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ABSTRACT

Heatmaps are a popular visualization technique that encode 
2D density distributions using color or brightness. Experi-
mental studies have shown though that both of these visual 
variables are inaccurate when reading and comparing numeric 
data values. A potential remedy might be to use 3D heatmaps 
by introducing height as a third dimension to encode the data. 
Encoding abstract data in 3D, however, poses many problems, 
too. To better understand this tradeoff, we conducted an em-
pirical study (N = 48) to evaluate the user performance of 2D 
and 3D heatmaps for comparative analysis tasks. We test our 
conditions on a conventional 2D screen, but also in a virtual 
reality environment to allow for real stereoscopic vision. Our 
main results show that 3D heatmaps are superior in terms 
of error rate when reading and comparing single data items. 
However, for overview tasks, the well-established 2D heatmap 
performs better. 

Author Keywords

virtual reality; visual analytics; heatmaps 

INTRODUCTION

Heatmaps are omnipresent in information visualization. They 
are frequently used not only as a basic module for novel ap-
plications and visualization designs [52, 51, 60], but also as 
a tool for presenting research results [42, 12, 59]. Heatmaps 
allow the analyst to quickly grasp a 2D distribution because 
of their capability to facilitate intuitive encoding of values by 
color in a 2D grid. The technique is also frequently deployed 
for comparison tasks, for example, to convey a temporal pro-
gression of 2D distributions. When heatmaps are used in a 
visual analytics pipeline to display intermediate results, vi-
sualizations have to be compared with visualizations from 
previous analysis steps to evaluate the improvement caused by 
parameter changes. Side-by-side comparisons of 2D distribu-
tions are also frequent tasks. For instance, Schreck et al. [52] 
deployed heatmap visualizations to compare distributions of 
different properties in Kohonen maps. In their application, the 
analyst can quickly identify attributes for which their neural 
network is optimized for. Besides, there are many examples 
in literature in which pre-post comparisons are presented. For 
instance, when two heatmaps are compared, one of which 
depicts values in their original form, and a second depicts the 
distribution after applying a change [18, 61, 43]. 

However, when comparing multiple heatmaps with each other, 
several issues emerge. In juxtapositioned comparisons, the 
analyst must locate a specific location in multiple heatmaps in 
order to compare individual values. This leads to a high cogni-
tive load and a high potential error rate. Supportive methods 
like linking and brushing can alleviate this problem but might 
lead to additional issues, such as a perceptual distortion of val-
ues close to the highlight. Alternatively, multiple distributions 
could be joined into a single aggregation visualization, such 
as a difference map. Aggregations like this facilitate various 
tasks, such as offset extraction, but make others impossible 
(e.g., exact value extraction). 
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To overcome problems of juxtapositioned comparisons, one 
could extend the 2D heatmap by a third dimension, double en-
coding value by color and height. The resulting 3D heatmaps 
could then be superpositioned for comparison. This might 
facilitate local referencing in multiple 2D distributions and 
thus reduce the overall cognitive load without juxtapositioning 
while preserving all information of each distribution. 

To date, however, a vast amount of work in the InfoVis domain 
has pointed against the use of 3D for abstract data. 3D is 
accompanied by fundamental issues such as occlusion [26], 
perceptual distortion [45], and the absence of a common base-
line [47]. After due deliberation, however, we believe that 
there are good reasons why the applicability and usefulness of 
3D heatmaps should be further investigated. Reason one are 
the shortcomings of traditional 2D heatmaps for comparative 
analysis, as described above. Reason two are new display 
technologies like Virtual and Augmented Reality (VR/AR) 
that are becoming more widespread and will necessitate us to 
think about proper data representations within them. It is not 
clear yet, in how far drawbacks of 3D data representations will 
persist in such environments, or if they might be reduced or 
even balanced out in comparison to conventional screen-based 
visualizations. Properties unique to VR approaches such as 
available degrees of freedom, cognitive immersion, or inter-
action possibilities have been identified as beneficial in many 
use cases. Among others, related research revealed benefits of 
VR in terms of improved spatial memory [38], learning perfor-
mance [50], spatial understanding [14], the understanding of 
geometric models [62], and collaboration aspects [17]. Advan-
tages of using VR to observe established visualizations could 
be demonstrated in several cases, for example for scatterplots 
[3], graph visualizations [20], and flow visualizations [23]. 

Towards better understanding of this new design space, we 
present a prototype for the interactive exploration of data dis-
tributions with 3D heatmaps. In addition to standard func-
tionality for exploratory analysis, our prototype specifically 
supports comparative analysis tasks on multiple heatmaps. To 
do so, we employ a novel interaction metaphor, where users 
can shift stacked heatmaps into each other for spatial and nu-
merical comparison. In a quantitative user study we focus on 
the prototype’s capabilities for comparative analysis and com-
pare our visualization approach of stacked 3D heatmaps with 
the conventional approach of juxtapositioned 2D heatmaps. 
Based on a literature review, we identified the most common 
types of tasks in comparative heatmap analysis, including 
Lookup-Tasks, Locate-Tasks, and Overview-Tasks. In addition 
to comparing the two different visualizations, we also tested 
the type of Medium in our experiment. Half of the participants 
conducted the study on a conventional monitor screen, the 
other half in a virtual reality environment, additionally allow-
ing us to assess the impact of VR on the analytic performance 
of users. 

In summary, we make the following two main contributions: 
(i) we present a 3D heatmap prototype in VR that supports the 
comparative analysis of multiple distributions, and (ii) based 
on this prototype, we present the results of an empirical study 

comparing the performance of 2D and 3D heatmaps for com-
parison tasks in virtual and conventional screen environments. 

RELATED WORK

In the following, we will first provide a brief overview of 
where and how heatmaps were used in previous works. Next, 
we will summarize motives for deploying virtual reality as a 
medium for the observation of visualizations. Subsequently, 
we survey several existing approaches to comparative visual-
izations, with a focus on heatmaps. 

