skip to main content
10.1145/3313831.3376512acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Honorable Mention

Chasm: A Screw Based Expressive Compact Haptic Actuator

Published:23 April 2020Publication History

ABSTRACT

We present a compact broadband linear actuator, Chasm, that renders expressive haptic feedback on wearable and handheld devices. Unlike typical motor-based haptic devices with integrated gearheads, Chasm utilizes a miniature leadscrew coupled to a motor shaft, thereby directly translating the high-speed rotation of the motor to the linear motion of a nut carriage without an additional transmission. Due to this simplicity, Chasm can render low-frequency skin-stretch and high-frequency vibrations, simultaneously and independently. We present the design of the actuator assembly and validate its electromechanical and perceptual performance. We then explore use cases and show design solutions for embedding Chasm in device prototypes. Finally, we report investigations with Chasm in two VR embodiments, i.e., in a headgear band to induce locomotion cues and in a handheld pointer to enhance dynamic manual interactions. Our explorations show wide use for Chasm in enhancing user interactions and experience in virtual and augmented settings.

Skip Supplemental Material Section

Supplemental Material

paper385vf.mp4

mp4

70.7 MB

paper385pv.mp4

mp4

12.9 MB

a385-preechayasomboon-presentation.mp4

mp4

130.3 MB

References

  1. Petteri Aimonen. Nanopb - protocol buffers with small code size. Retrieved September 1, 2019 from https://jpa.kapsi.fi/nanopb/Google ScholarGoogle Scholar
  2. Hrvoje Benko, Christian Holz, Michael Sinclair, and Eyal Ofek. 2016. NormalTouch and TextureTouch: High-fidelity 3D Haptic Shape Rendering on Handheld Virtual Reality Controllers. 717--728. DOI: https://doi.org/10.1145/2984511.2984526Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Stanley J. Bolanowski Jr, George A. Gescheider, Ronald T. Verrillo, and Christin M. Checkosky. 1988. Four Channels Mediate the Mechanical Aspects of Touch. The Journal of the Acoustical Society of America 84, 5: 1680--1694. DOI: https://doi.org/10.1121/1.397184Google ScholarGoogle ScholarCross RefCross Ref
  4. Inrak Choi, Heather Culbertson, Mark R. Miller, Alex Olwal, and Sean Follmer. 2017. Grabity: A Wearable Haptic Interface for Simulating Weight and Grasping in Virtual Reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST '17), 119--130. DOI: https://doi.org/10.1145/3126594.3126599Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Seungmoon Choi and Katherine J. Kuchenbecker. 2013. Vibrotactile Display: Perception, Technology, and Applications. Proceedings of the IEEE 101, 9: 2093--2104. DOI: https://doi.org/10.1109/JPROC.2012.2221071Google ScholarGoogle ScholarCross RefCross Ref
  6. Francesco Clemente and Christian Cipriani. 2014. A Novel Device for Multi-Modal Sensory Feedback in Hand Prosthetics: Design and Preliminary Prototype. In 2014 IEEE Haptics Symposium (HAPTICS), 569-- 573. DOI: https://doi.org/10.1109/HAPTICS.2014.677551Google ScholarGoogle ScholarCross RefCross Ref
  7. Nathan Dunkelberger, Jenny Sullivan, Joshua Bradley, Nickolas P Walling, Indu Manickam, Gautam Dasarathy, Ali Israr, Frances W. Y. Lau, Keith Klumb, Brian Knott, Freddy Abnousi, Richard Baraniuk, and Marcia K O'Malley. 2018. Conveying Language Through Haptics: A Multi-sensory Approach. In Proceedings of the 2018 ACM International Symposium on Wearable Computers (ISWC '18), 25--32. DOI: https://doi.org/10.1145/3267242.3267244Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Adrien Girard, Maud Marchal, Florian Gosselin, Anthony Chabrier, François Louveau, and Anatole Lécuyer. 2016. HapTip: Displaying Haptic Shear Forces at the Fingertips for Multi-Finger Interaction in Virtual Environments. Frontiers in Robotics and AI. DOI: https://doi.org/10.3389/fict.2016.00006Google ScholarGoogle ScholarCross RefCross Ref
