or Missing Dataset

We expect that datasets fully cover or describe phenomena of interest. However, structural, political,
and societal biases can result in the over- or under-sampling of populations or problems of importance.
This mismatch in coverage can hide crucial concerns about the possible scope of our analyses. [87,
27]

Geopolitical
Boundaries in
Question

Shifting borders and inconsistent standards of ownership can cause geospatial visualizations to be
inconsistent. For instance, statistical measures of the United States change significantly depending
on whether protectorates and territories are included, or if overseas departments are excluded when
calculating measures for France. These issues are more complex when nationstates disagree on the
border and extent of their territory, which can cause maps to display significantly different data based
on who is viewing the data with what software from what location. [87, 105]

CURATING + WRANGLING ERRORS

Error Mirage
Missing or Repeated
Records

We often assume that we have one and only one entry for each datum. However, errors in data entry
or integration can result in missing or repeated values that may result in inaccurate aggregates or
groupings. [61]

Outliers Many forms of analysis assume data have similar magnitudes and were generated by similar processes.
Outliers, whether in the form of erroneous or unexpectedly extreme values, can greatly impact
aggregation and discredit the assumptions behind many statistical tests and summaries. [61]

Spelling Mistakes Columns of strings are often interpreted as categorical data for the purposes of aggregation. If
interpreted in this way, typos or inconsistent spelling and capitalization can create spurious categories,
or remove important data from aggregate queries. [124]

Higher Noise than
Effect Size

We often has access to only a sample of the data, or noisy estimates of an unknown true value. How
the uncertainty in these estimates is communicated, and whether or not the viewer is made aware of
the relative robustness of the effect in the context of this noise, can affect the resulting confidence
viewers have in a particular effect. [51, 54]

Sampling Rate Errors Perceived trends in distributions are often subject to the sampling rate at which the underlying data
has been curated. This can be problematic as an apparent trend may be an artifact of the sampling
rate rather than the data (as is the case visualizations that do not follow the rates suggested by the
Nyquist frequency). [62]

WRANGLING ERRORS

Error Mirage
Differing Number of
Records by Group

Certain summary statistics, including aggregates, are sensitive to sample size. However, the number of
records aggregated into a single mark can very dramatically. This mismatch can mask this sensitivity
and problematize per-mark comparisons; when combined with differing levels of aggregation, it can
result in counter-intuitive results such as Simpson’s Paradox. [45]

Analyst Degrees of
Freedom

Analysts have a tremendous flexibility in how they analyze data. These “researcher degrees of
freedom” [40] can create conclusions that are highly idiosyncratic to the choices made by the analyst,
or in a malicious sense promote “p-hacking” where the analyst searches through the parameter space
in order to find the best support for a pre-ordained conclusion. A related issue is the “multiple
comparisons problem” where the analyst makes so many choices that at least one configuration, just
by happenstance, is likely to appear significant, even if there is no strong signal in the data. [40, 91,
133]



Confusing
Imputation

There are many strategies for dealing with missing or incomplete data, including the imputation
of new values. How values are imputed, and then how these imputed values are visualized in the
context of the rest of the data, can impact how the data are perceived, in the worst case creating
spurious trends or group differences that are merely artifacts of how missing values are handled prior
to visualization. [106]

Inappropriate/Missing
Aggregation

The size of the dataset is often far larger than what can fit in a particular chart. Aggregation at a
particular level of detail is a common technique to reduce the size of the data. However, the choice of
aggregation function can lead to differing conclusions based on the underlying distribution of the
data. Furthermore, these statistical summaries may fail to capture important features of distribution,
such as second-order statistics. Conversely, when a designer fails to apply an aggregation function
(or applies one at too low a level of detail), the overplotting, access visual complexity, or reduced
discoverability can likewise hide important patterns in the data. [3, 35, 76, 100, 122]

VISUALIZING + WRANGLING ERRORS

Error Mirage
Outliers Dominate
Scale Bounds

Numeric and color scales are often automatically bound to the extent of the data. If there are a few
extrema values, this can result in a renormalization in which much of the data is compressed to a
narrow output range, destroying the visual signal of potential trends and variability [22, 62]