Heatmap Visualizations

Heatmaps are a well-known technique to visualize continuous 
data. Their applicability and usefulness has been demonstrated 
in various domains, for example, in medicine for volume sur-
face visualizations [55], in geography for temperature visu-
alizations [15] or even for abstract trajectory analysis [52]. 
Often, heatmaps are used for the presentation of 2D distri-
butions, which are the result of statistic evaluations [36, 16]. 
They are also frequently deployed for lining up and comparing 
two or more results, such as different experimental conditions 
or pre-post comparisons [52, 35, 49]. For the comparative 
analysis of 2D heatmaps, there is a large number of different 
techniques for merging two or more heatmaps into a blended 
view of them. For instance, Jo et al. [34] present various ap-
proaches to visualizing two density maps in one visualization 
using different blending techniques. 
Three-dimensional heatmaps, also referred to as heightmaps, 
extend 2D heatmap visualizations by double-encoding the 
“heat” by a position as well (i.e., height). Of course, color can 
be replaced entirely or used to encode an additional attribute. 
Most commonly, heightmaps are associated with geographic 
visualizations such as OpenSpace [41] or Google Earth [25] 
in which landscape elevations are mapped to height. However, 
3D heatmaps have also been deployed in a variety of visual-
izations for more abstract data, such as in sound analysis for 
frequency visualizations [51] or in medicine for the analysis of 
vascular movements [60]. Büschel et al. [10] used heightmaps 
to investigate spatial interaction in AR environments on 3D 
data visualizations. Tory et al. [56] present an empirical study 
for a search and value extraction task on scatterplots and 3D 
data landscapes. For the investigated task, the point-based 
spatialization was superior compared to the 3D heatmap-like 
representation. Our work adds to the line of work of empiri-
cally studying heatmaps, by focusing on the aspects of 2D vs. 
3D heatmaps and the impact of stereoscopic perception and 
immersion on performance. 

3D Visualizations and Virtual Reality

In general, 3D visualizations are not the preferred solution for 
abstract data as they are accompanied by flaws like occlusion 
and perceptual distortion [39]. Sedlmair et al. [53] compared 
the performance of 2D and 3D scatterplots for cluster verifica-
tion tasks on dimensionality reduced data and, based on their 
results, strongly advise against using 3D visualizations for this 
task. However, in the recent past, virtual reality devices, such 
as Oculus Rift or HTC Vive, have gained attention in the field 
of information visualization. Dwyer et al. coined the term 
‘Immersive Analytics’ by defining it as “the use of engaging, 
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embodied analysis tools to support data understanding and 
decision making” [19]. In their book, Marriott et al. [37] pro-
vide a collection of papers that characterize this research area. 
Among others, they point out that immersive analytics can be 
an opportunity for decision making and knowledge generation 
even for abstract data. The deployment of virtual reality en-
vironments for 3D visualizations has proven advantageous in 
some cases [27, 62, 48]. According to Donalek et al. [17], 
improved depth perception in VR leads to a better overall per-
ception of the datascape geometry and a better understanding 
of the data in graph visualizations. Similarly, Erra et al. [20] 
found a beneficial effect of VR on graph exploration tasks. 
Etemadpour et al. [21] conducted several studies comparing 
stereoscopic visualizations to projection-based ones. They 
found that surface-based visual encoding benefits more from a 
VR setting than point-based renderings. 
We add to this line of research by assessing design factors 
that have not been studied so far. For comparative tasks, su-
perpositioned 3D heatmaps could pose a benefit compared to 
conventional juxtapositioned heatmaps when inspected in VR. 

Comparative Visualizations

The comparison of two or more data sets is a frequent task in 
visual analysis. Hence, a vast amount of different visualiza-
tion techniques and approaches exist for comparing several 
visualizations. Most commonly applied are side-by-side visu-
alizations [52, 33]. With this approach, the observer has to find 
the same position in each visualization, which can be a tedious 
and inaccurate task. Linking and brushing can be deployed 
to ease this process. For time-series comparisons, Gleicher 
et al. [24] presented several strategies. Besides juxtaposition 
and superposition, the signals can be merged by calculating a 
difference signal and displaying it instead. However, each of 
the named strategies has its benefits and drawbacks. Alabi et 
al. [1] surveyed various techniques to compare surface visual-
izations. Among others, they listed the usage of transparency 
in combination with overlapping surfaces, the partitioning of 
the surfaces into slices aligned in alternating order, and the uti-
lization of semi-opaque textures. Multiple coordinated views 
can be used to look at one data set from different perspectives. 
This design consists of different windows in which different 
projections or visualizations of the same data entity are dis-
played [32, 40, 8]. For comparative analysis, any comparison 
technique can be used separately in each coordinated view. 

In our work, we add to this strain of research by assessing 
the performance of superpositioned 3D heatmaps for typical 
comparative tasks. Moreover, we assess the impact of immer-
sion on user performance by deploying the compared types of 
visualization on a conventional screen and in a virtual reality 
environment. 

PROTOTYPE DESCRIPTION

In this section, we will first discuss some general design con-
siderations for visualizing 3D heatmaps in VR, and how we 
implemented them in our prototype. Subsequently, we will 
focus on comparing heatmap visualizations and explore the 
possible advantages of 3D and VR. Finally, we will investigate 
how the interactive embedding of 2D visualizations in the 3D 
design space can help the user to overcome the disadvantages 

of 3D representations. In the following section we will then 
focus on evaluating one aspect of the prototype in more detail: 
its capabilities for comparative analysis. 

