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With the growing popularity of shared resources, large volumes of complex data of different types are collected automatically.
Traditional data mining algorithms generally have problems and challenges including huge memory cost, low processing
speed, and inadequate hard disk space. As a fundamental task of data mining, sequential pattern mining (SPM) is used in
a wide variety of real-life applications. However, it is more complex and challenging than other pattern mining tasks, i.e.,
frequent itemset mining and association rule mining, and also suffers from the above challenges when handling the large-scale
data. To solve these problems, mining sequential patterns in a parallel or distributed computing environment has emerged as
an important issue with many applications. In this paper, an in-depth survey of the current status of parallel sequential pattern
mining (PSPM) is investigated and provided, including detailed categorization of traditional serial SPM approaches, and state
of the art parallel SPM. We review the related work of parallel sequential pattern mining in detail, including partition-based
algorithms for PSPM, Apriori-based PSPM, pattern growth based PSPM, and hybrid algorithms for PSPM, and provide deep
description (i.e., characteristics, advantages, disadvantages and summarization) of these parallel approaches of PSPM. Some
advanced topics for PSPM, including parallel quantitative / weighted / utility sequential pattern mining, PSPM from uncertain
data and stream data, hardware acceleration for PSPM, are further reviewed in details. Besides, we review and provide some
well-known open-source software of PSPM. Finally, we summarize some challenges and opportunities of PSPM in the big
data era.
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1 INTRODUCTION
With the rapid development of information technology and data collection, Knowledge Discovery in Databases
(KDD), which is also called data mining provides a powerful capability to discover meaningful and useful
information from different types of complex data [1–3, 52, 112]. KDD has numerous real-life applications and is
crucial to some of the most fundamental tasks such as frequent itemset mining [34, 52], association rule mining
[1, 138], sequential pattern mining [33, 95, 112, 119, 134], clustering [14, 63], classification [93, 99], and outline
detection [71].

Most traditional data mining algorithms are designed to run on a single computer (node), and are thus called
single-node techniques. They can discover various kinds of patterns from various types of databases. At the same
time, in recent decades, data mining has been studied extensively and applied widely [1, 3, 14, 21, 46, 52, 128].
These techniques perform well on small datasets, however, due to the limited memory capacity and computation
capability of a single node, these data mining methods become inefficient over big data. The memory requirements
for handling the complete set of desired results increase quickly, and the computational cost can be expensive on
a single machine. All aforementioned methods are serialized. When handling large-scale data, these methods are
fundamentally inappropriate due to many reasons, including the huge amounts of data, infeasibility of bandwidth
limitation, as well as the fact that larger inputs demands parallel processing, and privacy concerns. Unfortunately,
parallelization of the mining process is a difficult task. It is an important issue to develop more adaptable and
flexible mining frameworks.

Parallel data mining (PDM) [40, 136] is a type of computing architecture in which several processors execute
or process an application. Research and development work in the area of parallel data mining concerns the
study and definition of parallel mining architectures, methods, and tools for the extraction of novel, useful,
and implicit patterns from databases using a high-performance architecture. In some cases, PDM distributes
the mining computation w.r.t. multi-core over more than one node. When data mining tools are implemented
on high-performance parallel computers, they can analyze massive databases in parallel processing within a
reasonable time. In general, parallel computation allows for solving larger problems and executing applications
that are parallel and distributed in nature. Parallel computing is becoming increasingly common and used to
accelerate processing of the massive amount of data. So far, some parallelized Apriori-like algorithms have been
implemented with the MapReduce framework [27] and achieved certain speedup compared with single-node
methods. However, some previous studies [27, 73, 103] show that the MapReduce framework is not suitable for
frequent itemset mining algorithm like the Apriori algorithm with intensive iterated computation.

Table 1. An original sequence database w.r.t. shopping behavior.

TID Time Customer ID Event (products)
t1 03-06-2017 10:05:30 C1 milk, bread
t2 03-06-2017 10:09:12 C2 oatmeal
t3 03-06-2017 10:21:45 C3 milk, bread, butter
t4 03-06-2017 11:40:00 C1 milk, cereal, cheese
t5 03-06-2017 12:55:30 C3 cereal, oatmeal
t6 03-06-2017 14:38:58 C2 bread, milk, cheese, butter, cereal
... ... ... ...
t10 05-06-2017 15:30:00 C1 bread, oatmeal, butter

In the field of data mining, pattern mining has become an important task for a wide range of real-world
applications. Pattern mining consists of discovering interesting, useful, and unexpected patterns in databases.
This field of research has emerged in the 1990s with the Apriori algorithm [3] which was proposed by Agrawal
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and Srikant. It is designed for finding frequent itemsets and then extracting the association rules. Note that
frequent itemsets are the groups of items (symbols) frequently appearing together in a database of customer
transactions. For example, the pattern/products {bread, wine, cheese} can be used to find the shopping behavior of
customers for market basket analysis. Some pattern mining techniques, such as frequent itemset mining (FIM)
[3, 52] and association rule mining (ARM) [3], are aimed at analyzing data, where the sequential ordering of
events is not taken into account. However, the sequence-based database which contains the embedded time-stamp
information of event is commonly seen in many real-world applications. A sequence in a sequence database is an
ordered list of items, and sequence is everywhere in our daily life. Typical examples include consumers’ shopping
behavior, Web access logs, DNA sequences in bioinformatics, and so on. We illustrate the sequential data with
one case of market basket analysis in detail below. For example, Table 1 is a simple retail store’s database which
contains customers’ shopping records, including transaction ID (TID), occurred time, customer ID, and event
(w.r.t. purchase products), and so on. For each customer, his/her total purchase behavior can be considered as a
sequence consists of some events which happened at different times. As shown in Table 2 which is translated from
Table 1, the customer C1 w.r.t. sequence ID (SID = 1) has three records (t1, t4, and t10) that occurred sequentially.

Table 2. A translated sequence database from Table 1.

SID TID Event (products)
1 t1 milk, bread
1 t4 milk, cereal, cheese
1 t10 bread, oatmeal, butter
2 t2 oatmeal
2 t6 bread, milk, cheese, butter, cereal
3 t3 milk, bread, butter
3 t5 cereal, oatmeal

To address this issue, another concept of pattern mining named sequential pattern mining (SPM) was first
introduced by Agrawal and Srikant in 1995 [2]. The goal of SPM aims at discovering and analyzing statistically
relevant subsequences from sequences of events or items with time constraint. More precisely, it consists of
discovering interesting subsequences in a set of sequences, where the interestingness of a subsequence can be
measured in terms of various criteria such as its occurrence frequency, length, and profit. Given a user-specified
threshold, termed the minimum support (denoted minsup), a sequence is said to be a frequent sequence or a
sequential pattern if it occurs more than minsup times in the processed database. For instance, consider the
database of Table 2, and assume that the user sets minsup = 3 to find all subsequences appearing in at least
three sequences. For example, the patterns {milk} and {bread,butter } are frequent and have a support of 4
and 3 sequences, respectively. As a fundamental task of pattern mining, sequential pattern mining is used in a
wide variety of real-life applications, such as market basket analysis [2], Web mining [16], bioinformatics [24],
classification [9], finding copy-paste bugs in large-scale software code [17].

In the past two decades, pattern mining (i.e., FIM, ARM and SPM) has been extensively studied and successfully
applied in many fields [33, 34]. Meanwhile, to meet the demand of large-scale and high performance computing, as
mentioned before, parallel data mining has received considerable attention over the past decades [40, 117, 118, 136],
including parallel frequent itemset mining (PFIM) [8, 73, 106], parallel association rule mining (PARM) [103, 142],
parallel sequential pattern mining (PSPM) [12, 139], parallel clustering [126, 146], and so on. Among them, the
sequence-based task - PSPM is crucial in a wide range of real-word applications. For example, in Bioinformatics
for DNA sequence analysis [24], it requires a truly parallel computing on massive large-scale DNA. On one hand,
the serial sequential pattern mining is computationally intensive. Although a significant amount of developments
have been reported, there is still much room for improvement in its parallel implementation. On the other hand,
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many applications are time-critical and involve huge volumes of sequential data. Such applications demand more
mining power than serial algorithms can provide [26]. Thus, solutions of the sequential pattern mining task that
scale are quite important. Up to now, the problem of parallel sequential pattern mining has attracted a lot of
attention [12, 139]. Fig. 1 shows the number of published papers from 2007 to 2017 where Group 1 denotes the
search keywords of “Sequential Pattern Mining" / “Sequence Mining", and Group 2 denotes the search keywords
of “Parallel Sequential Pattern Mining" / “Parallel Sequence Mining" / MapReduce “sequential pattern". Fig. 1
outlines a rapid surge of interest in SPM and PSPM in recent years. These results can easily show the trend that
mining sequential patterns in a parallel computing environment has emerged as an important issue.

Fig. 1. Number of published papers that use “Parallel Sequential Pattern Mining" in subareas of data mining and big data.
These publication statistics are obtained from Google Scholar ; the search phrase of Group 1 and Group 2 is defined as the
subfield named with the exact phrase “parallel sequential pattern" and at least one of parallel or sequential pattern/sequence
appearing, e.g., “parallel sequence", “parallel sequential pattern".

Up to now, several related surveys of serial sequential pattern mining (abbreviated as SPM) have been previously
studied [84, 90, 145]. Recently, Fournier-Viger et al. published an up-to-date survey of the current status of serial
SPM [33]. There is, unfortunately, no survey of parallel sequential pattern mining methods yet. In 2014, Anastasiu
et al. published an article on the big data frequent pattern mining [6], which describes several serial and parallel
approaches of scalable frequent itemset mining, sequence mining, and frequent graph mining. However, this
article is not specific for parallel sequential pattern mining, only 12 algorithms for PSPM are presented in one
section. Many concepts, technologies, big data platforms and tools, domain applications, and the state-of-the-art
works of PSPM are not considered and reviewed. Yet, after more than ten years of theoretical development of big
data, a significant number of new technologies and applications have appeared in this area. Thus, we review and
summarize current status (i.e., the big data platforms and tools, the new technologies, application, and advanced
topics) of PSPM in details.
The question then posed is: how can one best summarize the related studies in various types of parallel

sequential pattern mining in parallel computing environments and make a general taxonomy of them? The
methods summarized in this article not only fit for parallel computing [7, 16, 111], but are also good references
for other related work, such as data mining [21], big data technologies [66, 68, 117, 118, 125], distributed systems
[17, 113], and database management [72]. Thus, this paper aims at reviewing the current status of parallel
sequential pattern mining (PSPM), and providing in-depth descriptions on a number of representative algorithms.
The main contributions of this paper are described below.

• We review some related works on serial sequential pattern mining in several categories, including Apriori-
based techniques for SPM, pattern growth techniques for SPM, algorithms for SPM with early-pruning,
and constraint-based algorithms for SPM.
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• We review the state-of-the-art works of parallel sequential pattern mining on distributed environments in
recent years. This is a high level survey about parallel techniques for sequential pattern mining in several
aspects, including partition-based algorithms for PSPM, Apriori-based PSPM, pattern growth based PSPM,
and hybrid algorithms for PSPM. Not only the representative algorithms, but also the advances on latest
progresses are reviewed comprehensively. We also point out the key idea, advantages and disadvantages of
each PSPM approach.

