skip to main content
10.1145/3313831.3376847acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

WalkingVibe: Reducing Virtual Reality Sickness and Improving Realism while Walking in VR using Unobtrusive Head-mounted Vibrotactile Feedback

Authors Info & Claims
Published:23 April 2020Publication History

ABSTRACT

Virtual Reality (VR) sickness is common with symptoms such as headaches, nausea, and disorientation, and is a major barrier to using VR. We propose WalkingVibe, which applies unobtrusive vibrotactile feedback for VR walking experiences, and also reduces VR sickness and discomfort while improving realism. Feedback is delivered through two small vibration motors behind the ears at a frequency that strikes a balance in inducing vestibular response while minimizing annoyance. We conducted a 240-person study to explore how visual, audio, and various tactile feedback designs affect the locomotion experience of users walking passively in VR while seated statically in reality. Results showed timing and location for tactile feedback have significant effects on VR sickness and realism. With WalkingVibe, 2-sided step-synchronized design significantly reduces VR sickness and discomfort while significantly improving realism. Furthermore, its unobtrusiveness and ease of integration make WalkingVibe a practical approach for improving VR experiences with new and existing VR headsets.

Skip Supplemental Material Section

Supplemental Material

paper718vf.mov

mov

121.2 MB

paper718pv.mov

mov

25 MB

a718-peng-presentation.mp4

mp4

64.1 MB

References

  1. Majed Al Zayer, Isayas B. Adhanom, Paul MacNeilage, and Eelke Folmer. 2019. The Effect of Field-of-View Restriction on Sex Bias in VR Sickness and Spatial Navigation Performance. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). Association for Computing Machinery, New York, NY, USA, Article Paper 354, 12 pages. DOI:http://dx.doi.org/10.1145/3290605.3300584Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Joshua Bailey, Tiffany Mata, and John Mercer. 2017. Is the Relationship Between Stride Length, Frequency, and Velocity Influenced by Running on a Treadmill or Overground? International Journal of Exercise Science 10 (November 2017), 1067--1075.Google ScholarGoogle Scholar
  3. Rosa María Baños, Cristina Botella, Azucena Garcia-Palacios, Helena Villa, Concepción Perpiñá, and Mariano Alcaniz. 2000. Presence and reality judgment in virtual environments: a unitary construct? CyberPsychology & Behavior 3, 3 (2000), 327--335.Google ScholarGoogle ScholarCross RefCross Ref
  4. Costas Boletsis and Jarl Erik Cedergren. 2019. VR Locomotion in the New Era of Virtual Reality: An Empirical Comparison of Prevalent Techniques. Advances in Human-Computer Interaction 2019, Article 7420781 (2019), 15 pages.Google ScholarGoogle Scholar
  5. Jelte E. Bos, Willem Bles, and Eric L. Groen. 2008. A theory on visually induced motion sickness. Displays 29, 2 (2008), 47--57. DOI: http://dx.doi.org/10.1016/j.displa.2007.09.002 Health and Safety Aspects of Visual Displays.Google ScholarGoogle ScholarCross RefCross Ref
  6. Martin Bossard, Cédric Goulon, and Daniel R. Mestre. 2016. Viewpoint oscillation improves the perception of distance travelled based on optic flow. Journal of Vision 16, 15 (2016), 4. DOI: http://dx.doi.org/10.1167/16.15.4Google ScholarGoogle ScholarCross RefCross Ref
  7. Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. 2016. Point & Teleport Locomotion Technique for Virtual Reality. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY '16). ACM, New York, NY, USA, 205--216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Stephen Brewster, David McGookin, and Christopher Miller. 2006. Olfoto: Designing a Smell-Based Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '06). Association for Computing Machinery, New York, NY, USA, 653--662. DOI: http://dx.doi.org/10.1145/1124772.1124869Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. Buhler, S. Misztal, and J. Schild. 2018. Reducing VR Sickness Through Peripheral Visual Effects. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Washington, DC, USA, 517--519. DOI:http://dx.doi.org/10.1109/VR.2018.8446346Google ScholarGoogle ScholarCross RefCross Ref