Design Considerations

In 3D heatmaps, the third dimension can be used to double 
encode the value by color and height. This strengthens the 
encoding since the value is additionally encoded by the more 
powerful visual variable “size” [4]. However, this comes at 
a price: drawbacks caused by the nature of 3D visualizations 
such as occlusion and perceptual distortion appear on the 
scene. Previous research has demonstrated a potential benefit 
of VR in various immersive analytics use cases such as im-
proved spatial memory, more natural interaction capabilities, 
and better depth perception [17, 27, 62]. In order to com-
pensate for disadvantages caused by the three-dimensionality 
of the visualization, we deploy the visualization in a virtual 
reality environment. Concerning comparative tasks, the three-
dimensional visualization has the advantage that superposi-
tioning is possible. This could ease spatial referencing and 
reduce the mental workload compared to juxtapositioned 2D 
visualizations. To follow up on this presumption, we strive 
to evaluate the performance of 3D heatmap visualizations for 
comparative analysis tasks in virtual reality environments. We 
assume that the three-dimensional visualization, in combina-
tion with stereoscopic vision, could be advantageous for such 
tasks. Therefore, we developed a prototype that provides a 
platform for 3D heatmap visualizations and the associated 
functionality for explorative analysis. In the following, we 
present the three most important design considerations for our 
prototype: 

1. To facilitate an interactive visual exploration workflow, 
we follow Shneiderman’s well-established “information seek-
ing mantra” [54]: overview first, zoom and filter, and details 
on demand. A 3D heatmap visualization is used as a base 
visualization that provides the user with an overview of the 
distribution. The visualization environment must supply the 
functionality to adapt the visual encoding (color coding) and 
the representation of data (sampling rate, normalization). Fur-
thermore, it must provide the functionality to enlarge areas 
of interest (zoom) and to filter data. It must also provide the 
functionality to extract exact value information for points of 
interest. 

2. The prototype must provide the functionality to display mul-
tiple visualizations simultaneously, thus enabling comparative 
analysis tasks. We decided to align the 3D heatmaps horizon-
tally in order to obtain a common plane of reference and, at 
the same time, provide the metaphor of natural landscapes. 
Individual layers of heatmaps should be movable only in the 
vertical direction, preserving spatial referencing. Shifting 
could help users to identify connected surfaces and partially 
overcome problems associated with occlusion. For instance, 
one heatmap can be shifted through the other until its surface 
pierces through the surface of the other at a specific location 
of interest. The extent of the required shift then indicates the 
offset of values at the given location. 

3. Although 3D visualizations have several disadvantages, they 
also offer new design possibilities and metaphors. In order to 
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take advantage of 2D visualizations, the visualization design 
space should not be limited to 3D. Users should be able to 
seamlessly transition data visualized in the 3D representation 
into 2D projections of the same data. The user must be able to 
create 2D aggregations from the 3D representation and display 
them in the visualization environment in order to overcome 
drawbacks associated with 3D visualizations. 

Prototype: Base Visualization

The visualization environment was developed using the gam-
ing engine Unity3D [57] and consists of a 5m×5m room with 
a table in the center, surrounded by white walls. The 3D 
heatmap visualization is placed on top of the table and framed 
by axes at each corner. The visualization can be inspected 
through an HTC Vive Pro [31] head-mounted display (HMD) 
by walking around the table. 

Figure 1. The user can interactively change the color encoding (left). 
Data ranges can be selected and applied as a filter to zoom the visualiza-
tion to the selected data range (right). 

As depicted in Figure 1 (top), the visual encoding can be 
adapted interactively. The user can change the coloring of 
the heatmap, emphasizing certain data ranges. Further, it is 
possible to select data ranges in the heatmap by hovering over 
an arbitrary axis and zoom into the selected data range (see 
Figure 1, bottom). Details on certain locations can be obtained 
by clicking on it, which opens an information pop-up. 

Comparison of Multiple Heatmaps

Comparing two visualizations to find correlations or other co-
herences is a frequent task [24]. While conceivable, directly 
comparing two heatmaps with one using color and the other 
using opacity to encode the values is perceptually extremely 
challenging and not feasible in practice. Thus, in traditional 
visualization environments, side-by-side or selective, confined 
comparisons are state of the art. Another option is to merge 
the data sets of both visualizations, which are to be compared 
into a new visualization, e.g., by creating difference maps or 
aggregated views. Juxtapositioned small multiples increase 
the cognitive load in comparative tasks since the user has to 
coordinate his or her attention between two or more different 
visualizations. I.e., a particular location in one heatmap has 
to be located in a second heatmap in order to compare the 
values. Aggregated visualizations that simultaneously encode 
information of two or more distributions often lack crucial 
information. For instance, when creating a difference map of 
two heatmaps, only the value offset is displayed, whereas the 
absolute level of values disappears. Of course, these views can 
be displayed additionally to juxtapositioned small multiples, 
but this further increases the overall mental workload. Inter-
action methods, such as linking and brushing, can reduce the 
mental effort, but the fundamental challenges remain. 

Figure 2. Stacked 3D heatmaps for comparative tasks. In this example, 
one heatmap (blue) shows the frequency of arrests at any location in a 
district of Baltimore. The second heatmap (red) depicts locations where 
crimes were reported by victims. The analyst can select any location on 

the map to get detailed information about that location (pillars). 

Stacked 3D heatmaps in VR naturally lean themselves towards 
interaction techniques that allow intuitive comparisons of two 
or more heatmaps. Instead of coordinating attention between 
several visualizations, as it is the case with small multiple 
visualizations, we propose to vertically shift heatmaps into 
each other. In doing so, values can be compared along the 
vertical axis through a specific point of interest. Figure 2 
depicts two horizontally aligned heatmaps stacked on top of 
each other. For optimal visual differentiation, each displayed 
3D heatmap should have a distinct color scale. Each value in 
the heatmaps is double encoded by value and height, where 
color and height can be used to compare values within the 
same heatmap, and height can be used for efficiently compare 
values of two heatmaps. The user can shift the heatmaps 
interactively along the vertical axis. Shifting one heatmap 
relative to another eases the detection of coherence between 
them when peaks of one heatmap appear and rise through the 
other (see Figure 3). For exact value comparison, heatmaps 
can be snapped in with aligning axes to establish a common 
baseline for the visualizations. 