• Some advanced topics for PSPM are reviewed, including PSPM with quantitative / weighted / utility, PSPM
from uncertain data and stream data, hardware accelerator for PSPM (i.e., CPU and GPU approaches for
parallel sequential pattern mining).

• We further review some well-known open-source software in the fields of serial SPM and parallel SPM,
hope that these resources may reduce barriers for future research.

• Finally, some challenges and opportunities of parallel sequential pattern mining task for future research
are briefly summarized and discussed.

The rest of this paper is organized as follows. Section 2 first introduces the key characteristics about some
parallelism methods, then reviews some important features of parallel computing platforms and distributed
systems, and respectively summarizes some important parallel computing platforms and tools. The definitions
of major concepts used in literature are first introduced in Section 3. Besides, Section 3 also briefly provides
the state-of-the-art research efforts SPM. Section 4 highlights and discusses the state-of-the-art research efforts
on different approaches, under four taxonomies, for parallel sequential pattern mining. Some advanced topics
for PSPM and the related open-source software are further reviewed in Section 5 and Section 6, respectively.
Section 7 briefly summarizes some challenges and opportunities in parallel sequential pattern mining. Finally,
some conclusions are briefly given in Section 8.

2 PARALLEL COMPUTING FRAMEWORK

2.1 Methods of Parallelism
Zaki has pointed several reasons for designing parallel algorithms to the data mining task [136, 137]. First, single
processors cause the memory and CPU speed limitations, while multiple processors can parallelly reduce them.
Second, large amounts of data are already available in parallel sub-databases or they are stored/distributed at
multiple sites [136, 137]. Therefore, it is prohibitively expensive either to collect all data into one site, or to
perform the serial mining process on a single computer. For these reasons, tools that can help in parallelization are
urgently needed. According to the previous studies [136, 137], there are some well-known methods of parallelism:
task parallelism (divide and conquer strategy, task queue), data parallelism (record based and attribute based),
and hybrid data/task parallelism. Characteristics about these parallelism methods are described below.
(1) Task parallelism1 Task parallelism assigns portions of the search space to separate processors. Thus,

different tasks running on the same data. There are two types of task parallel approaches: based on divide and
conquer strategy and based on a task queue. The former divides the search space and assigns each partition to a
specific processor, while the later dynamically assigns small portions of the search space to a processor whenever
it becomes available.
(2) Data parallelism2 Data parallelism distributes the dataset over the multiple available processors. The same

task parallelly run on different data in distributed environment. In general, data-parallel approaches come in two
flavors: record-based data parallelism and attribute-based data parallelism. In [136, 137], Zaki had pointed that
the records or attribute lists in record-based data parallelism are horizontally partitioned among the processors.

1http://en.wikipedia.org/wiki/Task_parallelism
2http://en.wikipedia.org/wiki/Data_parallelism
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In contrast, the attributed in attributed-based data parallelism are divided, thus each processor is responsible for
an equal number of attributes.
(3) Hybrid data/task parallelism It is a parallel pipeline of tasks, where each task might be data paralleled,

and output of one task is the input to the next one. It means that each task can be run in parallel, throughput
impacted by the longest-latency element in the pipeline.

Nowadays, parallel computing is the key to improve the performance of computer programs. Currently, data
mining approaches to achieve parallelization and distribution can be classified in terms of five main components
[136, 137]:

• Distributed versus shared memory systems;
• Data versus task parallelism;
• Static versus dynamic load balancing;
• Complete versus heuristic candidate generation;
• Horizontal versus vertical data layout.

2.2 Difference between Parallel Computing Platform and Distributed System
Unlike traditional centralized systems, a distributed system is defined as: one in which components of networked
computers communicate and coordinate their actions only by passing messages [17, 113]. In other words, a
distributed system is a collection of autonomous computing elements that appears to its users as a single coherent
system. According to [17, 113], there are two aspects of distributed systems: (1) independent computing elements
and (2) single system w.r.t. middle-ware. There are some important features of distributed systems, including: 1)
concurrency, multi-process and multi-threads concurrently execute and share resources; 2) no global clock, where
program coordination depends upon on message passing; and 3) independent failure, wherein some processesâĂŹ
failure cannot be known by other processes [17, 113]. There are many types of distributed systems, such as grids
[80, 83], peer-to-peer (P2P) systems [101], ad-hoc networks [127], cloud computing systems [47], and online
social network systems [64]. According to a study by Almasi et al., parallel computing3 is a type of computation
in which many calculations or the execution of processes are carried out simultaneously [5]. In general, large
problems can often be divided into smaller ones, which can then be solved at the same time. In summary, there
are three types of parallelism for parallel computing, including bit-level parallelism, instruction-level parallelism,
and task parallelism.

Both distributed mining and parallel mining can speed up the data mining process. However, they have several
differences. In 1999, Zaki pointed out that there are some differences between parallel and distributed association
rule mining [136]. For achieving the parallelism of a traditional mining method, the main challenges include: i)
synchronization minimization and communication minimization, ii) workload balancing, iii) finding good data
layout and data decomposition, and iv) disk I/O minimization (which is especially important for association rule
mining) [136]. In general, the parallel paradigm is hardware or software-distributed shared-memory systems.
Thus, one parallel method can be distributed or shared-memory. In distributed data mining (DDM), the same
or different mining algorithms are often applied to tackle local data. A DDM algorithm communicates among
multiple process units, and then combines the local patterns into the desired global patterns. While a parallel
data mining (PDM) algorithm applies the global parallel algorithm on the entire dataset to discover the desired
knowledge, it is the same as that found by the traditional data mining algorithm. The accuracy or efficiency of
DDM depends on data partitioning, task scheduling, and global synthesizing, and thus it is somewhat difficult to
predict [143]. PDM accuracy may be more guaranteed than that of DDM.

3https://en.wikipedia.org/wiki/Parallel_computing
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2.3 Parallel Data Mining Platforms and Tools
In order to achieve high-performance data mining, some parallel data mining platforms and tools have been
further developed in recent years. Many researchers provide different techniques to work on parallel or distributed
environments like multi-core computing [29, 100], grid computing [80, 83], graphics processing units (GPUs)
[7, 16], cloud computing [47], Hadoop4, etc. In recent years, the focus on computer engineering research shifted to
exploit architecture advantages as much as possible, such as shared memory [36], FPGA [55], cluster architecture
[5], or the massive parallelism of GPUs [11]. Some parallel data mining platforms and tools are first described
below.
(1) Multi-core computing. A multi-core processor5 includes multiple processing units (called "cores") on

the same chip. This processor supports multi-core computing, and differs from a super-scalar processor. It can
issue multiple instructions per clock cycle from multiple instruction streams [29]. Recently, a SPM model using
multi-core processors is presented in [62].
(2) Grid computing. Generally speaking, grid computing6 is a form of parallel computing, and different from

conventional computing systems. It makes use of the collection of multiple distributed computer resources to
fulfill a common goal. Each node in grid computers performs a different task/application.
(3) Reconfigurable computing with FPGA. A field-programmable gate array (FPGA) is, in essence, a

computer chip that can rewire itself for a given task [55]. A new computing paradigm, reconfigurable computing,
has received wide attention and is the focus of extensive research. Reconfigurable computing uses a FPGA as a
co-processor to a general-purpose computer. Thus, high-performance computing can be achieved by using FPGA.
Reconfigurable computing with FPGA has a good ability to combine efficiency with flexibility.
(4) Graphics processing units (GPUs)7. GPUs have attracted a lot of attention due to their cost-effectiveness

and enormous power for massive data parallel computing. At present, a fairly recent trend is to enable general-
purpose computing on graphics processing units. GPUs are co-processors that have been heavily optimized for
computer graphics processing [7, 16]. Recently, some GPU-based tools are developed, such as a parallel graph
exploration system on multi-core CPU and GPU [57], and a novel parallel algorithm on GPUs to accelerate
pattern matching [76].
(5) MapReduce [27]. The MapReduce model was originally proposed by Google. It is a popular parallel

programming model that not only simplifies the programming complexity of parallel or distributed computing,
but also can achieve better processing and analytics for massive datasets. The MapReduce model [27] stores
the data in <key, value> pair and then runs in rounds, which are composed of three consecutive phases: map,
shuffle, and reduce. The input and output formats of MapReduce can be expressed as follows: i)Mapper: <key
input, value input> to list<key map, value map>; ii) Reducer: <key map, list(values)> to list<key reducer, value
reducer>. By using the MapReduce programming model, mining progress can be effectively enhanced. Moreover,
I/O cost caused by scanning for massive and high dimensional datasets can be significantly reduced. Up to now,
there are many implementations of MapReduce, and MapReduce has become a common powerful tool for parallel
or distributed computing under various environments.
(6) Spark [135]. Spark is one of the distributed computing framework developed by Berkeley AMPLab. It is a

well-known open-source cluster computing system that provides a flexible interface for programming entire
clusters with implicit data parallelism and fault-tolerance. Due to the in-memory parallel execution model, all
data will be loaded into memory in Spark. This fundamental feature means Spark can significantly speed up

4http://hadoop.apache.org
5https://en.wikipedia.org/wiki/Multi-[]core_processor
6https://en.wikipedia.org/wiki/Grid_computing
7https://en.wikipedia.org/wiki/Graphics_processing_unit
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computation for iterative algorithms such as the Apriori algorithm and some other machine learning algorithms.
In general, Spark [135] can be 1-2 orders of magnitude faster than MapReduce [27].
(7) PerfExplorer [61]. It is a computing framework for large-scale parallel data mining. It consists of two main

components, the Client and the Server. PerfExplorer has a flexible interface and provides a common, reusable
foundation for multiple data analysis, including clustering, dimensionality reduction, coefficient of correlation
analysis, and comparative analysis [61].

3 STATE-OF-THE-ART SERIAL SEQUENTIAL PATTERN MINING
Most of the current parallel sequential pattern mining algorithms are extended from the traditional serial SPM
algorithms. Therefore, in this section, some preliminaries and the problem statement related to frequent itemset
mining (FIM) and sequential pattern mining (SPM) are first introduced. Then, some related works of sequential
pattern mining are reviewed in several categories. Finally, the status of SPM is described and briefly summarized.