  10. Alvaro Cassinelli, Carson Reynolds, and Masatoshi Ishikawa. 2006. Augmenting spatial awareness with Haptic Radar. In 2006 10th IEEE International Symposium on Wearable Computers (ISWC '06). IEEE, Washington, DC, USA, 61--64.Google ScholarGoogle ScholarCross RefCross Ref
  11. Taizhou Chen, Yi-Shiun Wu, and Kening Zhu. 2018. Investigating Different Modalities of Directional Cues for Multi-task Visual-searching Scenario in Virtual Reality. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology (VRST '18). ACM, New York, NY, USA, Article 41, 5 pages. DOI: http://dx.doi.org/10.1145/3281505.3281516Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Daniel Cliburn, Stacy Rilea, David Parsons, Prakash Surya, and Jessica Semler. 2009. The Effects of Teleportation on Recollection of the Structure of a Virtual World. In Joint Virtual Reality Conference of EGVE - ICAT - EuroVR (JVRC '09). Eurographics Association, Geneva, Switzerland, 117--120.Google ScholarGoogle Scholar
  13. Sebastian Cmentowski, Andrey Krekhov, and Jens Krüger. 2019. Outstanding: A Multi-Perspective Travel Approach for Virtual Reality Games. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play. ACM, New York, NY, USA, 287--299.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sarah D'Amour, Jelte E. Bos, and Behrang Keshavarz. 2017. The Efficacy of Airflow and Seat Vibration on Reducing Visually Induced Motion Sickness. Exp Brain Res. 235, 9 (2017), 2811--2820.Google ScholarGoogle ScholarCross RefCross Ref
  15. Mark Stephen Dennison and Michael D'Zmura. 2017. Cybersickness without the Wobble: Experimental Results Speak against Postural Instability Theory. Applied Ergonomics 58 (jan 2017), 215--223. DOI: http://dx.doi.org/10.1016/j.apergo.2016.06.014Google ScholarGoogle ScholarCross RefCross Ref
  16. L. Dominjon, A. Lécuyer, J. . Burkhardt, P. Richard, and S. Richir. 2005. Influence of Control/display Ratio on the Perception of Mass of Manipulated Objects in Virtual Environments. In IEEE Proceedings. VR 2005. Virtual Reality. IEEE, Washington, DC, USA, 19--25.Google ScholarGoogle Scholar
  17. Tinglin Duan, Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. 2018. FlyingHand: Extending the Range of Haptic Feedback on Virtual Hand Using Drone-Based Object Recognition. In SIGGRAPH Asia 2018 Technical Briefs (SA '18). Association for Computing Machinery, New York, NY, USA, Article Article 28, 4 pages. DOI: http://dx.doi.org/10.1145/3283254.3283258Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jan B. F. van Erp. 2001. Tactile Navigation Display. In Proceedings of the First International Workshop on Haptic Human-Computer Interaction. Springer-Verlag, Berlin, Heidelberg, 165--173. http://dl.acm.org/citation.cfm?id=645443.652681Google ScholarGoogle ScholarCross RefCross Ref
  19. Ajoy S. Fernandes and Steven K. Feiner. 2016. Combating VR Sickness through Subtle Dynamic Field-Of-View Modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI) (3DUI '16). IEEE, Washington, DC, USA, 201--210.Google ScholarGoogle Scholar
  20. Tiare Feuchtner and Jörg Müller. 2017. Extending the Body for Interaction with Reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). Association for Computing Machinery, New York, NY, USA, 5145--5157. DOI: http://dx.doi.org/10.1145/3025453.3025689Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sebastian Freitag, Dominik Rausch, and Torsten Kuhlen. 2014. Reorientation in Virtual Environments using Interactive Portals. In 2014 IEEE Symposium on 3D User Interfaces (3DUI) (3DUI '14). IEEE, Washington, DC, USA, 119--122.Google ScholarGoogle ScholarCross RefCross Ref