Figure 3. Superimposed heatmaps, one encoding arrests and the other 

reported crimes. Meshing (left) or transparency (right) can be used to 
overcome occlusion. The geo-map layer can be used as a cutting plane 
to serve as a common plane of reference for shifted peaks or to cover 
distracting parts of the visualization (left). 

Besides shifting the heatmaps and the base map arbitrarily, 
the prototype provides further parameterization options: As 
shown in Figure 3, a base geo-map can provide further spatial 
reference (left), and the appearance of the heatmap itself can 
be customized to display a meshed surface (left) or a semi-
transparent surface (right). As these representations allow 
users to look through surfaces, the user gets the possibility to 
see how strongly the values of the different heatmaps correlate 
in certain areas. The color maps can be adjusted interactively. 

Page 4



For better readability and comparability, a user can interac-
tively place labels anywhere on the map to compare values of 
one or more different points between all displayed heatmaps 
(see Figure 2, labels A and B). The pink lines perpendicular to 
the map support the comparison as visual cues, pointing out 
the selected position on all layers. 

Transformation & Projection from 3D to 2D

Three-dimensional visualizations can have some disadvan-
tages in visual analytics tasks. For example, occlusion and 
perspective distortion can occur. To overcome problems aris-
ing from 3D visualizations, we integrated the possibility to 
create 2D projections from selections in the 3D visualization 
seamlessly. The user can select the data to be projected using 
the selection box tool (see Figure 4). By pressing and holding 
the trigger button on one of the sides of the selection box, 
an aggregation is generated and attached to the controller. It 
can then be placed on a wall by releasing the button at the 
desired position. The side of the selection box that was clicked 
determines by which axis the data is aggregated. As if the 
selection box had been compressed, only the selected side 
remains. Projections can be arbitrarily organized, deleted, 
or supplemented by annotations (drawing function). For the 
aggregation, currently, the third dimension that needs to be 
reduced is averaged to demonstrate the concept. Of course, 
any other aggregation function can also be used. 

Figure 4. 2D projections of 3D heatmap. In this example, all data is se-
lected (red selection box, left). Two 2D line charts (right) were created 
interactively by selecting two different sides of the selection box, result-
ing in different forms of aggregation. Example: single household power 

consumption over one year. 

STUDY: HEATMAPS FOR COMPARATIVE ANALYSIS

In order to evaluate the previously presented approach of 
stacked 3D heatmaps, we conducted a user study with 48 
participants. We compared the novel approach with the con-
ventional analog approach of juxtapositioned 2D heatmaps. 
To assess the role of VR, we also considered the 2D version in 
a virtual reality environment. 

Study Design

The conducted study comprises two experimental factors: 
Medium (Screen, VR) and Dimensionality of the visualiza-
tion (2D, 3D – see Figure 5). We used a between-subjects 
design to avoid learning effects. The sample was divided into 
four groups, each of which is a combination of the two factors 
(Screen2D, Screen3D, VR2D, VR3D). 

The 2D condition (Figure 5, left) consists of four heatmaps. 
The upper two heatmaps are the distributions that have to be 

Figure 5. Heatmap visualizations. In the 2D condition (left), two 2D 

heatmaps represent the distributions to be compared (left, top). Addi-

tionally, two aggregated heatmaps show combinations of both distribu-
tions (left, bottom). In the 3D condition (right), two 3D heatmaps are 
superpositioned on top of a cube. Each of them has a uniform color for 
visual distinction. 

compared. Each of the bottom two heatmaps is an aggregation 
of the upper two distributions. The first one (bottom left) is a 
difference map (values of heatmap A minus values of heatmap 
B), and the second one (bottom right) displays the sum of the 
values of both heatmaps (normalized to range between 0 and 
10). The aggregation views were added to make a fair com-
parison to state-of-the-art methods for comparative analysis 
[53]. We used a color scale (blue-white-red) that is frequently 
deployed for comparative tasks of heatmaps with negative 
values [46, 28, 7, 12]. In the VR condition the visualization 
was attached to a wall standing in the virtual environment and 
participants were able to move in the virtual space, whereas in 
the Screen condition the 2D visualization was centered on the 
screen and no motion interactions were provided. 

The visualization of the 3D condition is depicted in Figure 5 
on the right. Each distribution is visualized as a meshed 3D 
heatmap with a uniform color for visual distinction. We ab-
stained from using unique color gradients for each heatmap 
for improved visual distinctness of the two distributions. To 
increase the controllability and fairness of the study, we re-
moved advanced interaction capabilities, such as filtering, and 
creating 2D projections from 3D heatmaps. Participants were 
able to spatially navigate in the visualization environment us-
ing either keyboard and mouse (Screen condition) or body 
movements (VR condition). As a further interaction, it was 
possible to shift each heatmap up and down by dragging its 
red anchor cube vertically. Apart from these, there were no 
further interaction capabilities in the study (e.g., no zooming, 
no adaption of color maps). 

While we sought to make the comparison between 2D and 
3D conditions as fair as possible, there are some limitations 
stemming from the interactive nature of the design space that 
we intend to study. Limitations caused by these differences in 
interaction capabilities are discussed in the limitation section. 

Comparative Tasks

For an appropriate selection of tasks, we surveyed all IEEE Vis 
papers of the last five years. We identified 54 papers that used 
heatmaps for comparative tasks and classified them into four 
types of tasks provided in the visualization tasks taxonomy 
by Brehmer and Munzner [6]: Lookup, Locate, Browse and 
Explore. 

Page 5



We did not distinguish whether the comparative task was the 
main focus of the paper or just implicitly mentioned in the pre-
sentation of the results. Based on the comparative tasks found, 
we created an abstract version of the tasks with the aim of re-
flecting the common purpose of each category. Due to limited 
controllability in the study for default exploration (location 
and target unknown) and browsing (location is known and tar-
get unknown) tasks, we refrained from adopting them directly. 
Instead, we identified an essential element from both types 
of tasks and merged them into a single Overview task. For 
exploration and browsing tasks, the analyst must understand 
the overall distribution of the heatmaps to be compared. 