3.1 Frequent Itemset Mining VS. Sequential Pattern Mining
First, let us introduce some preliminaries and the problem statement related to frequent itemset mining (FIM)
from transactional databases. Let I = {i1, i2,. . . , in} be a set of items, an itemset X = {i1, i2,. . . , ik } with k items as a
subset of I . The length or size of X is denoted as |X |, i.e., the number of items in X w.r.t. k . Given a transactional
database D = {t1, t2,. . . , tm}, where each transaction Tq ∈ D is generally identified by a transaction id (TID),
and |D | denotes the total number of transactions w.r.t. m. The support of X in D is denoted as sup(X ), it is
the proportion of transactions that contain X , i.e., sup(X ) = |Tq |Tq ∈ D,X ⊆ Tq |/|D |. An itemset is said to be a
frequent itemset (FI ) in a database if its support is no less than the user defined minimum support threshold
(minsup). Therefore, the problem of frequent itemset mining is to discover all itemsets which have a support no
less than the defined minimum support threshold, that is sup(X ) ≥ minsup [3]. As the most important mining
task for a wide range of real-world applications, frequent itemset mining (FIM) or association rule mining (ARM)
has attracted a lot of attention [1, 3, 21, 34, 40, 46, 52].
In 1995, Srikant and Agrawal first extended the concept of the frequent itemset mining model to handle

sequences [2]. They first introduced and formulated the sequential pattern mining (SPM) problem. Different
from FIM, SPM aims at discovering frequent subsequences as interesting patterns in a sequence database which
contains the embedded time-stamp information of event. According to the definitions from Mannila et al. [85],
we have the associated notations and descriptions of SPM as below. Given an input sequence database SDB =
{S1, S2,. . . , S j }, where SID is a unique sequence identifier (also called sequence-id) and Sk is an input sequence.
Thus, SDB is a set of tuples (SID, S), and each sequence S has the following fields: SID, event-time, and the
items present in the event. For example, in Table 1, consider the first sequence <{a,d}, {c}, {d,д}, {д}, {e}>, it
represents five transactions made by a customer at a retail store. Each single letter represents an item (i.e., {a},
{c}, {d}, etc.), and items between curly brackets represent an itemset (i.e., {a,d} and {d,д}). Simply speaking, a
sequence is a list of temporally ordered itemsets (also called events).

Table 3. A sequence database.

SID Sequence
1 < {a,d}, {c}, {d,д}, {д}, {e} >
2 < {a}, {d}, {c,д}, {e} >
3 < {a,b}, {c}, { f ,д}, {a,b,д}, {e} >
4 < {b}, {c}, {d, f } >
5 < {a,b}, {c}, {d, f ,д}, {д}, {e} >
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A sequence sa = <A1,A2,. . . ,An> is called a k-sequence if it contains k items, or in other words if k = |A1 | +
|A2 | + . . . + |An |. For example, as shown in Table 3, the sequence <{a,d}, {c}, {d,д}, {д}, {e}> is a 7-sequence. A
sequence Sα = <α1,α2, . . . ,αn> is called a sub-sequence of another sequence Sβ = <β1, β2,. . . , βm> (n < m), and
Sβ is called a super-sequence of Sα if there exists an integer 1 < i1 <. . .< in < m such that β1 ⊆ βi1, . . . , βin ⊆ βim ,
denoted as Sα ⊆ Sβ . A tuple (SID, S) is said to contain a sequence Sα if S is a super-sequence of Sα , denoted as Sα ⊆ S .
As shown in Table 3, the sequence <{a,d}, {c}, {д}> is contained in sequence <{a,d}, {c}, {d,д}, {д}, {e}>, while
the sequence <{a,d}, {c,d}, {д}> is not. Especially, the sequence <{a,b}, {c}> and <{a,b}, {d}, {д}> are called
sequence-extensions of <{a,b}>, and <{a,b,d}> is called item-extension of <{a,b}>. The support of a sequence
Sα in a sequence database SDB is the number of tuples that contains Sα , and it is denoted as sup(Sα ). The size of
a sequence database SDB (denoted as |SDB |) corresponds to the total number of sequences (i.e., the number of
customers).
In general, sequential pattern mining is more complex and challenging than frequent itemset mining. There

are some important reasons for this. Firstly, due to the absence of time constraints in FIM not presenting in SPM,
SPM has a potentially huge set of candidate sequences [51]. The total number of possible sequential patterns
is much larger than that of FIM. If all sequences contain exactly one event, SPM is equal to FIM. For example,
consider only 100 distinct items for the SPM problem, there are 100 sequences has their length as 1, while the
number of sequences with length 2 is 100× 100× (100× 99/2) = 14,950, and the number of sequences with length
3 is 2100 − 1 ≈ 1030. Secondly, there are further difficulties mining longer sequential patterns [51], such as DNA
sequence analysis or stock sequence analytics/prediction.

3.2 State-of-the-art Serial Sequential Pattern Mining
Through 20 years of study and development, many techniques and approaches have been proposed for mining
sequential patterns in a wide range of real-word applications [33], such as Web mining [16], classification [9], and
mining motifs from biological sequences [24]. Some well-known serial algorithms for sequential pattern mining,
such as AprioriAll [2], GSP [112], BIDE [120], CloSpan [129], FreeSpan [50], PrefixSpan [51], SPADE [140], etc.,
have been proposed. Since many parallel SPM algorithms are extended by the traditional serial SPM approaches, it
is quite necessary for us to have an understanding of the systematic characteristics of traditional serial sequential
pattern mining approaches. Thus, the state-of-the-art of serial SPM are reviewed below. Based on the different
mining mechanisms, some well-known serial SPM approaches are divided into several categories, including
Apriori-based techniques, pattern growth techniques, algorithms with early-pruning, and constraint-based
algorithms. Details are summarized in Tables 4, 5, 6, and 7, respectively.

Table 4. Apriori-based serial algorithms for sequential pattern mining.

Name Description Year
Apriori (All, Some, The first algorithm for sequential pattern mining. 1995
Dynamic Some) [2]

GSP [112] Generalized Sequential Patterns (max/min gap, 1996
window, and taxonomies).

PSP [86] Retrieval optimizations and more efficient than GSP. 1998
SPADE [140] Sequential PAttern Discovery using Equivalence classes. 2001
SPAM [9] Sequential PAttern Mining with Bitmap representation. 2002

LAPIN [131] SPM with LAst Position Induction, which is categorized 2004
into two classes, LAPIN-LCI and LAPIN-Suffix.

LAPIN-SPAM [130] LAst Position INduction Sequential PAttern Mining. 2005
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Table 5. Pattern growth algorithms for sequential pattern mining.

Name Description Year
FreeSpan [50] FREquEnt pattern-projected Sequential Pattern mining. 2000
WAP-mine [96] SPM with suffix growth. 2000
PrefixSpan [51] PREFIX-projected Sequential PAtterN mining. 2001
LPMiner [107] Sequential pattern mining with Length decreasing suPport. 2001
SLPMiner [108] Sequential pattern mining with Length decreasing suPport. 2002
FS-Miner [30] SPM with suffix growth. 2004

LAPIN-Suffix [131] SPM with suffix growth. 2004
PLWAP [31] SPM with prefix growth. 2005

Apriori-Based Techniques. In 1995, Agrawal and Srikant first introduced an new approach named AprioriAll
to discover the sequential patterns from a set of sequences whithin the embedded timestamp information [2].
The AprioriAll algorithm is based on Apriori and relies on the Apriori property. That is “all nonempty subsets of
a frequent itemset must also be frequent” [3]. Therefore, AprioriAll holds the downward closed property (also
called anti-monotonic), and utilizes this anti-monotonic to prune the search space. In general, two properties are
often utilized in sequential pattern mining to speed up computation:

• Subsequence infrequency based pruning: any supersequence of an infrequent sequence is not frequent,
thus it can be pruned from the set of candidates [2]. If Sa is a subsequence of Sb , then sup(Sb ) is at most
as large as sup(Sa). Monotonicity: If Sa is not frequent, then it is impossible that Sb is frequent. Pruning:
If we know that Sa is not frequent, we do not have to evaluate any supersequence of Sa . For example, if
sequence <a> occurs only 10 times, then <a,b> can occur at most 10 times.

• Supersequence frequency based pruning: any subsequence of a frequent sequence is also frequent, thus
it can be safely pruned from the set of candidates [10]. For example, if sequence <a,b,d> is frequent and
occurs 8 times, then any its subsequence (<a>, <b>, <d>, <a,b>, <a,d> and <b,b>) is frequent and
occurs at least 8 times.

Srikant then proposed GSP, which is similar to AprioriAll in execution process, but adopts several technologies
including time constraints, sliding time windows, and taxonomies [112]. GSP uses a multiple-pass, candidate
generation-and-test method to find sequential patterns. It adopts the Apriori property that all sub-patterns of a
frequent pattern must be frequent. Thus, GSP can greatly improve performance over AprioriAll. PSP [86] resumes
the general principles of GSP but it utilizes a different intermediary data structure, making it more efficient than
GSP. AprioriAll [2] AprioriSome [2], DynamicSome [2] and GSP [112] all use the breadth-first search (BFS) to
mine sequential patterns with a hierarchical structure. The SPADE algorithm, which uses equivalence classes to
discover the sequential patterns, is an Apriori-based hybrid miner, it can be either breadth-first or depth-first [140].
SPADE exploits sequential patterns by utilizing a vertical id-list database format and a vertical lattice structure.
SPAM is similar to SPADE, but SPAM uses bitmap representation and bitwise operations rather than regular
and temporal joins. Yang et al. then proposed a novel algorithm LAPIN for SPM with last position induction
(LAPIN-LCI and LAPIN-Suffix) [131]. They further developed the LAPIN-SPAM [130] algorithm by combining
LAPIN and SPAM. Note that for SPAM, LAPIN, LAPIN-SPAM and SPADE, these algorithms use the property that
the support of a super-patterns is always less than or equal to the support of its support patterns, it is different
from the Apriori property used in GSP. Most of the above Apriori-based algorithms consist of three features.

• Breadth-first search: Apriori-based algorithms commonly use the breadth-first (w.r.t. level-wise) search
manner. They construct all k-sequences together in each k-th iteration while exploring the search space.
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• Generate-and-test: This feature is introduced by Agrawal et al. in the Apriori algorithm [3]. It is used in
the early sequential pattern mining algorithms, such as AprioriAll [2], AprioriSome [2], Dynamic Some [2].

• Multiple database scans: These algorithms need to scan the original database many times to determine
whether a longer generated sequences is frequent. They suffer from the drawbacks of the candidate
generation-and-test paradigm. In other words, they may generate a huge number of candidate sequences
that do not appear in the input database and need to scan the original database many times.

Table 6. Algorithms for sequential pattern mining with early-pruning.