  22. Ilja Frissen, Jennifer L. Campos, Manish Sreenivasa, and Marc O. Ernst. 2013 Enabling Unconstrained Omnidirectional Walking Through Virtual Environments: An Overview of the CyberWalk Project. In Human Walking in Virtual Environments. Springer, New York, NY, USA, 113--144.Google ScholarGoogle Scholar
  23. Maria Gallagher and Elisa Raffaella Ferré. 2018. Cybersickness: a Multisensory Integration Perspective. Multisensory Research 31, 7 (jan 2018), 645--674. DOI: http://dx.doi.org/10.1163/22134808--20181293Google ScholarGoogle ScholarCross RefCross Ref
  24. Germán Gálvez-García, Marion Hay, and Catherine Gabaude. 2015. Alleviating Simulator Sickness with Galvanic Cutaneous Stimulation. Human Factors 57, 4 (2015), 649--657. DOI: http://dx.doi.org/10.1177/0018720814554948 PMID: 25977323.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. P. Jacob Habgood, David Moore, David Wilson, and Sergio Alapont. 2018. Rapid, Continuous Movement Between Nodes as an Accessible Virtual Reality Locomotion Technique. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Washington, DC, USA, 371--378.Google ScholarGoogle ScholarCross RefCross Ref
  26. Peter A. Hancock, Dennis A. Vincenzi, John A. Wise, and Mustapha Mouloua. 2008. Human factors in simulation and training. CRC Press, Boca Raton, LA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Eishi Hirasaki, Steven T. Moore, T. Raphan, and Bernard Cohen. 1999. Effects of walking velocity on vertical head and body movements during locomotion. Experimental Brain Research 127, 2 (01 Jul 1999), 117--130. DOI: http://dx.doi.org/10.1007/s002210050781Google ScholarGoogle ScholarCross RefCross Ref
  28. Hiroo Iwata. 1999. The Torus Treadmill: Realizing Locomotion in VEs. In IEEE Comput. Graph. Appl. (6), Vol. 19. IEEE Computer Society Press, Los Alamitos, CA, USA, 30--35.Google ScholarGoogle Scholar
  29. Oliver Beren Kaul, Kevin Meier, and Michael Rohs. 2017. Increasing Presence in Virtual Reality with a Vibrotactile Grid Around the Head. In Human-Computer Interaction -- INTERACT 2017, Joshi A. K. Balkrishan D. O'Neill J. Winckler M. Bernhaupt R., Dalvi G. (Ed.). Springer, Cham, Switzerland, 289--298.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Oliver Beren Kaul and Michael Rohs. 2017. Haptichead: A spherical vibrotactile grid around the head for 3D guidance in virtual and augmented reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, 3729--3740.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal. 1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology 3, 3 (1993), 203--220. DOI: http://dx.doi.org/10.1207/s15327108ijap0303_3Google ScholarGoogle ScholarCross RefCross Ref
  32. Randall L. Kohl. 1983. Sensory conflict theory of space motion sickness: an anatomical location for the neuroconflict. Aviation, space, and environmental medicine 54, 5 (May 1983), 464--465.Google ScholarGoogle Scholar
  33. Ernst Kruijff, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. On Your Feet!: Enhancing Vection in Leaning-Based Interfaces Through Multisensory Stimuli. In Proceedings of the 2016 Symposium on Spatial User Interaction (SUI '16). ACM, New York, NY, USA, 149--158.Google ScholarGoogle Scholar
  34. Steven M. LaValle. 2017. Virtual Reality. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  35. Joseph J. LaViola, Jr. 2000. A Discussion of Cybersickness in Virtual Environments. SIGCHI Bull. 32, 1 (jan 2000), 47--56.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Lécuyer, J. Burkhardt, J. Henaff, and S. Donikian. 2006. Camera Motions Improve the Sensation of Walking in Virtual Environments. In 2006 IEEE Conference on Virtual Reality (VR). IEEE, Washington, DC, USA, 11--18. DOI: http://dx.doi.org/10.1109/VR.2006.31Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. Liu, N. Yu, L. Chan, Y. Peng, W. Sun, and M. Y. Chen. 2019. PhantomLegs: Reducing Virtual Reality Sickness Using Head-Worn Haptic Devices. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Washington, DC, USA, 817--826. DOI: http://dx.doi.org/10.1109/VR.2019.8798158Google ScholarGoogle ScholarCross RefCross Ref