  9. Brian Gleeson, Scott Horschel, and William Provancher. 2011. Design of a Fingertip-Mounted Tactile Display with Tangential Skin Displacement Feedback. Haptics, IEEE Transactions on 3: 297--301. DOI: https://doi.org/10.1109/TOH.2010.8Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Sidhant Gupta, Tim Campbell, Jeffrey R. Hightower, and Shwetak N. Patel. 2010. SqueezeBlock: Using Virtual Springs in Mobile Devices for Eyes-free Interaction. In Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology (UIST '10), 101--104. DOI: https://doi.org/10.1145/1866029.1866046Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Alexandra Ion, Edward Jay Wang, and Patrick Baudisch. 2015. Skin Drag Displays: Dragging a Physical Tactor Across the User's Skin Produces a Stronger Tactile Stimulus Than Vibrotactile. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15), 2501--2504. DOI: https://doi.org/10.1145/2702123.2702459Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ali Israr, Siyan Zhao, and Oliver Schneider. 2015. Exploring Embedded Haptics for Social Networking and Interactions. 1899--1904. DOI: https://doi.org/10.1145/2702613.2732814Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kenneth O. Johnson. 2001. The Roles and Functions of Cutaneous Mechanoreceptors. Current Opinion in Neurobiology 11, 4: 455--461. DOI: https://doi.org/10.1016/s0959--4388(00)00234--8Google ScholarGoogle ScholarCross RefCross Ref
  14. Lawrence H. Kim, Pablo Castillo, Sean Follmer, and Ali Israr. 2019. VPS Tactile Display: Tactile Information Transfer of Vibration, Pressure, and Shear. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 2: 51:1--51:17. DOI: https://doi.org/10.1145/3328922Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Anatole Lecuyer, Sabine Coquillart, Abderrahmane Kheddar, Paul Richard, and Philippe Coiffet. 2000. Pseudo-Haptic Feedback: Can Isometric Input Devices Simulate Force Feedback? 83. DOI: https://doi.org/10.1109/VR.2000.840369Google ScholarGoogle ScholarCross RefCross Ref
  16. Jack M. Loomis and Susan J. Lederman. 1986. Tactual perception. In Handbook of perception and human performance, Vol. 2: Cognitive processes and performance. John Wiley & Sons, Oxford, England, 1--41.Google ScholarGoogle Scholar
  17. Jens Maiero, David Eibich, Ernst Kruijff, Andre Hinkenjann, Wolfgang Stuerzlinger, Hrvoje Benko, and Gheorghita Ghinea. 2019. Back-of-Device Force Feedback Improves Touchscreen Interaction for Mobile Devices. IEEE transactions on haptics 12, 4: 483--496. DOI: https://doi.org/10.1109/TOH.2019.2911519Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Ian McCloskey. 1988. Kinesthesia, Kinesthetic Perception. In Sensory Systems: II: Senses Other than Vision, Jeremy M. Wolfe (ed.). Birkhäuser, Boston, MA, 36--38. DOI: https://doi.org/10.1007/978--1--46846760--4_17Google ScholarGoogle ScholarCross RefCross Ref