Latent Variables
Missing

When communicating information about the relationship between two variables, we assume that we
have all relevant data. However, in many cases a latent variable has been excluded from the chart,
promoting a spurious or non-causative relationship (for instance, both drowning deaths and ice cream
sales are tightly correlated, but are related by a latent variable of external temperature). Even if this
variable is present, if the relevant functional dependency is unidentified, the appropriate causal linkage
between variables may not be visible in the chart. Similarly, subgroups or subpopulations can exist
in datasets that, if not properly separated or identified, can apply universal trends to inappropriate
subgroups. [1, 124]

Base Rate
Masquerading as
Data

Visualizations comparing rates are often assumed to show the relative rate, rather than the absolute
rate. Yet, many displays give prominence to these absolute or base rates (such as population in
choropleth maps) rather than encoded variable, causing the reader to understand this base rate as the
data rate. [22]

Concealed
Uncertainty

Charts that don’t indicate that they contain uncertainty risk giving a false impression as well a possible
extreme mistrust of the data if the reader realizes the information hasn’t been presented clearly. There
is also a tendency to incorrectly assume that data is high quality or complete, even without evidence
of this veracity. [106, 35, 78, 99]

VISUALIZING ERRORS

Error Mirage
Non-sequitur
Visualizations

Readers expect graphics that appear to be charts to be a mapping between data and image. Visualiza-
tions being used as decoration (in which the marks are not related to data) present non-information
that might be mistaken for real information. Even if the data are accurate, additional unjustified
annotations could produce misleading impressions, such as decorating uncorrelated data with a
spurious line of best fit. [23]

Misunderstand Area
as Quantity

The use of area encoded marks assumes readers will be able to visually compare those areas.
Area encoded marks are often misunderstood as encoding length which can cause ambiguity about
interpretation of magnitude. [88, 23]

Non-discriminable
Colors

The use of color as a data-encoding channel presumes the perceptual discriminability of colors. Poorly
chosen color palettes, especially when marks are small or cluttered, can result in ambiguity about
which marks belong to which color classes. [109]

Unconventional
Scale Directions

Viewers have certain prior expectations on the direction of scales. For instance, in languages with
left-to-right reading orders, time is likewise assumed to move left to right in graphs. Depending on
context, dark or opaque colors are perceived as having higher magnitude values than brighter or more
transparent colors. Violating these assumptions can cause slower reading times or even the reversal of
perceived trends. [23, 88, 115, 102]

Overplotting We typically expect to be able to clearly identify individual marks, and expect that one visual mark
corresponds to a single value or aggregated value. Yet overlapping marks can hide internal structures
in the distribution or disguise potential data quality issues. [24, 77, 81]



Singularities In chart types, such as line series or parallel coordinates plots, many data series can converge into a
single point in visual space. Without intervention, viewers can have issues discriminating between
which series takes which path after such a singularity. [62]

Inappropriate
Semantic Color Scale

Colors have different effects and semantic associations depending on context (for instance the cultural
context of green being associated with money in the United States). Color encodings in charts that
violate these assumptions can result in viewers misinterpreting the data: for instance, a viewer might
be confused by a map in which the oceans are colored green, and the land colored blue. [70]

Within-the-Bar-Bias The filled in area underneath a bar chart does not communicate any information about likelihood.
However, viewers often erroneously presume that values inside the visual area of the bar are likelier
or more probable than values outside of this region, leading to erroneous or biased conclusions about
uncertainty. [21, 85]

Clipped Outliers Charts are often assumed to show the full extent of their input data. A chosen domain might exclude
meaningful outliers, causing some trends in the data to be invisible to the reader.

Continuous Marks
for Nominal
Quantities

Conventionally readers assume lines indicate continuous quantities and bars indicate discrete quanti-
ties. Breaking from this convention, for instance using lines for nominal measures, may cause readers
to hallucinate non-existent trends based on ordering. [79, 132]

Modifiable Areal
Unit Problem

Spatial aggregates are often assumed to be presenting their data without bias, yet they are highly
dependent on the shapes of the bins defining those aggregates. This can cause readers to misunderstand
the trends present in the data. [38, 62]

Manipulation of
Scales

The axes and scales of a chart are presumed to straightforwardly represent quantitative information.
However, manipulation of these scales (for instance, by flipping them from their commonly assumed
directions, truncating or expanding them with respect to the range of the data [88, 23, 17, 95, 20],
using non-linear transforms, or employing dual axes [63, 13]) can cause viewers to misinterpret the
data in a chart, for instance by exaggerating correlation [17], exaggerating effect size [20, 88], or
misinterpreting the direction of effects [88]. [13, 23, 20, 17, 63, 88, 95]