Name Description Year
HVSM [110] Bitwise operation and position induction. 2005

LAPIN-SPAM [130] Bitwise operation. 2005
PLWAP [31] Position induction. 2005
LAPIN [131] Position induction. 2007
DISC-all [24] Position induction and prefix growth. 2007
UDDAG [20] Up-Down Directed Acyclic Graph for sequential pattern mining. 2010

Pattern-Growth Techniques. In 2000, a pattern-projected sequential pattern mining algorithm named
FreeSpan was introduced by Han et al. [50]. By using a frequent item list (f-list) and S-Matrix, it obtains all
frequent sequences based on so-called projected pattern growth. Pattern-growth SPM algorithms can avoid
recursively scanning the database to find frequent patterns. The reason is that they only consider the patterns
actually appearing in the database. To reduce time-consuming database scans, pattern-growth SPM algorithm
introduces a novel concept called projected database [7, 50]. The projected database can significantly reduce the
size of databases as frequent patterns are considered by the depth-first search.
The WAP-mine algorithm, which utilizes a WAP-tree, was proposed by Pei et al. [96]. In a WAP-tree, each

node is assigned a binary code to determine which sequences are the suffix sequences of the last event, and
then to find the next prefix for a discovered suffix. Thus, PLWAP does not have to reconstruct intermediate
WAP-trees. Han et al. then further proposed the most representative algorithm PrefixSpan [51]. It tests only the
prefix subsequences, and then projects their corresponding postfix subsequences into the projected sub-databases
(A projected database is the set of suffixes w.r.t. a given prefix sequence). By recursively exploring only local
frequent sequences, sequential patterns can be recursively grown in each projected subdatabase. Thus, PrefixSpan
exhibits better performance than both GSP [112] and FreeSpan [50]. However, when dealing with large dense
databases that have large itemsets, it is worse than that of SPADE [140]. As shown in Table 5, some other pattern
growth algorithms for sequential pattern mining have been developed, such as LPMiner [107], SLPMiner [108],
WAP-mine [96], and FS-Miner [30]. With consideration of length decreasing support, the LPMiner [107] and
SLPMiner [108] algorithms are introduced. In 2005, Ezeife et al. proposed a pattern-growth and early-pruning
hybrid method named PLWAP [31]. PLWAP utilizes a binary code assignment method to construct a preordered,
linked, position-codedWeb access pattern tree (WAP-tree for short). Compared to theWAP algorithm, PLWAP can
significantly reduce runtime and provide a position code mechanism. Inspired by FP-tree [52] and the projection
technique for quickly mining sequential patterns [7], a tree algorithm named FS-Miner (Frequent Sequence
Miner) is developed [30]. FS-Miner resembles WAP-mine [96]. Moreover, it supports incremental mining and
interactive mining [32].
Early-Pruning Techniques. Although the projection-based approaches (i.e., FreeSpan, PrefixSpan) can

achieve a significant improvement over Apriori-based approaches, the projection mechanism still suffers from
some drawbacks. The major cost of PrefixSpan is caused by constructing projected databases. Therefore, some
hybrid algorithms with early-pruning strategy are developed, as shown in Table 6. Following in the footsteps of
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Table 7. Constraint-based algorithms for sequential pattern mining.

Name Description Constraint Character Year
CloSpan [129] The first algorithm for mining

closed sequential patterns.
• Closed • Based on the GSP algorithm. 2003

BIDE [120] Mining of frequent closed
sequences by using BI-Directional
Extension, which is a sequence
closure checking scheme.

• Closed • It executes some checking steps in
the original database that avoid
maintaining the sequence tree in
memory.

2004

MSPX [81] MSPX mines maximal sequential
patterns with a bottom-up search
and uses multiple samples.

• Maximal • The sampling technique is used at
each pass to distinguish potentially
infrequent candidates.

2005

SQUIRE [67] Sequential pattern mining with
quantities, Apriori-QSP and
PrefixSpan-QSP.

• Pattern with
quantities

• Apriori-based and PrefixSpan-based. 2007

ClaSP [48] Mining frequent closed sequential
patterns by using several search
space pruning methods together
with a vertical database layout.

• Closed • Inspired on the SPADE and CloSpan
algorithms.

2013

MaxSP [36] Maximal Sequential Pattern miner
without candidate maintenance.

• Maximal • It neither produces redundant
candidates nor stores intermediate
candidates in main memory.

2013

VMSP [35] The first vertical mining algorithm
for Vertical mining of Maximal
Sequential Patterns.

• Maximal • Uses a vertical representation to do a
depth-first exploration of the search
space.

2014

CloFAST [38] A fast algorithm for mining closed
sequential patterns using id-list.

• Closed • It combines a new data
representation of the dataset, based on
sparse and vertical id-list.

2016

SPAM, a first-Horizontal-last-Vertical scanning database Sequential pattern Mining algorithm (named HVSM for
short) [110] is developed using bitmap representation. Instead of using candidate generate-and-test or the tree
projection, the LAPIN algorithm [131] uses an item-last-position list and a position set of prefix border. Based
on the anti-monotone property which can prune infrequent sequences, Direct Sequence Comparison (DISC-all)
uses other sequences of the same length to prune infrequent sequences [24]. The DISC-all respectively employs
different orderings (lexicographical ordering and temporal ordering) to compare sequences of the same length.
With the up-to-down directed acyclic graph, the UDDAG algorithm [20] uses the prefixes and suffixes to detect
the pattern. It obtains faster pattern growth because of fewer levels of database projection compared to other
approaches, and allows bi-directional pattern growth along both ends of detected patterns.
Constraint-based Techniques. Different from the traditional SPM approaches, the interesting issue of

constraint-based SPM has been widely studied, including quantitative sequences, maximal sequential pattern,
closed sequential patterns, sequential patterns with gap constraint, top-k sequential patterns, etc. In other per-
spectives, SPM with regular expression based constraints [116], SPIRIT algorithm [43], and SPM with declarative
constraints [13] have been extensively studied.

Some constraint-based SPM algorithms are described in Table 7. In order to handle the condense representation
of an explosive number of frequent sequential patterns, the issue of mining maximal sequential patterns is first
developed. The MSPX mines maximal sequential patterns with a bottom-up search and uses multiple samples [81].
Unlike the traditional single-sample techniques used in FIM algorithms, MSPX uses multiple samples at each pass
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to distinguish potentially infrequent candidates. Then, an efficient algorithm called MaxSP (Maximal Sequential
Pattern miner without candidate maintenance) was proposed [36]. The maximal representation may cause the
information loss of support, thus another condense representation named closed pattern was introduced [129]. Up
to now, some algorithms for mining closed sequential patterns have been proposed, such as CloSpan [129], BIDE
[120], ClaSP [48], CloFS-DBV [115], and CloFAST [38]. CloSpan [129] adopts the candidate maintenance-and-test
method to prune the search space, and it may perform worse while database having long sequences or the support
threshold is very low. A novel closure checking scheme, called bi-directional extension, is developed in BIDE
[120]. BIDE mines closed sequential patterns without candidate maintenance, it is more efficient than CloSpan.
Gomariz et al. then introduced the ClaSP algorithm by using several efficient search space pruning methods
together with a vertical database layout [48]. Recently, a more fast algorithm called CloFAST was proposed for
mining closed sequential patterns using sparse and vertical id-lists [38]. CloFAST does not build pseudo-projected
databases and does not need to scan them. It is more efficient than the previous approaches, including CloSpan,
BIDE, and ClaSP.
Discussions. Each method of serial sequential pattern mining algorithm has advantages and disadvantages.

Besides, there are also many different definitions of categories for SPM algorithms. A more comprehensive
discussion of these methods has been given in [84, 90, 145], and an up-to-date survey of the current status of
sequent pattern minng can be referred to [33].

4 STATE-OF-THE-ART PARALLEL SEQUENTIAL PATTERN MINING
In this section, we first briefly overview the current status of parallel frequent itemset mining. We also cover
some special categories of parallel sequential pattern mining algorithms, i.e., partition-based algorithms for PSPM,
Apriori-based algorithms for PSPM, pattern growth algorithms for PSPM, and hybrid algorithms for PSPM. In
most PSPM algorithms, they are hybrid inherently.

4.1 Parallel Frequent Itemset Mining
As mentioned previously, sequential pattern mining is highly related to frequent itemset mining, and SPM is more
complicated than FIM. Since some developments of SPM are inspired by many technologies of FIM, it is needed to
have an overview of the current development in parallel frequent itemset mining (PFIM). The problem of frequent
itemset mining in parallel environments has been extensively studied so far, and a number of approaches have
been explored to address this problem, such as PEAR [91], PPAR [91], PDM [94], ParEclat [142], PaMPa-HD [8],
PHIKS [106], etc. In 1995, Mueller first proposed two parallel algorithms, Parallel Efficient Association Rules
(PEAR) [91] and Parallel Partition Association Rules (PPAR) [91]. Cheung et al. also proposed an algorithm named
Parallel Data Mining (PDM) to parallel mining of association rules [94], and the Fast Distributed Mining (FDM)
algorithm for distributed databases [23]. An adaptation of the FP-Growth algorithm to MapReduce [27] called PFP
(parallel FP-tree) is presented in [73]. PFP is a parallel form of the classical FP-Growth, it splits a large-scale mining
task into independent and parallel tasks. By extending the vertical mining approach Eclat [141], the parallel-based
Eclat (ParEclat) [142] and the distributed Eclat (Dist-Eclat) [89] were developed, respectively. Research efforts
have already been made to improve Apriori-based and traditional FIM algorithms and to convert them into
parallel versions, mostly under the MapReduce [27] or Spark [135] environment. Some results of these efforts
are PARMA [103], a parallel frequent itemset mining algorithm with Spark (R-Apriori) [102], PaMPa-HD [8],
and PHIKS [106]. PARMA [103] is a parallel algorithm for the MapReduce framework, which mines approximate
association rules instead of exact ones.
Discussions. The above parallel algorithms are used in frequent itemset mining. Up to now, large numbers of

studies of parallel frequent itemset mining have been extensively studied compared to parallel sequential pattern
mining. The development of PFIM is still an active area in research, where the up-to-date advances of PFIM
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can be referred to [6, 40]. As mentioned before, efficient mining of frequent sequences is more challenging than
FIM. Currently, a large number of algorithms have been extensively developed for SPM, while few of them are
sufficiently scalable to handle large-scale datasets.

4.2 Partition-based Algorithms for PSPM
In addition to parallel frequent itemset mining, a variety of mining algorithms has been developed for parallel
sequential pattern mining (PSPM). Although PSPM is comparatively more complicate and challenging than that
of PFIM, research in the area of PSPM has been active for some time. Recently, to improve the performance,
effectiveness and scalability issues, parallel sequential pattern mining has received much attention.
Firstly, the partition-based parallel methods for SPM are introduced and reviewed. The central idea behind

partition-based algorithms is described below. Here the partition mainly in terms of the computation partition
and data partition. For example, the database itself can be shared, partially or totally replicated, or partitioned
among the available distributed nodes [137]. Notice that the partition can be achieved by using round-robin, hash,
or range scheduling. As shown in Table 8, some partition-based parallel methods for SPM have been developed.
A comprehensive working example of partition-based sequential pattern mining algorithm with task parallelism
is illustrated below, to show how the problem of parallel sequential pattern mining is solved. It could help to
understand the idea of parallel sequential pattern mining.

data
L1

L1 = {1, 2, 3, 5, 7}

{1,2}   {2,5}   {5},{2}

{1},{3}   {2},{7}   {5,7}

{1,7}   {3},{3}   {7},{2}

{2},{2}   {3,7}   {7}{7} 

Node BNode A Node C

{1},{2}   {2},{5}   {5},{3}

{1,5}   {3},{1}   {5},{7}

{1},{7}   {3,5}   {7},{3}

{2,3}   {3},{7}  

{1},{1}   {2},{3}   {5},{1}

{1,3}   {2,7}   {5},{5}

{1},{5}   {3},{2}  {7},{1}

{2},{1}   {3},{5}  {7},{5} 

Node A: 

Read customer sequence {1,3,6} {2,4}

Count {1,3} {3},{2}

Broadcast {1,3,6} {2,4} to all the other nodes

Node B: Receive {1,3,6} {2,4} Node C: Receive {1,3,6} {2,4}

 Count {1} {2} 

broadcast

broadcast

Fig. 2. An illustrated example of the SPSPM algorithm [109].