Lookup

Target and location are known. For comparative analysis, this 
means that the value at a specific location has to be extracted 
from two different heatmaps in order to be compared with each 
other. For instance, Wang et al. [59] developed a visualization 
technique for networks in which they deployed heatmaps in 
the background to visualize density. They compared multiple 
of these heatmaps with each other by picking out a location 
of interest in a heatmap and reference the same location in 
a second heatmap. Various other examples for comparative 
tasks on heatmaps exist that compare values at a specific lo-
cation in multiple heatmaps [42, 12, 58]. To avoid the unfair 
comparison between the visual variables color and height, we 
abstained from asking participants to extract exact values from 
heatmaps and created a task in which participants should es-
timate the distances between pairs of locations and compare 
the relative difference of distances. Therefore, we placed two 
markers in each heatmap. For each heatmap, participants 
should estimate the value offset and compare it relatively to 
the other one. Instead of asking for the total difference, par-
ticipants should only indicate - with “Yes” or “No” - whether 
the value offset in the first heatmap is higher than the value 
offset in the second heatmap (see Figure 6). To indicate the 
positions to be compared, we inserted colored markers into 
the respective visualization. In the 2D condition, the 3D pins 
could be perceived as colored dots when inspected from above. 

Figure 6. Study interface. Interaction board is attached to the right 

border of the screen in the Screen conditions and attached to the left VR 
controller in the VR conditions. 

Locate

Target is known, but the location is unknown. For comparative 
analysis, this describes a class of tasks in which the analyst 
visually searches for common characteristics in both heatmaps. 
For instance, Papadopoulos et al. [44] visualized experimental 
results of user movement as heatmaps. They then visually 

compared the heatmaps of different tasks and focused on find-
ing common hot-spots in several heatmaps. Various analogue 
examples can be found in literature [2, 18, 61]. We used a 
task where participants had to find two locations where both 
heatmaps had an equally intense hot spot. Participants were 
asked to point out the identified shared peaks. Using the re-
spective input device of the condition, participants could click 
on a heatmap to create a marker at the selected position. Mark-
ers could be re-positioned arbitrarily. There were precisely 
two shared peaks in each heatmap pair in all trials of this task. 

Overview

For many tasks of the classes Explore and Browse, it plays a 
vital role in keeping track of the entire distribution. Borkin et 
al. [5] compared pairs of eye-tracking fixation heatmaps in an 
exploratory manner. They did not only search for new, interest-
ing properties in both heatmaps (explore), but also picked out 
locations of interest and investigated correlations between the 
two heatmaps at that position (browse). Many other examples 
of papers exist, in which such exploring and browsing tasks 
were applied [22, 43, 11]. In most of the tasks, an overview 
is a crucial factor for solving the task efficiently. Therefore, 
we deployed a task with which we could assess how well the 
overall distributions in two heatmaps can be compared. Half of 
the presented pairs of heatmaps were flipped and rotated ver-
sions of each other with different noise levels. So the overall 
structure was similar, but the overall appearance was slightly 
different. Participants had to judge if the second heatmap was 
a transformed version of the first one. Like this, we could 
assess if participants were able to keep track of the overall 
distribution in each heatmap. 

Data

In order to conduct a controlled user study, we created a set 
of distinct distribution pairs with certain, measurable charac-
teristics. For each task, 14 distribution pairs were generated. 
For each distribution, we placed 10 to 20 Gaussian kernels 
randomly on a 100×100 pixel grid. Each position in the grid 
can contain a value between 0 and 1. The kernel size (30 -
60 pixel) and the peak value at the center of the kernel (0.5 -
1.0 value points) vary randomly within the specified ranges. 
In a pilot study, we experimented with different parameter 
settings and identified the one used as the one with the best 
results. Participants were able to solve roughly 50% of the 
tasks correctly. In the end, we added random noise to each 
distribution (0.0 - 0.4 value points). 

Lookup

As this task does not need any further constraints, distribution 
pairs were generated as described above. This results in pairs 
of distinct distributions as depicted in Figure 7 (left). 

Locate

For this task, precisely two locations in both distributions of a 
pair need to have the same value. Therefore, we added only 
8-18 random peaks in each distribution and added two more 
common peaks in both of them. This guarantees that for each 
pair, exactly two peaks exist that are of the same height and at 
the same location (see Figure 7, center). 
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Overview

For this task, half of the distribution pairs were not altered (see 
Figure 7, left). For each pair of the other half, one distribution 
was randomly generated. Its counterpart was then generated 
by rotating it one to three times by 90◦ and flipping it on the 
horizontal axis between each rotation with a probability of 
50%. The noise was applied to each distribution separately. 
This results in distribution pairs with one being a mirrored and 
rotated version of the other as depicted in Figure 7 (right). 

Figure 7. Sample distribution pairs for each task. Left: Lookup, center: 
Locate, right: Overview. 

In order to be able to qualitatively assess differences in the four 
conditions for real-world data as well, we included an open 
discussion trial in which we showed real-world data to the 
participants and discussed it. For this, we used the Baltimore 
crime dataset depicted in Figure 2. 

Procedure

Participants were welcomed and gave written informed con-
sent. They were then introduced to the topic by reading an 
information sheet. The study supervisor immediately clarified 
questions that arose during the reading. After participants were 
familiar with how to interpret the base visualization (2D/3D 
heatmap), they were prepared to start the study trials by sitting 
down in front of the monitor or fitting the HMD on their heads. 
The experiment was structured into three main parts. First, 
participants executed a block of 42 trials in total (four training 
trials + ten trials in each task). For each of the three tasks, 
they first completed four training trials in which they were 
introduced to the current task and confronted with the correct 
answer. Once they fully understood the task, participants com-
pleted ten trials without any support from the study supervisor. 
The order of tasks was counterbalanced (Latin Square design). 
The order of the deployed data was randomized (each task had 
a pool of datasets). 
Second, participants completed ten memorization tasks. In 
this task, participants had to indicate for one heatmap whether 
the given distribution was part of the previous five trials. Half 
of the distributions shown were selected from the ten available 
candidates, and the other half were new distributions that were 
not shown in any of the previous trials. 
Third, a real-world crime dataset was displayed and discussed 
with the participants. While viewing the visualization, the 
study supervisor explained the dataset. We showed two dis-
tributions, one depicting arrests in the city of Baltimore and 
the other showing reports of crimes. Subsequently, the study 
investigator asked several questions to determine if the visual-
ization was well understood. Next, an open discussion on the 
situation in Baltimore was initiated. 