Trend in Dual Y-Axis
Charts are Arbitrary

Multiple line series appearing on a common axis are often read as being related through an objective
scaling. Yet, when y-axes are superimposed the relative selection of scaling is arbitrary, which can
cause readers to misunderstand the magnitudes of relative trends. [63, 13]

Nominal Choropleth
Conflates Color Area
with Classed Statistic

Choropleth maps color spatial regions according to a theme of interest. However, the size of
these spatial regions may not correspond well with the actual trend in the data. For instance, U.S.
Presidential election maps colored by county can communicate an incorrect impression of which
candidate won the popular vote, as many counties with large area have small populations, and vice
versa. [39, 86]

Overwhelming
Visual Complexity

We may assume that there is a benefit to presenting all of the data in all of its complexity. However,
visualizations with too much visual complexity can overwhelm or confuse the viewer and hide
important trends, as with graph visualization “hairballs.” [51, 42]

READING ERRORS

Error Mirage
Reification It can be easier to interpret a chart or map as being a literal view of the real world, rather than

to understand that it as abstraction at the end of a causal chain of decision-making. That is, as
confusing the map with the territory. This misunderstanding can lead to falsely placed confidence in
measures containing flaws or uncertainty: Drucker [33] claims that reification caused by information
visualization results in a situation “as if all critical thought had been precipitously and completely
jettisoned.” [33]

Assumptions of
Causality

We assume that highly correlated data plotted in the same graph have some important linkage.
However, through visual design or arbitrary juxtaposition, viewers can come away with erroneous
impressions of relation or causation of unrelated or non-causally linked variables. [130, 35]

Base Rate Bias Readers assume unexpected values in a visualization are emblematic of reliable differences. However,
readers may be unaware of relevant base rates: either the relative likelihood of what is seen as a
surprising value or the false discovery rate of the entire analytic process. [22, 91, 133]

Inaccessible Charts Charts makers often assume that their readers are homogeneous groups. Yet, the way that people
read charts is heterogeneous and dependent on perceptual abilities and cognitive backgrounds that
can be overlooked by the designer. Insufficient mindfulness of these differences can result in
miscommunication. For instance, a viewer with color vision deficiency may interpret two colors as
identical when the designer intended them to be separate or a viewer with dyslexia might mistake
similarity named points in a annotated scatter plot as denoting the same entity. [71, 90, 129]



Default Effect While default settings in visualization systems are often selected to guide users towards best practices,
these defaults can have an outsized impact on the resulting design. This influence can result in
mirages: for instance, default color palettes can artificially associate unrelated variables; or default
histogram settings can hide important data quality issues. [24, 35, 53, 104]

Anchoring Effect Initial framings of information tend to guide subsequent judgements. This can cause readers to place
undue rhetorical weight on early observations, which may cause them to undervalue or distrust later
observations. [95, 53]

Biases in
Interpretation

Each viewer arrives to a visualization with their own preconceptions, biases, and epistemic frame-
works. If these biases are not carefully considered, various cognitive biases such as the backfire effect
or confirmation bias can cause viewers to anchor on only the data (or the reading of the data) that
supports their preconceived notions, reject data that does not accord with their views, and generally
ignore a more holistic picture of the strength of the evidence. [27, 26, 35, 122, 116]

READING + WRANGLING ERRORS

Error Mirage
Drill-down Bias We assume that the order in which we investigate our data should not impact our conclusions.

However, by filtering on less explanatory or relevant variables first, the full scope of the impact of
later variables can be hidden. This results in insights that address only small parts of the data, when
they might be true of the larger whole. [69]

Cherry Picking Filtering and subsetting are meant to be tools to remove irrelevant data, or allow the analyst to focus
on a particular area of interest. However, if this filtering is too aggressive, or if the analyst focuses
on individual examples rather than the general trend, this cherry-picking can promote erroneous
conclusions or biased views of the relationships between variables. Failing to keep the broader dataset
in context can also result in the Texas Sharpshooter Fallacy or other forms of HARKing [18]. [35]

Availability Heuristic Examples that are easier to recall are perceived as more typical than they actually are. In a visual
analytics context, this could be reflected in analysts recalling outlying instances more easily than
values that match the trend, or assuming that the data patterns they encounter most frequently (for
instance, in the default or home view of their tool) are more common than they really are in the
dataset as a whole. [28, 29, 35]
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