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ABSTRACT
As large eye-tracking datasets are created, data privacy is a pressing

concern for the eye-tracking community. De-identifying data does

not guarantee privacy because multiple datasets can be linked for

inferences. A common belief is that aggregating individuals’ data

into composite representations such as heatmaps protects the indi-

vidual. However, we analytically examine the privacy of (noise-free)

heatmaps and show that they do not guarantee privacy. We further

propose two noise mechanisms that guarantee privacy and analyze

their privacy-utility tradeoff. Analysis reveals that our Gaussian

noise mechanism is an elegant solution to preserve privacy for

heatmaps. Our results have implications for interdisciplinary re-

search to create differentially private mechanisms for eye tracking.

CCS CONCEPTS
• Security and privacy → Human and societal aspects of se-
curity and privacy; Privacy protections.
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1 INTRODUCTION
With advances in mobile and ubiquitous eye tracking, there is am-

ple opportunity to collect eye tracking data at scale. A user’s gaze

encodes valuable information including attention, intent, emotional

state, cognitive ability, and health. This information can be used

to gain insight into human behavior (e.g. in marketing and user

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ETRA ’19, June 25–28, 2019, Denver , CO, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6709-7/19/06. . . $15.00

https://doi.org/10.1145/3314111.3319823

experience design), create computational models (e.g. for smart en-

vironments and vehicles), and enable interventions (e.g. health and

education). When combined with physiological sensing and contex-

tual data, this information facilitates the modeling and prediction

of human behavior and decision making. As users become increas-

ingly conscious about what their data reveals about them, there is

mounting pressure on policymakers and corporations to introduce

robust privacy regulations and processes [gdp 2018; Graham 2018].

The eye tracking community must actively pursue research about

privacy for broad public acceptance of this technology.

Data privacy for eye tracking has been raised as a concern in

the community [Khamis et al. 2018; Ling et al. 2014]. At a recent

Dagstuhl seminar on ubiquitous gaze sensing and interaction
1
,

privacy considerations were highlighted in a number of papers in

the proceedings [Chuang et al. 2018]. Privacy as a general term has

a wide range of meanings and different levels of importance for

different users. Privacy can obviously be preserved by distorting or

randomizing the answers to queries, however doing so renders the

information in the dataset useless.

To maintain privacy while preserving the utility of the informa-

tion, we propose to apply the concept of differential privacy (DP)

which has been developed by theoretical computer scientists and

applied to database applications over the past decade [Dwork 2011].

Differential privacy can be summarized as follows:

Privacy is maintained if an individual’s records cannot

be accurately identified, even in the worst case when

all other data has been exposed by adversaries.

Our technical contributions are: (1) We introduce the notion of

differential privacy for eye tracking data. (2) We formally examine

the privacy of aggregating eye tracking data as heatmaps and show

that aggregating into heatmaps does not guarantee privacy from

a DP perspective. (3) We propose two mechanisms to improve the

privacy of aggregated gaze data. (4) We analyze the privacy-utility

trade-off of these mechanisms from a DP-point of view.

From a practical perspective, the notion of differential privacy is

both achievable and theoretically verifiable. Though the proofs may

be mathematically sophisticated, the implementation is straight-

forward, and can be integrated into the eye tracking data collection

pipeline. Figure 1 illustrates how this may be achieved. Privacy

is guaranteed for the worst case when an adversary has already

gained access to the data of all other individuals in a dataset (by

1
https://www.dagstuhl.de/18252
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Figure 1: Workflow for researchers and practioners to create the desired strength of privacy level. The solid lines illustrate
the standard workflow for generating an aggregate static heatmap from eye tracking data. The dotted lines show how to
implement a privacy protocol with small modifications to this workflow. The hotspots on the privacy enhanced heatmap
are visually in the same locations as the original heatmap. The supplementary materials show several examples of privacy
enhanced heatmaps for the same noise level.

hacking them for example). Even in this case, the adversary will

still not be able to accurately infer data records of the individual.

In applying the general definition of differential privacy to eye

tracking, we acknowledge that individual users, service providers,

and policy makers may have different positions on what level of

privacy versus utility is desirable. Our work provides a theoretically

grounded analysis of privacy preserving mechanisms to empower

these stakeholders to make such decisions.