  38. K. E. Maclean and V. Hayward. 2008. Do It Yourself Haptics: Part II [Tutorial]. IEEE Robotics Automation Magazine 15, 1 (March 2008), 104--119. DOI: http://dx.doi.org/10.1109/M-RA.2007.914919Google ScholarGoogle ScholarCross RefCross Ref
  39. T. Maeda, H. Ando, and M. Sugimoto. 2005. Virtual acceleration with galvanic vestibular stimulation in a virtual reality environment. In IEEE Proceedings. VR 2005. Virtual Reality, 2005. IEEE, Washington, DC, USA, 289--290. DOI: http://dx.doi.org/10.1109/VR.2005.1492799Google ScholarGoogle ScholarCross RefCross Ref
  40. Sebastian Marwecki and Patrick Baudisch. 2018. Scenograph: Fitting Real-Walking VR Experiences into Various Tracking Volumes. In The 31st Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, USA, 511--520.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Kimberly Myles and Joel T. Kalb. 2015. An Evaluation of Signal Annoyance for a Head-Mounted Tactile Display. Technical Report. Army Research Lab Aberdeen Proving Ground, MD Human Research And Engineering.Google ScholarGoogle Scholar
  42. Kimberly P. Myles and Joel T. Kalb. 2010. Guidelines for Head Tactile Communication. Technical Report. Army Research Lab Aberdeen Proving Ground Md Human Research And Engineering Directorate.Google ScholarGoogle Scholar
  43. Kimberly P. Myles and Joel T. Kalb. 2013. Head Tactile Communication Promising Technology With the Design of a Head-Mounted Tactile Display. Ergonomics in Design: The Quarterly of Human Factors Applications 21, 2 (apr 2013), 4--8.Google ScholarGoogle ScholarCross RefCross Ref
  44. Simon Niedenthal, Peter Lundén, Marie Ehrndal, and Jonas K Olofsson. 2019. A Handheld Olfactory Display For Smell-Enabled VR Games. In 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE, Washington, DC, USA, 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  45. Yun Suen Pai and Kai Kunze. 2017. Armswing: Using Arm Swings for Accessible and Immersive Navigation in AR/VR Spaces. In Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia (MUM '17). ACM, New York, NY, USA, 189--198.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Stephen Palmisano and Bernhard E. Riecke. 2018. The search for instantaneous vection: An oscillating visual prime reduces vection onset latency. PLOS ONE 13, 5 (05 2018), 1--26. DOI: http://dx.doi.org/10.1371/journal.pone.0195886Google ScholarGoogle ScholarCross RefCross Ref
  47. James T. Reason and Joseph John Brand. 1975. Motion sickness. Academic Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  48. Lisa Rebenitsch and Charles Owen. 2016. Review on Cybersickness in Applications and Visual Displays. VirtualReality 20, 2 (2016), 101--125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Michael Rietzler, Teresa Hirzle, Jan Gugenheimer, Julian Frommel, Thomas Dreja, and Enrico Rukzio. 2018. VRSpinning: Exploring the Design Space of a 1D Rotation Platform to Increase the Perception of Self-Motion in VR. In Proceedings of the 2018 Designing Interactive Systems Conference (DIS '18). ACM, New York, NY, USA, 99--108.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Roy A. Ruddle, Ekaterina Volkova, and Heinrich H. Bulthoff. 2011. Walking Improves Your Cognitive Map in Environments That Are Large-scale and Large in Extent. ACM Trans. Comput.-Hum. Interact. 18, 2 (2011), 10:1--10:20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Bhuvaneswari Sarupuri, Simon Hoermann, Frank Steinicke, and Robert W. Lindeman. 2017. Triggerwalking: A Biomechanically-inspired Locomotion User Interface for Efficient Realistic Virtual Walking. In Proceedings of the 5th Symposium on Spatial User Interaction (SUI '17). ACM, New York, NY, USA, 138--147.Google ScholarGoogle Scholar
  52. Kianoush Sheykholeslami, Mohammad Habiby Kermany, and Kimitaka Kaga. 2001. Frequency sensitivity range of the saccule to bone-conducted stimuli measured by vestibular evoked myogenic potentials. Hearing research 160, 1--2 (2001), 58--62.Google ScholarGoogle Scholar