  19. Kouta Minamizawa, Souichiro Fukamachi, Hiroyuki Kajimoto, Naoki Kawakami, and Susumu Tachi. 2007. Gravity Grabber: Wearable Haptic Display to Present Virtual Mass Sensation. In ACM SIGGRAPH 2007 Emerging Technologies (SIGGRAPH '07). DOI: https://doi.org/10.1145/1278280.1278289Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kouta Minamizawa, Domenico Prattichizzo, and Susumu Tachi. 2010. Simplified Design of Haptic Display by Extending One-Point Kinesthetic Feedback to Multipoint Tactile Feedback. In 2010 IEEE Haptics Symposium, 257--260. DOI: https://doi.org/10.1109/HAPTIC.2010.5444646Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Stefano Mintchev, Marco Salerno, Alexandre Cherpillod, Simone Scaduto, and Jamie Paik. 2019. A Portable Three-Degrees-of-Freedom Force Feedback Origami Robot for Human--Robot Interactions. Nature Machine Intelligence 1, 12: 584--593. DOI: https://doi.org/10.1038/s42256-019-0125--1Google ScholarGoogle ScholarCross RefCross Ref
  22. Claudio Pacchierotti, Gionata Salvietti, Irfan Hussain, Leonardo Meli, and Domenico Prattichizzo. 2016. The hRing: A Wearable Haptic Device to Avoid Occlusions in Hand Tracking. In 2016 IEEE Haptics Symposium (HAPTICS), 134--139. DOI: https://doi.org/10.1109/HAPTICS.2016.746316Google ScholarGoogle ScholarCross RefCross Ref
  23. Evan Pezent, Ali Israr, Majed Samad, Shea Robinson, Priyanshu Agarwal, Hrvoje Benko, and Nick Colonnese. 2019. Tasbi: Multisensory Squeeze and Vibrotactile Wrist Haptics for Augmented and Virtual Reality. In 2019 IEEE World Haptics Conference (WHC), 1--6. DOI: https://doi.org/10.1109/WHC.2019.8816098Google ScholarGoogle ScholarCross RefCross Ref
  24. Sirawat Pitaksarit. 2019. 5argon/protobuf-unity. Retrieved December 24, 2019 from https://github.com/5argon/protobuf-unityGoogle ScholarGoogle Scholar
  25. Christopher J. Ploch, Jung Hwa Bae, Wendy Ju, and Mark Cutkosky. 2016. Haptic Skin Stretch on A Steering Wheel for Displaying Preview Information in Autonomous Cars. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 60--65. DOI: https://doi.org/10.1109/IROS.2016.7759035Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ivan Poupyrev and Shigeaki Maruyama. 2003. Tactile Interfaces for Small Touch Screens. In Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology (UIST '03), 217--220. DOI: https://doi.org/10.1145/964696.964721Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Domenico Prattichizzo, Francesco Chinello, Claudio Pacchierotti, and Monica Malvezzi. 2013. Towards Wearability in Fingertip Haptics: A 3-DoF Wearable Device for Cutaneous Force Feedback. Haptics, IEEE Transactions on 6: 506--516. DOI: https://doi.org/10.1109/TOH.2013.53Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nicolaas Prins and Frederick A. A. Kingdom. 2018. Applying the Model-Comparison Approach to Test Specific Research Hypotheses in Psychophysical Research Using the Palamedes Toolbox. Frontiers in Psychology 9. DOI: https://doi.org/10.3389/fpsyg.2018.01250Google ScholarGoogle ScholarCross RefCross Ref
  29. William R. Provancher, Mark R. Cutkosky, Katherine J. Kuchenbecker, and Günter Niemeyer. 2005. Contact Location Display for Haptic Perception of Curvature and Object Motion. International Journal of Robotics Research 24, 9: 691--702. DOI: https://doi.org/10.1177/0278364905057121Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. William R. Provancher and Nicholas D. Sylvester. 2009. Fingerpad Skin Stretch Increases the Perception of Virtual Friction. IEEE Transactions on Haptics 2, 4: 212--223. DOI: https://doi.org/10.1109/TOH.2009.34Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhan Fan Quek, Samuel B. Schorr, Ilana Nisky, William R. Provancher, and Allison M. Okamura. 2015. Sensory Substitution and Augmentation Using 3-Degree-of-Freedom Skin Deformation Feedback. IEEE Transactions on Haptics 8, 2: 209--221. DOI: https://doi.org/10.1109/TOH.2015.2398448Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Majed Samad, Elia Gatti, Anne Hermes, Hrvoje Benko, and Cesare Parise. 2019. Pseudo-Haptic Weight: Changing the Perceived Weight of Virtual Objects By Manipulating Control-Display Ratio. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19), 320:1-- 320:13. DOI: https://doi.org/10.1145/3290605.3300550Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Samuel B. Schorr and Allison M. Okamura. 2017. Fingertip Tactile Devices for Virtual Object Manipulation and Exploration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17), 3115--3119. DOI: https://doi.org/10.1145/3025453.3025744Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Pratheev Sreetharan, Ali Israr, and Priyanshu Agarwal. 2019. A Compact Skin-Shear Device using a Lead-Screw Mechanism. In 2019 IEEE World Haptics Conference (WHC), 527--532. DOI: https://doi.org/10.1109/WHC.2019.8816105Google ScholarGoogle ScholarCross RefCross Ref
  35. Lei Tian, Aiguo Song, and Dapeng Chen. 2016. A Novel Haptic Stylus for Mobile Terminal. In Haptics: Perception, Devices, Control, and Applications (Lecture Notes in Computer Science), 338--349. DOI: https://doi.org/10.1007/978--3--319--42321-0_31Google ScholarGoogle ScholarCross RefCross Ref
  36. N. G. Tsagarakis, T. Horne, and D. G. Caldwell. 2005. SLIP AESTHEASIS: A Portable 2D Slip/Skin Stretch Display for the Fingertip. In Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC '05), 214--219. DOI: https://doi.org/10.1109/WHC.2005.117Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Robert J. Webster III, Todd E. Murphy, Lawton N. Verner, and Allison M. Okamura. 2005. A Novel Two-dimensional Tactile Slip Display: Design, Kinematics and Perceptual Experiments. ACM Trans. Appl. Percept. 2, 2: 150--165. DOI: https://doi.org/10.1145/1060581.1060588Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Huichan Zhao, Aftab M. Hussain, Mihai Duduta, Daniel M. Vogt, Robert J. Wood, and David R. Clarke. 2018. Compact Dielectric Elastomer Linear Actuators. Advanced Functional Materials 28, 42: 1804328. DOI: https://doi.org/10.1002/adfm.201804328Google ScholarGoogle ScholarCross RefCross Ref
  39. Craig B. Zilles and J.K. Salisbury. 1995. A ConstraintBased God-Object Method for Haptic Display. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 146--151 vol.3. DOI: https://doi.org/10.1109/IROS.1995.525876Google ScholarGoogle ScholarCross RefCross Ref
  40. FAULHABER SR 1016 ... SR. Retrieved September 1, 2019 from https://www.faulhaber.com/en/products/series/Google ScholarGoogle Scholar
  41. Kerk 5/64" (2mm) Lead Screw. Retrieved December 24, 2019 from https://www.haydonkerkpittman.com/products/leadscrews-and-nuts/lead-screws-by-size/5--64--2mmGoogle ScholarGoogle Scholar
  42. AS5311 - High Resolution Linear Position Sensor -- Hall IC - ams | ams. Retrieved September 1, 2019 from https://ams.com/as5311Google ScholarGoogle Scholar
  43. DRV8835 1.5A low voltage stepper or single/dual brushed DC motor driver w/ dual supplies (PWM or PH/EN ctrl) | TI.com. Retrieved September 1, 2019 from http://www.ti.com/product/DRV8835Google ScholarGoogle Scholar
  44. Protocol Buffers. Google Developers. Retrieved September 1, 2019 from https://developers.google.com/protocol-buffersGoogle ScholarGoogle Scholar

Index Terms

  1. Chasm: A Screw Based Expressive Compact Haptic Actuator

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
        April 2020
        10688 pages
        ISBN:9781450367080
        DOI:10.1145/3313831

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 April 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

        Upcoming Conference

        CHI '24
        CHI Conference on Human Factors in Computing Systems
        May 11 - 16, 2024
        Honolulu , HI , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format