Note that Fig. 2 is an illustrated example of the SPSPM algorithm (Simply Partitioned Sequential Pattern Mining
with task parallelism) [109]. Assuming there are 3 nodes in the mining system, denoted as Node A, Node B and
Node C, respectively. Each node reads the sequence database Dk from its local disk, and let the large/frequent
items be L1 = {1, 2, 3, 5, 7}. Since SPSPM partitions/distributes the candidate sequences in a round-robin manner,
the candidate sequences are assigned shown in Fig. 2. Suppose Node A reads the sequence s = {1, 3, 6}{2, 4}. Then
Node A broadcasts s stored in its local disk to all the other nodes, and increases the count-support of {1, 3}, {3}{2}.
Node B and Node C respectively receive the sequence {1, 3, 6}, {2, 4} from Node A. Then Node C increases the
support-count of {1, 2}.
NPSPM, SPSPM and HPSPM. In 1998, Shintani and Kitsuregawa firstly partitioned the input sequences for

SPM, and yet they assumed that the entire candidate sets could be replicated and would fit in the overall memory
(random access memory and hard drive) of a process [109]. Based on the classical GSP approach [112], they
proposed three parallel approaches [109]: NPSPM (Non-Partitioned Sequential Pattern Mining), SPSPM (Simply
Partitioned Sequential Pattern Mining), and HPSPM (Hash Partitioned Sequential Pattern Mining). These three
variants perform as a classical level-wise candidate generation-and-test style. HPSPM is similar to SPSPM but
utilizes more intelligent strategies. HPSPM uses the hash mechanism to assign the input sequences and candidate
sequences to specific processes [109]. Although HPSPM has the best performance among the three variants, it
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Table 8. Partition-based algorithms for parallel sequential pattern mining.

Name Description Pros. Cons. Year
HPSPM [109] Hash Partitioned

Sequential Pattern Mining,
task parallelism.

• It can considerably reduces
the broadcasting of sequences.

• It is based on GSP and has a
level-wise candidate
generation-and-test style.

1998

SPSPM [109] Simply Partitioned
Sequential Pattern
Mining, task
parallelism.

• The candidate sets assigned
to the nodes have almost the
same size.
• They are disjoint from each
other.

• It requires a very large
communication overhead.

1998

NPSPM [109] Non-Partitioned
Sequential Pattern
Mining, data
parallelism.

• Mining sequential patterns
without partition.

• NPSPM is based on GSP and
performed in a bottom-up,
level-wise manner with
multiple data scans.

1998

EVE [65] EVEnt distribution. • Assume that the entire
candidate sequences can be
replicated and fit in the overall
memory of a process.

• The I/O overhead is
impractical in the big data
context.

1999

EVECAN [65] EVEnt and CANdidate
distribution.

• Rotates the smaller of two
sets among the processes with
a round-robin fashion.

• The I/O overhead is
impractical in the Big Data
context.

1999

DPF, STPF
and DTPF [49]

Data Parallel
Formulation,
Static Task-Parallel
Formulation, and
Dynamic Task-Parallel
Formulation

• It can achieve balanced
workloads using a bi-level
breadth-first manner in the
lexicographic sequence tree.

• At each iteration, it has to
partition the tree and perform
multiple scans of the local
database.
• This added I/O overhead is
impractical when mining big
data.

2004

also suffers, however, several limitations. For exampe, when the object time-lines are very large, or when the
counting method for generalized SPM is used, HPSPM is very time-consuming and memory cost.
EVE & EVECAN. Similar assumptions of NPSPM were made in EVE [65] and EVECAN [65]. EVECAN (EVEnt

and CANdidate distribution) partitions the input sequentail data similar to EVE (EVEnt distribution), and also
partitions the candidate sequences. In EVECAN, both the candidate generation phase and the counting phase are
parallelized. The former uses a distributed hash table mechanism, whereas the later adopts an approach similar to
Intelligent Data Distribution (IDD), which is usually used for non-sequential associations. EVECAN shards both
input sequences and candidate sequences, and rotates the smaller of the two sequence sets among the processes,
in round-robin fashion. Note that the above parallel formulations for SPM only toward the shared-memory
architecture.
DPF, STPF and DTPF. Guralnik and Karypis developed three tree-projection-based parallel sequence mining

algorithm [49], named data parallel formulation (DPF), static task-parallel formulation (STPF), and dynamic task-
parallel formulation (DTPF), for distributed-memory architectures. These projection algorithms are parallelized
using the data parallel formulation (DPF) and the task parallel formulation (TPF). They are intrinsically similar
to the PrefixSpan algorithm [51], grow the lexicographic sequence tree in a bi-level breadth-first manner. Two
partitioning methods were proposed: TPF-BP (TPF based on a bin-packing algorithm) and TPF-GP (TPF based on
a minimum-cut bipartite graph partitioning algorithm), both TPF-BP and TPF-GP can achieve balanced workloads.
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It was shown that these three algorithms are able to achieve good speedups when the number of processors
increases. However, STPF may suffer some load imbalance problem while the number of processes increases,
and DPF has not only to partition the tree, but also needs to perform multiple scans of the local database at
each iteration. The added I/O overhead makes DPF impractical for big data analytics. In addition, DPF utilizes a
dynamic load-balancing strategy to allow an idle processor to join the busy processors. However, this dynamic
strategy requires much more inter-processor communication than the selective sampling approach used in the
Par-CSP algorithm [26]. Moreover, the interruption of these busy processors may even cause more overhead
during the mining process.
Summary of merits and limitation. In this subsection, we have described the key details of some partition-

based algorithms for PSPM so far. We further highlight the key differences, advantages and disadvantages between
these approaches, as shown in Table 8.

4.3 Apriori-based Algorithms for PSPM
As the above partition-based algorithms of PSPM, input partitioning is not inherently necessary for shared
memory systems or MapReduce distributed systems. In this subsection, some typical Apriori-based algorithms
for PSPM are introduced. Moreover, the key differences, advantages and disadvantages between these approaches
are highlighted at Table 9.
pSPADE and webSPADE. Zaki first extended the efficient SPADE algorithm to the shared memory parallel

architecture, called pSPADE [139]. In the pSPADE framework, input sequence data is assumed to be resided on
shared hard drive space, and stored in lattice (a vertical data structure). pSPADE utilizes an optimized task parallel
formulation approach (Recursive Dynamic Load Balancing, RDLB), and uses two data parallel formulations (single
vs. level-wise id-list parallelism and join parallelism), to partition the input spaces. Processes are either assigned
id-lists for a subset of sequences, or portions of all id-lists associated with a range of sequences in database. After
that, processes collaborate to expand each node in the itemset lattice. However, these formulations lead to poor
performance due to high synchronization and memory overheads. Zaki then proposed two task distribution
schemes, which are able to avoid read/write conflicts through independent search space sub-lattice assignments.
Besides, a web-based parallel approach called webSPADE is proposed to analyze the web log [28]. webSPADE is
also a SPADE-based algorithm to be run on shared memory parallel computers.
DGSP and DPSP. A distributed GSP algorithm based on MapReduce [27] framework named DGSP was

introduced in [133]. The “two-jobs" structure used in DGSP can effectively reduce the communication overhead for
parallelly mining sequential patterns. DGSP optimizes the workload balance, partitions the database, and assigns
the fragments to Map workers. All in all, DGSP is a straight-forward extension of GSP in distributed environment,
it performs poorly because of the repeated scans of the input data. Huang et al. developed Map/Reduce jobs
in DPSP to delete obsolete itemsets, to update current candidate sequential patterns, and to report up-to-date
frequent sequential patterns within each period of interest (POI) [59]. One major drawback of DPSP is that it
needs to proceed through numerous rounds of MapReduce’s jobs, which will easily cause the load unbalancing
problem and incur high cost of MapReduce initialization. Anthor drawback is that it focuses on the POI concept,
where the database is divided into many POI windows. Thus, its ability of handling longer sequential patterns is
not demonstrated.
PartSpan and GridGSP. After that, some distributed and parallel mining methods, such as parallel sequence

mining of trajectory pattern (PartSpan) [98] and GridGSP [124], were proposed to find trajectory patterns by
extending the traditional GSP algorithm [112]. The PartSpan, which is based on GSP and HPSPM, adopts the
prefix-projection and the parallel formulation [98]. Thus, it can efficiently solve the I/O cost by using the candidate
pruning strategy and reasonable data distribution [98]. GridGSP is a distributed and parallel GSP algorithm in a
grid computing environment, it provides a flexible and efficient platform for SPM [124]. In GridGSP, the input
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Table 9. Apriori-based algorithms for parallel sequential pattern mining.

Name Description Pros. Cons. Year
pSPADE [139] Parallel SPADE. • RDLB exploits the dynamic

load balancing at both
inter-class and intra-class
granularities.

• It mines patterns with
level-wise candidate
generation-and-test.

2001

webSPADE [28] A parallel-algorithm
variation of SPADE
developed for web logs.

• It requires once scan of the
input data and multi-processor
servers.
• Data and task parallelism are
achieved easily by
multi-threaded programming.

• As a Apriori-based, vertical
formatting method similar to
SPADE, it needs several partial
scans of the database.

2002

DGSP [133] A distributed GSP
algorithm based on
MapReduce.

• DGSP optimizes the
workload balance, partitions
the database, and assigns the
fragments to Map workers.

• It may performe poorly
because of the repeated scans
of the input sequence data.

2005

PartSpan [98] Parallel sequence mining of
trajectory patterns.

• It can reduce the I/O cost by
using the candidate pruning
strategy and reasonable data
distribution.

• It does not scale well and can
not efficiently solve the
problem of time-consuming
and memory cost.

2008

DPSP [59] A sequence algorihtm that
mining Distributed
Progressive Sequential
Patterns on the cloud.

• It performs a progressive
mining process in a dynamic
database.
• It can discover up-to-date
frequent sequential patterns.

• It may cause the load
unbalancing problem because
of the required numerous
rounds of MapReduce jobs.
• It may easily incur high cost
of MapReduce initialization.

2010

GridGSP [124] A distributed and parallel
GSP in a grid computing
environment.

• It utilizes the
divide-and-conquer strategy.
• Several monitoring
mechanisms are developed to
help manage the SPM process.

• Suffer some drawbacks of the
GSP algorithm, such as
time-consuming and memory
cost.

2012

SPAMC [19] SPAM algorithm on the
Cloud.

• Could-based SPAMC utilizes
an iterative MapReduce
framework to increase
scalability.

• It is not an iterative mining
approach, and may incur
additional costs for reloading
data.
• It does not study the load
balancing problem.
• It is still not scalable enough.