After these three main parts, participants were asked to fill in 
three questionnaires: NASA Task Load Index (TLX), System 
Usability Scale (SUS), and a custom questionnaire. Finally, 
they were compensated for participating (10 e). 

Apparatus

The experiment took place in laboratories at the University 
of Konstanz and the University of Stuttgart. In addition to 
the participant, a study supervisor was present in each ses-
sion. Participants in the Screen condition sat in front of a 24"
monitor with a resolution of 1920 × 1200 pixel. In this con-
dition, participants interacted with the study software using a 
mouse and a keyboard. In the VR condition, participants were 
equipped with an HTC Vive Pro [31] and two Vive controllers. 

Sample

A sample of N = 48 participants (28 female, 20 male) was 
recruited via invitations on social media channels, mailing 
lists, and flyers distributed around the universities. Most of 
the participants did not have much experience with virtual 
realities (Mdn = 2), heatmaps (Mdn = 1.5), and information 
visualization (Mdn = 2). Medians represent experience ratings 
of users on a scale from very few = 1 to very much = 5. 

Dependent Variables

For each task (Lookup, Locate, Overview), we assessed the 
error rate and the task completion time. The error rate for the 
tasks Lookup and Overview was calculated as the percentage 
of incorrectly answered trials. For the Locate task, we 
calculated for each participant whether both markers were set 
within a small radius (10 cm) around the ground truth position 
of the shared peaks. The error rate was then calculated 
similarly to the other two tasks. The task completion time was 
measured as the time between two button clicks (display of 
visualization and login of the answer). 
We assessed participants’ capability to recall distributions 
from the last five trials. For the evaluation, we calculated a 
memorization rate as the percentage of correctly selected 
answers. 
The NASA Raw Task Load Index (TLX [29]) was used to 
assess users’ overall task load in the respective constellation of 
Medium and Dimensionality. Besides, participants completed 
the System Usability Scale (SUS [9]) to provide feedback on 
each condition. 
Additionally, participants filled in a custom questionnaire 
assessing their subjective opinion. For instance, the perceived 
difficulty of each task, the certainty of participants’ answers 
and the level of perceived immersion. 
For the real-world data discussion, the study supervisor took 
notes during the conversation. Additionally, we recorded 
the entire conversation to encode it after the study in a 
video analysis procedure. We filtered out where participants 
had difficulties interpreting the visualizations correctly or 
comparing the two distributions. Moreover, we summarized 
which aspects participants mentioned as drawbacks and 
benefits of the particular condition. 
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Hypotheses

Based on observations from a pilot study, initial user feedback 
on our base visualization environment, and related literature, 
we derived the following hypotheses. All hypotheses were 
tailored to the conducted study, but could partially be extended 
to a broader scope. 
H1 Lookup-Task: We expect participants to perform better 
with regard to reading values in the 3D condition, due to a 
more meaningful encoding of values by the variable height 
instead of color [4]. We further expect that VR poses a benefit 
compared to the screen representation because of stereoscopic 
vision due to previous research findings. Hibbard et al. [30], 
for instance, attributed better depth estimation and improved 
appreciation of 3D shapes and positions of objects to stereo-
scopic perception. We, therefore, expect the VR3D group to 
perform best in this task. 
H2 Locate-Task: We expect lower error rates and task com-
pletion times in the 3D condition because of users’ improved 
capability to detect highly granular value changes due to the 
deployment of the visual variable height instead of color [4]. 
Moreover, due to superposition, no mental mapping from one 
heatmap to the other is required in the 3D condition, which 
should also be reflected in higher performance. 
H3 Overview-Task: We expect higher performance in the 2D 
condition due to juxtapositioned visualizations. Etempadpour 
et al. [21] identified the loss of overview in virtual environ-
ments as a critical issue. In side-by-side views, each heatmap 
can be observed separately while overplotting in the 3D condi-
tion hampers the perception of individual structures. 
H4 Memorability: We expect participants to perform better in 
the VR condition due to increased spatial memory [13]. The 
spatial component supports the memorization of outstanding 
features. In VR, all heatmaps and their components are related 
to a physical location (immersion), whereas on the screen, no 
direct mapping is established. 

Results

We report significant results of our quantitative analysis 
as well as qualitative feedback from the real-world data 
discussion. All statistical tests were performed using IBM 
SPSS Statistics (version 25) and are based on a significance 
level of α = .05. For each dependent variable, we first tested 
whether the data was normally distributed (Kolmogorov-
Smirnov). Depending on the outcome, we used either a 
one-way independent ANOVA for normally distributed data or 
its non-parametric counterpart, the Kruskal-Wallis test. Task 
load (TLX) and usability (SUS) were the only two dependent 
variables with normally distributed data. As post hoc tests, 
we deployed the Tukey-HSD test or the Mann-Whitney test 
(non-parametric). All info graphics depict mean values with 
error bars indicating the standard error of the mean. Asterisks 
indicate significant differences (* p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001). 