  53. Misha Sra, Abhinandan Jain, and Pattie Maes. 2019. Adding Proprioceptive Feedback to Virtual Reality Experiences Using Galvanic Vestibular Stimulation. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, 675.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kay M. Stanney, Robert S. Kennedy, and Julie M. Drexler. 1997. Cybersickness is Not Simulator Sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 41, 2 (oct 1997), 1138--1142.Google ScholarGoogle Scholar
  55. David Swapp, Julian Williams, and Anthony Steed. 2010. The Implementation of a Novel Walking Interface Within an Immersive Display. In Proceedings of the 2010 IEEE Symposium on 3D User Interfaces (3DUI '10). IEEE Computer Society, Washington, DC, USA, 71--74.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Léo Terziman, Maud Marchal, Franck Multon, Bruno Arnaldi, and Anatole Lécuyer. 2012. The King-Kong Effects: Improving Sensation of Walking in VR with Visual and Tactile Vibrations at each Step. In IEEE Symposium on 3D User Interfaces. IEEE, Washington, DC, USA, 19--26.Google ScholarGoogle ScholarCross RefCross Ref
  57. Léo Terziman, Maud Marchal, Franck Multon, Bruno Arnaldi, and Anatole Lécuyer. 2013. Personified and Multistate Camera Motions for First-Person Navigation in Desktop Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 19, 4 (2013), 652--661.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Neil P. McAngus Todd, Frederick W.J. Cody, and Jon R. Banks. 2000. A saccular origin of frequency tuning in myogenic vestibular evoked potentials?: implications for human responses to loud sounds. Hearing research 141, 1--2 (2000), 180--188.Google ScholarGoogle Scholar
  59. Luca Turchet, Paolo Burelli, and Stefania Serafin. 2013. Haptic Feedback for Enhancing Realism of Walking Simulations. IEEE Trans. Haptics 6, 1 (Jan. 2013), 35--45. DOI:http://dx.doi.org/10.1109/TOH.2012.51Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui Bastos, Anthony Steed, Mel Slater, and Frederick P. Brooks, Jr. 1999. Walking > Walking-in-place > Flying, in Virtual Environments. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 359--364. DOI: http://dx.doi.org/10.1145/311535.311589Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Séamas Weech, Jae Moon, and Nikolaus F. Troje. 2018. Influence of bone-conducted vibration on simulator sickness in virtual reality. PLOS ONE 13, 3 (03 2018), 1--21. DOI: http://dx.doi.org/10.1371/journal.pone.0194137Google ScholarGoogle ScholarCross RefCross Ref
  62. Séamas Weech and Nikolaus F. Troje. 2017. Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation. Multisensory Research 30, 1 (2017), 65--90. DOI: http://dx.doi.org/10.1163/22134808-00002545Google ScholarGoogle ScholarCross RefCross Ref
  63. Bob G. Witmer and Michael J. Singer. 1998. Measuring presence in virtual environments: A presence questionnaire. Presence 7, 3 (1998), 225--240.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Dennis Wolf, Leo Hnatek, and Enrico Rukzio. 2018. Face/On: Actuating the Facial Contact Area of a Head-Mounted Display for Increased Immersion. In The 31st Annual ACM Symposium on User Interface Software and Technology Adjunct Proceedings (UIST '18 Adjunct). ACM, New York, NY, USA, 146--148. DOI: http://dx.doi.org/10.1145/3266037.3271631Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. WalkingVibe: Reducing Virtual Reality Sickness and Improving Realism while Walking in VR using Unobtrusive Head-mounted Vibrotactile Feedback

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
        April 2020
        10688 pages
        ISBN:9781450367080
        DOI:10.1145/3313831

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 April 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

        Upcoming Conference

        CHI '24
        CHI Conference on Human Factors in Computing Systems
        May 11 - 16, 2024
        Honolulu , HI , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format