2013

SPAMC-UDLT [18] SPAM algorithm in the
cloud-uniform distributed
lexical sequence tree.

• It is an iterative mining
approach.
• It studies the load balancing
problem.
• Exploiting MapReduce and
streaming processes.

• It does not consider the gap
constraint.
• It does not study condense
representation (i.e., closed,
maximal).

2013
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sequence data is divided into a number of progressive windows, and then these data independently perform
candidate generation on multiple machines. Then, reducer uses the support assembling jobs to count the relative
occurrence frequencies of candidate sequences. Besides, GridGSP uses the Count Distribution (CD) technology for
counting 1-length candidate sequences, followed by a projection-based task partitioning for solving the remainder
of the PSPM problem. The similar strategies were used in PLUTE [97] and MG-FSM [88]. Both PartSpan and
GridGSP focus on efficiently mining the frequent patterns under different domain-specific constraints or on
different types of data by using MapReduce.
SPAMC & SPAMC-UDLT. Recently, Huang et al. extend the classic SPAM algorithm to a MapReduce version,

named as SPAM algorithm on the Cloud (SPAMC for short). Cloud-based SPAMC utilizes an iterative MapReduce
to quickly generate and prune candidate sequences while constructing the lexical sequence tree [19]. The core
technology of SPAMC is that it mines a sequential database using parallel processing, and the all sub-tasks
can be simultaneously distributed and executed on many machines. However, SPAMC does not address the
iterative mining problem, as well as the load balancing problem. Thus, reloading data in SPAMC incurs additional
costs. Although SPAMC utilizes a global bitmap, it is not scalable enough for handing extremely large-scale
databases. To remedy these problems, Chen et al. further devised SPAMC-UDLT to discover the sequential
patterns in the cloud-uniform distributed lexical sequence tree, exploiting MapReduce and streaming processes
[18]. SPAMC-UDLT dramatically improves overall performance without launching multiple MapReduce rounds,
and provides perfect load balancing across machines in the cloud [18]. The results [18] showed that SPAMC-UDLT
can remarkably reduce execution time compared to SPAMC, achieve high scalability, and provide much better
load balancing than existing algorithms in the cloud.
Summary of merits and limitation. All the above-described algorithms, which are shown in Table 9, are

the Apriori-based algorithms for parallel sequential pattern mining. In general, all these algorithms may also
suffer from some drawbacks of serial Apriori-based SPM algorithm. Thus, they do not scale well and can not
efficiently solve the problem such as time-consuming and memory cost.

4.4 Pattern Growth Algorithms for PSPM
As mentioned before, many pattern growth algorithms for serial sequential pattern mining have been extensively
studied. Based on these theories and techniques, some of these algorithms have been extended to realize the
parallelization. As shown in Table 10. It contains key characteristics, advantages and disadvantages of the pattern
growth approaches. The PrefixSpan algorithm also has some parallelized versions, such as Par-ASP [25] and
Sequence-Growth [74].
Par-FP, Par-ASP and Par-CSP. In order to balance mining tasks, Cong et al. designed several pattern-growth

models, Par-FP (Parallel FP-growth) [25], Par-ASP (Parallel PrefixSpan to mine all sequential-patterns) [25] and
Par-CSP (Parallel mining of Closed Sequential Patterns) [26], to accomplish the static task. Especially, they use a
sampling technique, named selective sampling, that requires the entire input data be available at each process.
Par-ASP is extended by the classical PrefixSpan algorithm [51], and the used selective sampling in Par-ASP
is performed by four steps: sample tree construction, sample tree mining, task partition and task scheduling.
After collecting 1-length frequent sequence counts, Par-ASP separates a sample of k-length frequent prefixes of
sequences in database. It then uses one process to handle the sample via a pattern growth algorithm, recording the
execution times for the found frequent sub-sequences. Correspondingly, mining each of frequent sub-sequences
can be transformed into a parallel task. A series of projected sub-databases for these frequent sub-sequences
are done while estimating their execution times. After that, task distribution is done in the same way as in the
Par-FP algorithm [25]. However, it has been found that the serial sampling operations of these algorithms limit
the speedup potential when the number of processes increases.
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Table 10. Pattern growth algorithms for parallel sequential pattern mining.

Name Description Pros. Cons. Year
Par-ASP [25] Parallel PrefixSpan to mine

all sequential patterns
(ASP).

• It uses a sampling method to
accomplish static task
partition.

• The serial sampling
component limits the speedup
potential when the number of
processes increases.

2005

Par-CSP [26] Parallel mining Closed
Sequential Patterns with
selective sampling.

• The first parallel algorithm
for mining closed sequential
patterns.
• It can reduce processor idle
time using a dynamic
scheduling scheme.
• Using a load-balancing
scheme.

• The serial sampling
component limits the speedup
potential when the number of
processes increases.

2005

PLUTE [97] Parallel sequential pattern
mining.

• It focuses on massive
trajectory data, and
outperforms PartSpan in
mining massive trajectory data.

• The used prefix projection
technology could consume
huge memory and a lot of scan
time.

2010

BIDE-MR [132] A BIDE-based parallel
algorithm on MapReduce.

• The tasks of closure checking
and pruning can be iteratively
assigned to different nodes in
cluster.
• Performed on Hadoop cluster
with high speed-ups.
• Can mine closed sequential
patterns.

• Even mining frequent closed
sequences does not fully
resolve the problem of pattern
explosion.

2012

DFSP [75] A Depth-First SPelling
algorithm for mining
sequences from biological
data.

• It proposes a
three-dimensional list for
mining DNA sequences.
• It addresses biological data
mining, such as protein DNA
analysis.

• It focuses on PSPM under
different domain-specific
constraints, but not the general
cases without any constraints.

2013

Sequence
-Growth [74]

A MapReduce-based FIM
algorithm with sequences.

• It uses a lexicographical
order to generate candidate
sequences that avoiding
expensive scanning processes.
• It provides an extension for
trajectory pattern mining.

• It does not consider the
gap-constraint and support
hierarchies.

2015

As described at above subsection, some closed-based SPM algorithms have been extensively studied. Unfortu-
nately, no parallel method for closed sequential pattern mining has yet been proposed. In 2005, Cong et al. first
proposed the Par-CSP (Parallel Closed Sequential Pattern mining) algorithm [26] based on the BIDE algorithm.
Par-CSP [26] is the first parallel algorithm which aims at mining closed sequential patterns. The process in
Par-CSP is divided into independent tasks, this can minimize inter-processor communications. Par-CSP utilizes a
dynamic scheduling strategy to reduce processor idle time and is performed in a distributed memory system. It is
different from pSPADE using a shared-memory system. Par-CSP also uses a load-balancing scheme to speed up
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the process. Applying such a dynamic load balancing scheme in a distributed memory system is too expensive to
be practical even for big data. In contrast to mine closed sequences, a parallel version of the MSPX [81] algorithm
named PMSPX was also proposed. It mines maximal frequent sequential patterns by using multiple samples [82].

In addition, sequential mining can be applied into biological sequence mining, such as a protein DNA analysis.
Recently, the 2PDF-Index [122], 2PDF-Compression [122], and DFSP [75] algorithms were proposed and applied
to scalable mining sequential patterns for biological sequences. DFSP [75] uses a three-dimensional list for mining
DNA sequences. It adopts direct access strategy and binary search to index the list structure for enumerating
candidate patterns. However, these three works focus on efficiently mining the frequent patterns under different
domain-specific constraints or on different types of data (e.g., medical database, DNA sequences), while SPAMC-
UDLT [18] focuses on the general cases without any constraints.
Summary of merits and limitation. According the above analytics, it can be concluded that the pattern-

growth approaches usually perform better than the early technologies, including the partition-based and Apriori-
based algorithms for PSPM. Moreover, the key differences, advantages and disadvantages between these ap-
proaches are highlighted in Table 9.

4.5 Hybrid Algorithms for PSPM
Some hybrid parallel algorithms for SPM are developed by incorporating the above different technologies, as
shown in Table 11. Details of some important hybrid algorithms are described below.
MG-FSM and MG-FSM+. MG-FSM [88] and its enhanced version MG-FSM+ [11] are the scalable distributed

(i.e., shared-nothing) algorithms for gap-constrained SPM on MapReduce [27]. In MG-FSM and MG-FSM+,
the notion of w-equivalency w.r.t. “projected database” which is used by many SPM algorithms is introduced.
Moreover, some optimization techniques are developed to minimize partition size, computational costs, and
communication costs. Therefore, MG-FSM and MG-FSM+ are more efficient and scalable than previous alternative
approaches. Especially, any existing serial FSMmethod can be applied intoMG-FSM to handle each of its partitions.
MG-FSM is divided into three key phases: i) a preprocessing phase, ii) a partitioning phase, and iii) a mining phase;
all these phases are fully parallelized. It is more adaptable and flexible that both MG-FSM [88] and MG-FSM+
[11] can handle temporal gaps and maximal and closed sequences, which improves their usability.
MG-FSM vs. LASH. In some real-world applications, hierarchy and frequency of items can be different, while

MG-FSM does not support hierarchies. To overcome this drawback, LASH is recently designed for large-scale
sequence datasets. It is the first parallel algorithm to discovery frequent sequences by considering hierarchies
[12]. Inspired by MG-FSM, LASH first partitions the input data, and then handles each partition independently
and in parallel. Both of them are the distributed algorithms for mining SPs with Maximum gap and maximum
length constraints using MapReduce [27], they are all more adaptable and flexible than other PSPM algorithms.
Notice that LASH does not have a global post-processing, it divides each sequence by pivot item and performs
local mining (PSM). Therefore, LASH can have better search performance than MG-FSM and MG-FSM+.
ACME. For the application in bioinformatics, Sahli et al. proposed ACME [105], which applies tree structure to

extract longer motif sequences on supercomputers. ACME is a parallel combinatorial method for extracting motifs
repeated in a single long sequence (e.g., DNA) instead of multiple long sequences. It proposes two novel models,
CAST (cache aware search space traversal model) and FAST (fine-grained adaptive sub-tasks), to effectively utilize
memory caches and processing power of multi-core shared-memory machines. ACME introduces an automatic
tuning mechanism that suggests the appropriate number of CPUs to utilize. In particular, it is large-scale shared
nothing systems with tens of thousands of processors, which are typical in cloud computing. It has been shown
that ACME achieves improvement in serial execution time by almost an order of magnitude, especially supports
for longer sequences (e.g., DNA for the entire human genome).
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Table 11. Hybrid algorithms for parallel sequential pattern mining.

Name Description Pros. Cons. Year
MG-FSM [88] A large-scale algorithm

for Frequent Sequence
Mining on MapReduce
with gap constraints.

• Uses some optimization techniques to
minimize partition size, computational cost,
and communication cost.
• More efficient and scalable than other
alternative approaches.
• Any existing SPM method can be used to
mine one of its partitions.
• Can handle temporal gaps, maximal and
closed sequences, which improves its
usability.

• MG-FSM does not
support hierarchies, that
some of items have
hierarchies and frequency
can be different.