Implications. Table 1 presents some of the threats that may

be posed if an adversary was to access eye tracking data with no

privacy protocol in place. Specifically, we elaborate three scenarios

where eye tracking data is collected with good intentions, but if

hacked, could have consequences for the individuals concerned.

Scenario 1: A hospital or doctor’s office collects eye tracking data
as part of patients’ general examination. A research grant enables
a team to use this data to build a machine learning model that can
predict whether someone has a certain neurological disorder. A hacker
gains unauthorized access to this database and is able to identify
specific individuals with the disorder. The hacker then sells or publicly
releases the identity of these individuals, negatively impacting their
employment opportunities, inflating their health insurance costs, and
elevating their social and emotional anxiety.

Table 1: In most cases, eye tracking data is released with the stimuli. This table illustrates the threats posed by releasing this
data if no privacy protocol is in place.

Type of data Example of intended use What adversary can
access in worst case

What adversary can
do now

Does DP apply?

Raw eye movements Foveated rendering Raw eye movements Neurological diagnoses

(see Scenario 1)

yes, future work

Aggregated data with-

out temporal informa-

tion (static heatmaps)

Marketing, UX design, edu-

cation

Individual’s heatmap Behavioral diagnoses

(see Scenario 2)

yes, this paper

Aggregated data with

temporal information

(dynamic heatmaps)

Training models for au-

tonomous vehicles

Individual’s heatmap Establish driver’s liabil-

ity (see Scenario 3)

yes, future work

Areas of Interest (AOI)

analysis

Expert vs novice analysis Individual’s AOI visit

order

Autism spectrum diag-

noses

yes, future work
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Scenario 2: A parent signs a consent form allowing her child to be
eye tracked in a classroom. The consent form says that this data is for
a research project to understand and characterize learning disabilities
and build interventions. The anonymized dataset will be released as
part of an NIH big data initiative. If an adversary manages to access
an individual child’s data and analyze it for markers of dyslexia (for
example), they may sell the information to a marketing company that
will contact the parent with unsolicited advertising for therapies.

Scenario 3: A publicly funded research team is using eye tracking
to study awareness and fatigue of commercial truck drivers. The eye
movement data along with the scene being viewed is streamed to a
remote server for later analysis. A driver in the study was involved
in an accident that resulted in a fatality. Although drivers were told
their data would be de-identified, a private investigator, hired by the
family of the deceased, was able to extract his/her data record from
the database, revealing evidence that (s)he was at fault in the accident.

In scenarios such as these, research teams may reassure partic-

ipants that raw data will not be released, or that individual data

will be de-identified or aggregated (often in the form of heatmaps),

providing the impression that privacy is preserved.

2 BACKGROUND
2.0.1 The problem with de-identification. The first “solution” that
occurs to many of us is to simply anonymize, or de-identify the

dataset. This operation refers to removing personal identifiers such

as the name of the participant from the dataset. The problem with

this approach is that it is not future-proof; as newer datasets are

released, multiple datasets can be linked, and the identity of a

participant can then be inferred [Holland and Komogortsev 2011;

Komogortsev et al. 2010; Nissim et al. 2017; Ohm 2009].

2.0.2 The problemwith running queries. A second “solution”would

be to not release the dataset as is, rather allow the analyst to query

the dataset. The dataset would not allow queries on individual items,

but only on large numbers of items. In other words, a query such as

“Where did the student with the lowest grade look?” would be disal-

lowed. But then, the analyst can run queries such as “Where did the
students who did not have the lowest grade look?”, and “Where did
all the students look?”, and use these queries to infer the disallowed

query. This “solution” is not able to guarantee privacy in the worst

case, for example, if the adversary hacks the data of n − 1 out of n
persons in the dataset. Then (s)he can easily infer the nth person’s

data by querying the average or sum of the dataset.

These issues are well known in database research. One widely

accepted formal definition of privacy that has emerged from this

extensive research is as follows: an individual’s privacy is preserved

if the inferences that are made from the dataset do not indicate in

any significant way whether this individual is part of the dataset

or not. This notion is called differential privacy.