Error Rate

Error rates differed significantly between the four investigated 
conditions for the tasks Lookup (H(3) = 13.62, p = .003) and 
Overview (H(3) = 23.88, p < .001). Figure 8 depicts pairwise 
comparisons between the four conditions. In the Lookup task, 

Figure 8. Average user performance scores in the four conditions. The 
score is calculated as 1 - error rate, where the error rate is the percent-
age of incorrect answers. The score reflects user performance. Only 
significant results are reported. 

users scored significantly lower in the Screen2D condition 
(Mdn = 0.65) compared to all other conditions: Screen3D 
(Mdn = 0.90,U = 29.50,z = −2.48, p = .013,r = −.36), 
VR2D (Mdn = 0.85,U = 38.00,z = −1.99, p = .047,r =
−.29), and VR3D (Mdn = 1.00,U = 102,z = −2.89, p =
.004,r = −.42). Additionally, for the VR conditions, par-
ticipants in the VR2D condition performed worse than in the 
VR3D condition (U = 108,z = −2.51, p = .012,r = −.36). 
Thus, except for the pairwise comparison between Screen3D 
and VR2D, participants performed worse in 2D conditions 
compared to 3D conditions. 

For the task Overview, participants performed significantly 
better in the 2D conditions compared to both 3D condi-
tions: Screen2D (Mdn = 1.00) lead to better results than 
Screen3D (Mdn = 0.75,U = 7.00,z = −3.86, p < .001,r =
−.56) and VR3D (Mdn = 0.80,U = 103.50,z = −2.82, p =
.005,r = −.41). Similarly, the performance was better in 
the VR2D (Mdn = 1.00) condition than in the Screen3D 
(U = 88.5,z = −3.67, p < .001,r = −.53) and VR3D con-
dition (U = 105,z =−2.75, p = .006,r =−.40). 

When comparing conditions solely based on the independent 
variable Dimensionality, for all three tasks differences emerge 
(see Figure 9): Lookup-Task (H(1) = 9.96, p = .002), Locate-
Task (H(1) = 7.12, p = .008), and Overview-Task (H(1) =
21.92, p < .001). 

Figure 9. Average user performance scores by Dimensionality. The score 
is calculated as 1 - error rate, where the error rate is the percentage of 
incorrect answers. The score reflects user performance. 
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Task Completion Time

As depicted in Figure 10, the tasks Lookup (H(3) = 8.52, p =
.036) and Overview (H(3) = 24.90, p < .001) revealed signif-
icant differences between groups. In the Lookup task, partici-
pants required more time in the Screen3D condition (Mdn =
21.51s) compared to both VR conditions: VR2D (Mdn =
9.56s, U = 23.00,z =−2.83, p = .005,r =−.41), and VR3D 
(Mdn = 11.69s, U = 38.00,z =−1.96, p = .050,r =−.28). 

Figure 10. Average task completion times in seconds per task and condi-
tion. Only significant results are reported. 

In the Overview task, participants required significantly more 
time in both 3D conditions compared to 2D conditions. 
They were faster in the Screen2D condition (Mdn = 9.04s) 
compared to the Screen3D condition (Mdn = 30.42s, U =
17.00,z =−3.18, p = .001,r =−.46) and in the VR2D condi-
tion (Mdn = 6.24s) compared to the VR3D condition (Mdn =
15.79s, U = 8.00,z =−3.70, p < .001,r =−.53). When com-
paring the two 2D conditions, participants performed faster in 
VR (U = 38.00,z =−1.96, p = .050,r =−.28). 

Memorization

With regard to the calculated memorization score, no signifi-
cant differences emerged between groups or single variables 
(Medium, Dimensionality). 

Task Load & Usability

Figure 11 depicts the results of the NASA TLX questionnaire 
and the SUS questionnaire. For the task load an overall differ-
ence between groups could be detected (F(3,44) = 3.67, p =
.019,ω = 0.38). Post hoc tests revealed only one significant 
difference between single groups: the condition Screen2D 
(M = 29.51,SD = 16.35) was perceived as less demanding 
than the condition VR3D (M = 49.31,SD = 13.25). 

In addition, the groups differed in terms of assigned us-
ability scores (F(3,44) = 3.99, p = .013,ω = 2.91). Post 
hoc tests revealed a significant difference between the two 
VR conditions. Participants evaluated the VR2D condition 
(M = 32.33,SD = 5.71) with higher usability scores than the 
VR3D condition (M = 24.17,SD = 7.59). 

Qualitative Feedback

Throughout the real-world data discussion, various statements 
were frequently made by participants. Most of them referred 
to the Dimensionality of the visualization. In the 2D con-
dition, several participants mentioned that the comparison 
was hampered due to the requirement of switching between 

Figure 11. Left: average task load scores of the TLX Questionnaire. 
High values indicate a high subjectively perceived task load. Right: av-
erage usability scores of the SUS Questionnaire. High values indicate 
high perceived system usability. 

two different visualizations and finding one position in the 
two heatmaps (n = 5). Moreover, it was difficult for them to 
make out small value changes from the linear color gradient 
(n = 4). Opinions differed regarding the usefulness of aggre-
gation views: Two participants said that they were particularly 
helpful and two said they saw no benefit in them. 
For the 3D condition, participants indicated the low resolution 
of the surface grid (n = 4) as a hindering factor. Two men-
tioned that the capability to shift one layer into the other eases 
the distinction between the two layers and the detection of 
commonalities and differences. Participants also mentioned 
occlusion and overlap as factors that limited their overall per-
formance. In the Screen3D condition, participants found the 
interaction with keyboard and mouse unfamiliar (n = 4). In the 
case of the VR3D condition, two participants emphasized that 
stereoscopic vision was advantageous to observe the 3D struc-
ture of the heatmaps, to distinguish them, and find differences 
such as common peaks. 

DISCUSSION

The Lookup task required the user to compare pairs of values 
extracted from heatmaps. Results show that for each medium 
(Screen and VR) participants had lower error rates in the 3D 
condition. With regard to the task completion time, no signifi-
cant differences emerged. However, a reversed trend appeared, 
which is reflected in higher median task completion times 
in the 3D condition. This could be due to increased interac-
tion effort with more degrees of freedom to find the optimal 
perspective on the visualization. Participants’ statements also 
underline their difficulty in perceiving the exact value from col-
ors in 2D heatmaps. Based on these results, we can, therefore, 
accept hypothesis H1. 