2013

DFSP [75] A Depth-First SPelling
algorithm for mining
sequences from
biological data.

• It proposes a three-dimensional list for
mining DNA sequences.
• It addresses biological data mining, such
as protein DNA analysis.

• It focuses on PSPM under
different domain-specific
constraints, but not the
general cases without any
constraints.

2013

IMRSPM [45] Uncertain SPM
algorithm in iterative
MapReduce
framework.

• An iterative MapReduce framework for
mining uncertain sequential patterns.
• The first work to solve the large-scale
uncertain SPM problem.

• It extends the
Apriori-like SPM
framework to MapReduce,
thus suffers from some
drawbacks of Apriori-like
SPM algorithms.

2015

MG-FSM+ [11] An enhanced version
of MG-FSM.

• A more scalable distributed (i.e.,
shared-nothing) sequential pattern mining
algorithm.
• A more suitable SPM approach to directly
integrate the maximality constraint.

• Similar to MG-FSM,
MG-FSM+ does not
support hierarchies either.

2015

LASH [12] A LArge-scale
Sequence mining
algorithm with
Hierarchies.

• It is the first parallel algorithm for
mining frequent sequences with
consideration of hierarchies.
• It proposes the pivot sequence miner
(PSM) method for mining each partition.
• LASH can search better than MG-FSM
because of PSM.
• LASH does not need a global
post-processing.

• It cannot handle stream
data and uncertain data.

2015

Distributed
SPM [44]

A distributed SPM
approach with dynamic
programming.

• A memory-efficient approach uses
distribute dynamic programming schema.
• Uses an extended prefix-tree to save
intermediate results.
• Its time cost is linear.

• It does not consider the
gap-constraint and support
hierarchies.

2016

Interesting
Sequence
Miner (ISM)
[37]

A novel subsequence
interleaving parallel
model based on a
probabilistic model of
the sequence database.

• It takes a probabilistic machine learning
approach (an encoding scheme) to the SPM
problem.
• All operations on the sequence database
are trivially parallelizable.

• It cannot handle stream
data and uncertain data.

2015
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Summary of merits and limitation. In most PSPM algorithms, they are hybrid inherently. Although the
hybrid methods for PSPM incorporate different technologies to effectively reduce communication cost, memory
usage and execution time, which usually have a significant performance improvement than the above partition-
based, Apriori-based, and pattern growth algorithms. There is no doubt that they also have their advantages and
disadvantages. Details of characteristics, advantages and disadvantages about these hybrid methods for PSPM
are described at Table 11.

5 ADVANCED TOPICS IN PSPM
In this section, some advanced topics of parallel sequential pattern mining are provided and discussed in details,
including parallel quantitative / weighted / utility sequential pattern mining, parallel sequential pattern mining
from uncertain data and stream data, hardware accelerator for PSPM. For specific problems and tasks in real-world
applications, these advanced algorithms can provide more choices and options to user.

When someone is beginning his/her way in data mining, especially in sequential pattern mining, he/she often
face the problem of choosing the most appropriate algorithm for his/her specific task. There is no doubt that no
one solution or one approach that fits all. In general, some problems may be very specific and require a unique
approach. In the above sections, we have provided a detailed survey and discussion for the different categories of
PSPM so far. In our opinions, people who want to use the PSPM algorithm should first understand their data,
than categorize the problem or task, and understand the specific constraints and the requirements/goals (e.g.,
business requirement, accuracy, efficiency, maximal memory usage, and scalability). Finally, they can find the
available algorithms for his/her specific requirement.

5.1 Parallel Quantitative / Weighted / Utility Sequential Pattern Mining
Generally speaking, most PSPM algorithms focus on how to improve their efficiency. In many cases, effectiveness
can be far more important than efficiency. It is commonly seen that sequence data contains various quantity [58],
weight [69, 77, 134], or utility with different items/objects [41, 42, 79]. For example, consider some transactions
from shopping baskets. As shown in Table 3, the quantity and price of each item are not considered in this
database. In general, some useful information (i.e., quantitative, weight and utility) are simply ignored in the
current form of sequential pattern mining. Up to now, some approaches have been proposed to handle quantity,
weight or utility constraints in sequential pattern mining, and a literature review has been provided by Gan at
al. in [42]. Many sequential pattern algorithms have been introduced, such as quantitative sequential pattern
[58, 67], weighted sequential pattern [69, 134], utility-driven sequential pattern [4, 42], etc. All of these efforts
rely on sequence data and are not able to scale to larger-scale datasets. How to achieve parallelism of these
methods is an open issue and challenge.

Recently, the methods for mining above useful sequential patterns are extended to achieve parallelism, such as
the PESMiner (Parallel Event Space Miner) framework [104] for parallel and quantitative mining of sequential
patterns at scale, and the Spark-based BigHUSP algorithm [148] for mining high-utility sequential patterns. As one
of the big data models for utility mining [42], BigHUSP is designed based on the Apache Spark platform [135] and
takes advantage of several merit properties of Spark such as distributed in memory processing, fault recovery and
high scalability [148]. On one hand, both PESMiner [104] and BigHUSP [148] can identify informative sequential
patterns with respect to a business objective, such as interval-based quantitative patterns and profitable patterns.
Thus, they may be more effective than those which simply ignore the useful information. On the other hand,
these frameworks integrate domain knowledge, computational power, and MapReduce [27] or the Apache Spark
[135] techniques together to achieve better feasibility, quality and scalability.
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5.2 PSPM in Uncertain Data
In many real-life applications, uncertain data is commonly seen, and uncertain sequence data is widely used
to model inaccurate or imprecise timestamped data [92], while traditional datat mining (i.e., FIM, ARM, SPM)
algorithms are inapplicable when handling uncertain data. Other related algorithms for parallel sequential pattern
mining are still being developed, such as the PSPM of large-scale databases by using a probabilistic model [37].
Recently, Ge at al. proposed an iterative MapReduce framework for mining uncertain sequential patterns, where
the new iterative MapReduce-based Apriori-like uncertain SPM framework is quite different from the traditional
SPM algorithms [45]. An uncertain sequence database D = {d1, ...,dn} is abstracted by a Resilient Distributed
Datasets (RDD) [135] in Spark. Uncertain sequences in the RDD are allocated to a cluster of machines and can be
processed in parallel. A sequential pattern s in D is called a probabilistic frequent pattern (p-FSP) if and only
if its probability of being frequent is at least ψp , denoted by P(sup(s) ≥ ψs ) ≥ ψp . Here, ψs is the user-defined
minimum probability threshold. However, the frequentness of s in an uncertain database is probabilistic.
For application of SPM in uncertain databases [92], it is challenging in terms of efficiency and scalability. Ge

and Xia further developed a Distributed Sequential Pattern (DSP) mining algorithm in large-scale uncertain
databases based on Spark, which relies on a memory-efficient distributed dynamic programming (DP) approach
[44]. Although MapReduce [27] is widely used for processing big data in parallel, while it does not support the
iterative computing model, its basic framework cannot be directly used in SPM. Directly applying the DP method
to Spark is impractical because its memory-consuming characteristic may cause heavy JVM garbage collection
overhead in Spark [44]. For bioinformatics, a new spark-based framework was proposed to mine sequential
patterns from uncertain big deoxyribonucleic acid (DNA) [54].

5.3 PSPM in Stream Data
Most of the above PSPM algorithms are developed to handle traditional database management system (DBMS)8
where data are stored in finite, persistent databases. For some real-life applications, it is commonly seen to
process the continuous data stream which is quite different from DBMS. Stream data is temporally ordered, fast
changing, massive, and potentially infinite [53]. Few stream algorithms have been developed for parallel mining
sequential patterns up till now. Recently, Chen et al. proposed two parallel sequential pattern mining algorithms,
SPAMC [19] and SPAMC-UDLT [18], for processing stream data. Since SPAMC is still not scalable enough for
mining large-scale data, the SPAMC-UDLT algorithm [18] was further proposed to address the fast changing
massive stream data. Notice that the characteristics of SPAMC and SPAMC-UDLT have been highlighted at
Table 9, and some comments and differences about them have already been mentioned before. The advantages of
these cloud-based algorithms are that they can scan the stream data only once, and can effectively generate all
the frequent sequential patterns by using stream mining operation. In cases of multiple streams in parallel, the
MSSBE algorithm [54] can find sequential patterns in a multiple-stream environment, where pattern elements
can be part of different streams.

5.4 Hardware Accelerator for PSPM
Generally, many efforts have been made to speed up SPM via software and hardware. On the one hand, parallel
implementation is the general way. On the other hand, hardware accelerators allow a single node to achieve orders
of magnitude improvements in performance and energy efficiency. As mentioned before, Graphics processing
units (GPUs) [7, 16] have attracted much attention due to their cost-effectiveness and enormous power for
massive data parallel computing. General-purpose GPUs leverage high parallelism, but GPUs’ single instruction
multiple data (SIMD) and lockstep organization means that the parallel tasks must generally be similar. Lin et al.
developed a novel parallel algorithm on GPUs for accelerating pattern matching [76]. Based on the traditional AC
8https://en.wikipedia.org/wiki/Database
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algorithm, they implement three CPU versions and one GPU version as follows: ACCPU, DPACOMP, PFACOMP,
and PFACGPU [76].

Then Memeti and Pllana introduced an approach for accelerating large-scale DNA sequence analysis and SIMD
parallelism using many-core architectures (such as GPU, Intel Xeon Phi coprocessor) [87]. Recently, Wang et al.
proposed a hardware-accelerated solution, AP-SPM and GPU-GSP, for sequential pattern mining (SPM) [121].
The major ideas are summarized as follows: It uses Micron’s new Automata Processor (AP), which provides native
hardware implementation of non-deterministic finite automata. Based on the well-known GSP approach, AP SPM
derives a compact automaton design for matching and counting frequent sequences. According to experiments
with a single-threaded CPU, multi-core CPU, and GPU GSP implementations [121], it has been shown that the
AP-accelerated solution outperforms PrefixSpan [51] and SPADE [140] on multi-core CPU, and scales well for
larger datasets.

6 OPEN-SOURCE SOFTWARE
Although the problem of sequential pattern mining has been studied for more than two decades, and the advanced
topic of parallel sequential pattern mining also has been extended to many research fields, few implementations
or source code of these algorithms are released. This brings some barriers to other researchers that they need to
re-implement algorithms for using the algorithms or comparing the performance with novel proposed algorithms.
To make matter worse, it may cause the unfairness while running experimental comparison, since the performance
of pattern mining algorithms (i.e., FIM, ARM and SPM) may commonly depending on the used compiler and the
used machine architecture. We provide some open-source software of SPM and PSPM in Table 12.

Table 12. Open-source software for SPM or PSPM.