In the Locate task, participants should find commonalities 
in the comparative analysis. They were asked to scan two 
heatmaps for positions where both have equally high hot spots. 
The statistical analysis showed no significant differences be-
tween the four conditions in terms of error rate and task com-
pletion time. Thus, H2 has to be rejected. However, when 
comparing only 2D and 3D conditions, participants performed 
better with regard to the error rate when using 3D heatmaps. 
Statements of participants also reflect an advantage of the 3D 
representation of the heatmaps. The ability to shift heatmaps 
into each other allows the user to identify the offset between 
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two heatmaps at any position quickly. By shifting one heatmap 
up and through the other, its peaks rise through the surface of 
the first one. This could also be helpful for similar tasks where 
smaller correlations between two heatmaps are of interest. 

In the Overview task, participants required significantly more 
time in the 3D conditions. Moreover, they performed worse 
in the 3D conditions in terms of the error rate. Therefore, H3 
can be accepted. This could be due to an improved overview 
caused by juxtapositioned heatmaps. In the side-by-side visual-
izations, the overall distribution can be observed more quickly, 
whereas perspective distortion, overlapping, and occlusion 
makes it hard to observe the entire shape of a distribution. 

Concerning memorization scores, no significant differences 
emerged between conditions. H4 can, therefore, not be ac-
cepted. This could possibly be due to the fact that the visual-
ization was limited to a small space in the virtual environment. 
Participants were not required to move around a lot. If partici-
pants were standing on the 3D heatmaps and surrounded by 
the visualization, they possibly could have made more use of 
their spatial memory for the memorization task. 

Differences between the two 2D conditions (Screen vs. VR) 
were partially significant (e.g., task performance in the Lookup 
task). This unexpected result could be due to different actual 
sizes in which visualizations were perceived with the respec-
tive mediums. While the visualization in the Screen condition 
was limited to a 24" screen, participants could approach the 
virtual wall in the VR condition and thus perceptually enlarge 
the 2D visualization. Future work could pursue this finding by 
controlling the size of the visualization in VR. 

Moreover, future work could follow up on our findings and 
extend the study design by an independent variable for the 
appearance of 3D heatmap surfaces. As Tory et al. [56] dis-
covered for non-immersive 3D landscapes, the effectiveness 
of the visualization increased when double encoding values 
with height and color. Additionally, it would be interesting 
to qualitatively assess a potential benefit introduced by a hy-
brid visualization design space that facilitates the seamless 
transition between the 3D visualization and 2D projections. 

LIMITATIONS

As with all empirical work, our study comes with limitations. 
Most importantly we note that the compared dimensionality 
conditions (2D and 3D) differ substantially in their visual rep-
resentation and the interaction capabilities offered. We strove 
to minimize the degrees of freedom for both representations by 
providing only the tools necessary to complete the given tasks. 
In the 3D version, the possibility to shift heatmaps up and 
down is a crucial component of the technique itself, while, in 
previous research, the 2D version is commonly used without 
any interaction. This choice might have influenced our results. 
There is a variety of possible interaction techniques for 2D 
heatmaps that could potentially increase its performance. Fu-
ture work might, for example, introduce a tool to interactively 
filter or select value ranges in the 2D condition. Similarly, 
we decided not to use double encoded 3D heatmaps. Instead, 
we tried to evaluate the impact of using 3D by comparing 
uniformly colored 3D meshes with flat 2D heatmaps. Again, a 

large amount of different visualization design options exists 
that could have had an impact on our results, such as colored 
and semi-transparent surfaces. 

With regard to the lookup task, the way the task was set might 
have affected user performance. Colored markers were placed 
on the surface in the 3D condition and participants were asked 
to compare relative value offsets by solely considering the 
provided annotations (markers). Since we displayed the 3D 
heatmaps as meshes, participants were able to look at the 
visualization from the side, reducing the task to a vertical 
offset comparison task. This favors the 3D condition for this 
task. Therefore, choosing a different visualization design, such 
as double encoded surfaces, might lead to different results. 

In the 2D condition, we used a blue-white-red color map that 
is often used for comparative tasks in heatmaps. The choice 
of the color map can substantially impact user performance 
though. Therefore, the use of other color maps, which, for 
example, highlight zero values more clearly, might increase 
the performance of users in the 2D condition. 

We only assessed the comparative analysis of two heatmaps 
at a time. If more than two heatmaps are compared simulta-
neously, a matrix of heatmaps might be more scaleable than 
superpositioned heatmaps. Also, most of the participants did 
not have much experience with heatmaps. In particular, for 
aggregated 2D heatmaps, we expect a steep learning curve, 
which could increase the performance of expert users. Hard-
ware constraints caused by the current state of technology 
for HMDs may also have affected the overall performance of 
participants in the VR setting. 

CONCLUSION

We presented an approach for the comparative analysis of 
heatmaps. In a quantitative user study with 48 participants, 
we compared our approach to a common alternative of jux-
tapositioned 2D heatmaps. In addition to comparing the two 
different types of visualizations, we assessed the impact of 
immersion on the overall performance of users. Results of the 
user study indicate that for value extraction tasks and property 
detection tasks, the 3D approach outperforms the conventional 
visualization in terms of lower error rates, but requires more 
time. Juxtapositioned 2D heatmap visualizations, on the other 
hand, were providing a better overview of both distributions, 
allowing a better comparison on higher levels. We can con-
clude that 3D heatmap visualizations can indeed be a suitable 
representation in specific comparative analysis tasks. How-
ever, analysts should always consider the cost-benefit ratio 
when introducing 3D visualizations for abstract data. A pos-
sible solution, yet to investigate, is to make use of hybrid 
design spaces, cherry-picking benefits of both (2D and 3D) 
visualization design spaces. 
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