Name Contributors Website
Sequence Mining Zaki et al. http://www.cs.rpi.edu/~zaki/www-[]new/pmwiki.php/Software

SPAM [9] Gehrke et al. http://himalaya-[]tools.sourceforge.net/Spam
SPMF [112] Fournier-Viger et al. http://www.philippe-[]fournier-[]viger.com/spmf

MLlib Apache Spark https://spark.apache.org/mllib/
MG-FSM [86] Miliaraki et al. https://github.com/uma-[]pi1/mgfsm
LASH [12] Beedkar et al. http://uma-[]pi1.github.io/lash

• Sequence mining. Zaki releases many implementations or source code of data mining algorithms on his
Website, including itemset mining and association rules, sequence mining, itemset and sequence utilities, tree
mining, graph mining & indexing, and clustering. He provides C code for three sequence mining algorithms.
• SPAM. There is a special website (as shown in Table 12), named “Himalaya Data Mining Tools", built for the

classical SPAM algorithm [9] which aims at finding all frequent sequences. It provides an overview, an illustrative
example, source code and documentation, as well as the presentation slides of SPAM.
• SPMF. SPMF [32] is a well-known open-source data-mining library, which implements many algorithms and

has been cited in more than 600 research papers since 2010. SPMF is written in Java, and provides implementations
of 120 data mining algorithms, specialized in sequential pattern mining. SPMF has the largest collection of
implementations of various algorithms for sequential pattern mining. It provides the Java code for AprioriAll [2],
GSP [112], PrefixSpan [51], SPADE [140], SPAM [9] and many others. The only problem is that SPMF does not
provide any parallel algorithms.
•MLlib. Machine Learning Library (MLlib) is a scalable Apache-Spark-based machine learning library. MLlib

contains many algorithms and utilities, including frequent itemset mining, association rule mining, sequential
pattern mining, as well as many other algorithms for other mining tasks. Algorithms in MLlib are written in
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Java, Scala, Python, and R. Up to now, MLlib has become an important and widely used framework with SPM
algorithms.
• MG-FSM & MG-FSM+. MG-FSM [88] is a scalable, general-purpose (e.g., general, with Maximum gap

constraints, and with maximum length constraints, etc.) frequent sequence mining algorithm built for MapReduce.
The Java implementation and command line options of MG-FSM are provided at Github.

• LASH. LASH [12] is a new high scalable, MapReduce-based distributed sequence mining algorithm. It mines
sequential patterns by considering items’ hierarchies. The Java source code of LASH is provided at Github,
including prerequisites for building LASH and running instructions.

7 CHALLENGES AND OPPORTUNITIES IN PARALLEL SEQUENTIAL PATTERN MINING

7.1 Challenges in PSPM
In recent decades, many models and algorithms have been developed in data mining to efficiently discover the
desired knowledge from various types of databases. There are still, however, many challenges in big data mining.
According to Labrinidis and Jagadish’s study, the major challenges in big data analysis include: data inconsistency,
data incompleteness, scalability, timeliness, and security [68]. Although useful developments have been made in
the field of parallel computing platforms, there are still some technical challenges [17, 113]. Despite advances
in the field of parallel data mining, especially parallel frequent itemset mining and parallel sequential pattern
mining, both in academia and industry, significant challenges still remain in parallel sequential pattern mining.
Some challenges which need to be dealt with for realizing parallel sequential pattern mining are respectively
explored in the following section.
(1) Complex types of sequence data. Sequential data commonly occurs in many fields, current developments

in parallel sequential pattern mining have successfully addressed some types of sequence data, including the
general type of sequence, sequence data containing quantity / weight / utility [42], uncertain sequential data
[45], stream data [18], and so on. The related algorithms and some extensions have been mentioned previously.
However, there are still various more complex types of sequence data in a wide range of applications. For example,
the spatio-temporal sequential data contains rich semantic features and information (i.e., time-space information,
location, spatial and temporal relationships among data points of trajectories) than the traditional sequential data.
How to improve the mining efficiency, and how to extract more rich information rather than the support-based
occurrence are more interesting and helpful to real-world applications. For future research, it is a big challenge
to develop more adaptable and flexible PSPM frameworks for dealing with more complex types of sequence data
in a parallel environment.
(2)Multi-modal data. In the big data era, a key property of multi-modality is complementarity. Each modality

brings to the whole some type of added value that cannot be deduced or obtained from any of the other modalities
in the setup. In mathematical field, this added value is so called diversity. How to integrate different knowledge
from the diversity of multi-modal data using parallel sequential pattern mining algorithms is a potential challenge
in big data area.
(3) Dynamic sequence data. In a wide range of applications, the processed data may be commonly dynamic

but not static [53]. The dynamic data is more complicated and difficult than the static data. Although some
approaches have been developed for handling dynamic sequence data, such as incremental mining [22, 30, 144],
decremental mining [78], online progressive mining [60], and stream data processing [18, 53]. Most existing
studies are designed without parallelization, research on parallelly mining sequences from dynamic sequence
data has seldom been done so far. Therefore, there are still some challenges when parallelizing these mining
methods, especially for parallelizing dynamic sequential pattern mining algorithms.
(4) Scalability. In general, parallelizing SPM algorithms for dealing with big data is more complicated and

difficult than that of small data. It easily brings some challenging problems, such as availability, accuracy, and
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scalability. When dealing with big data, the disadvantages of current data mining techniques are centered
on inadequate scalability and parallelism. Scalability is one of the core technologies to meet these challenges.
Although a significant amount of developments, such as MG-FSM, LASH, and MLlib, have been reported, there
is still much improvement for parallel implementation. There is still, however, a major challenge to realize the
needed scalability of the developed PSPM algorithm with demonstrated elasticity and parallelism capacities.
(5) Privacy. Data has the inestimable value (i.e., hidden knowledge and more valuable insights). Data mining

and analytics offer many useful tools and play an important role in many fields. However, a major risk in data
management and data mining is data leakage, which seriously threatens privacy. Public concerns regarding
privacy are rising, which is a major concern in data mining, especially big data mining. On one hand, policies that
cover all user privacy concerns should be developed. On the other hand, privacy preserving data mining (PPDM)
[147] and privacy preserving utility mining (PPUM) [39] are also needed. Up to now, many technologies and
algorithms have been developed for PPDM [147] or PPUM [39], but few of them are related to parallel sequential
pattern mining. With the developments of SPM to analyze personal data, it is quite necessary and challenging to
address the privacy preserving problem for parallel sequential pattern mining.

7.2 Opportunities in PSPM
There are a variety of traditional, distributed, and parallel datamining algorithms in numerous real-life applications.
To meet the demand of large-scale and high performance computing, the problem of parallel/distributed data
mining has received considerable attention over the past decade. There are many types of parallel and distributed
systems, such as multi-core computing [29, 62, 100], grids [80, 83], peer-to-peer (P2P) systems [101], ad-hoc
networks [127], cloud computing systems [47], and the MapReduce framework [27]. All these developments
can provide theoretical and technical support for parallel sequential pattern mining. Some opportunities are
summarized below.
(1) New applications. According to the research of current status, most algorithms of PSPM focus on how to

improve the mining efficiency. It is commonly seen that sequential data occurs in many fields such as basket
analysis, sensor networks, bioinformatics, social network analysis, and the Internet of Things. There are some
important research opportunities for PSPM in these fields. Instead of focusing on faster general PSPM algorithms,
the trend clearly goes towards to extend parallel sequential pattern mining in new applications, or in new ways
for existing applications [33]. For example, the utility-driven mining [42] on large-scale sequence data is more
practical but challenge.
(2) Advanced parallel computing environment. To overcome the scalability challenge of big data, several

attempts have been made in exploiting massive parallel processing architectures, e.g., cloud [47], MapReduce
[27], Spark [135]. All these computing infrastructures provide new opportunities for the design of parallel data
mining, especially for parallel sequential pattern mining algorithms. To some degree, all these developments can
provide the necessary theoretical and technical support for parallel sequential pattern mining.
(3) Developments from hardware and software. As mentioned before, a trend of parallel computing is

graphics processing unit (GPU) based parallel techniques. Architecturally, a GPU is composed of hundreds of
cores that can simultaneously handle thousands of threads/tasks [7, 16]. More and more supercomputers have the
GPU component which is different from the traditional CPU. Therefore, we can expect an enhancement on parallel
data mining with the progress of powerful computational capabilities. For future research, the developments
from hardware and software strongly provide some opportunities for the sequence mining task in a parallel
environment.
(4) Keeping pattern short and simple. Although there have been numerous studies on pattern mining (e.g.,

FIM, ARM, SPM, etc.), the study on interesting pattern mining is still limited. Most of them are only limited to
discover the complete set of desired patterns, a huge pattern mining results may still confuse users to make
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inefficient decisions. What iss worse, they may easily cause redundant results when mining long patterns or
with a low support threshold. Returning a condensed or more constrained set is an interesting issue. Some
methods of condensed SPM (i.e., CloSpan [129], BIDE [120], MSPX [81] and ClaSP [48], as shown at Table 7) or
summarization SPM (i.e., summarizing event sequences [114], SQUISH [15]) have been proposed, that is, instead
of returning all patterns that occur more often than a certain threshold, these methods only return a condensed
or more constrained set. How to achieve parallelism of these condensed or summarizing methods is an open
issue and challenge.
(5) Utilizing deep learning technology. Deep learning [70] is a hot topic in current research. There are

some works focus on deep learning for sequential data (i.e., text, EEG data and DNA), such as Recurrent Neural
Networks (RNN) [123], and Long Short Term Memory (LSTM) [56]. Unlike the standard neural network, RNN
allows us to operate over sequences of vectors [123]. And RNN uses internal memory to process arbitrary
sequences of inputs. LSTM is particularly usable by a category of learning machines, adapted to sequential data
[56]. Many deep learning algorithms have been proposed to model sequential data, and then to achieve different
learning goals. Despite their flexibility and power, how to make them parallelized for sequential pattern mining
can lead to challenges and open many new research fields.
(6) Other important issues. Beyond the above points, there are some other important issues that can be

reasonably considered and further developed, such as visualization techniques and the privacy issue for parallel
sequential pattern mining in the big data era. How to design efficient and more flexible PSPM approachs to
support iterative and interactive mining is also an interesting issue.

8 CONCLUSION
Typically, sequential pattern mining algorithms aim at discovering the desired frequent sequential patterns. Since
traditional data mining algorithms generally have some problems and challenges while processing large-scale data,
parallel data mining has emerged as an important research topic. However, fewer studies summarized the related
development in parallel sequential pattern mining in parallel computing environments, or summarized them as a
taxonomy structure. In this paper, we first review the key characteristics about some parallelism methods, and
then highlight differences and challenges between parallel computing platforms and distributed systems. We
then highlight and discuss some related works on parallel sequential pattern mining in several categories. The
main contributions are that we investigate recent advances in parallel sequential pattern mining and provide
the status of the field in detail, including sequential pattern mining (SPM), parallel frequent itemset mining
(PFIM), and parallel sequential pattern mining (PSMP). Both basic algorithms and advanced algorithms for parallel
sequential pattern mining are reviewed in several categories, the key ideas, advantages and disadvantages of each
approach are also pointed out in details. We further provide some related open-source software of PSPM, that
may reduce barriers from research and algorithm implementation. Finally, we briefly point out some challenges
and opportunities of parallel sequential pattern mining for future research.
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