2.0.3 Differential privacy. Differential privacy as a concept was

conceived through insights by theoretical computer scientists aim-

ing to formalize the notion of privacy that was practically achiev-

able as well as theoretically verifiable [Dwork 2011]. A survey of

differential privacy in different fields is presented by Dwork [2008].

Relevant to eye tracking are the works that have applied differential

privacy definitions to machine learning [Abadi et al. 2016; Ji et al.

2014] and time-series analysis [Fan and Xiong 2014; Rastogi and

Nath 2010]. From a societal impact perspective, the eye tracking

industry has as much to gain from these ideas.

2.0.4 Mathematical definition of differential privacy. Formally, given

datasetsD andD ′
that differ in atmost one entry, letM denote a ran-

domized mechanism that outputs a query of a database with some

probability. Then, let S denote a subset of query outcomes (called

an “event”). Then, we say the mechanism M is ϵ−differentially
private (or ϵ−DP in short) if for any S, D and D ′

,

Pr [M(D) ∈ S] ≤ eϵPr
[
M(D ′) ∈ S

]
, (1)

In the above inequality, the probability comes from the randomness

of mechanism M. Such randomness is necessary as we will see in

Section 3.3. We note that this is a worst-case analysis that offers a

strong guarantee of privacy, because the inequality must hold for

all S, and all neighboring datasets D and D ′
.

Another more applicable notion of differential privacy is (ϵ,δ )−
differential privacy, which is a generalization of ϵ−DP. Using the
notation above, we say the mechanism M is (ϵ,δ )−differentially
private (or (ϵ,δ )−DP in short) if for any S, D and D ′

(D and D ′

differs at most one entry),

Pr [M(D) ∈ S] ≤ eϵPr
[
M(D ′) ∈ S

]
+ δ ,

Typically it is believed that δ = Ω
(
1

n

)
means poor privacy [Dwork

et al. 2014] because it allows some individuals’ data to be fully

recovered, where n is the input size. We note that a mechanism

can be (ϵ,δ )-DP for multiple combinations of (ϵ,δ ). As a rule of
thumb, smaller ϵ ’s and δ ’s means better privacy, though we must

point out that directly comparing different numerical values is not

informative, e.g. (0.1, 0.1) and (1, 0) are not comparable.

2.0.5 Toy example. As part of a general wellness dataset D, the
heights of five people are collected. The mean value as the average

height of the population is released. Here, S is the set of outputting

average height. In this example, an adversary obtains the heights

of four of these five persons through hacking. In this way, the

adversary has a dataset D ′
that contains all persons except the fifth.

The adversary computes the average height of the dataset D ′
and

finds that it is much lower than the average height of the dataset D.
The adversary thus infers that the fifth person must be very tall.

2

In other words, even though the fifth person was not known by the

adversary, and the dataset D was not released (only the average

height was released), the fifth person is also compromised because

his or her height can be reverse engineered by the adversary. Now,

we introduce a mechanism M that perturbs the average height of

the dataset D by a random amount before releasing it. If the level of

perturbation is high enough, the adversary will not be able to even

infer whether the fifth person is tall or not. Thus the mechanism

M protects the privacy of the fifth person. Of course, if we add too

much perturbation (or, output totally at random), the utility of the

dataset will be affected because the output average height contains

little information and does not reflect the average height of the

population. This is the privacy-utility tradeoff (see Section 4).

2
The adversary can also compute the exact height of the fifth person.
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2.0.6 Privacy in eye tracking. For much of the past two decades,

the focus of eye tracking research has been on making eye tracking

ubiquitous, and on discovering the breadth of inferences that can

be made from this data, especially in the contexts of health [Leigh

and Zee 2015] and education [Jarodzka et al. 2017]. Privacy has not

been a high priority because of the benefits of identifying pathol-

ogy and designing personalized interventions. The relevance of

privacy to eye tracking data was eloquently discussed by Liebling

and Preibusch [2014]. Ling et al. [2014] and Khamis et al. [2018]

have also highlighted the need for eye-tracking data. Privacy con-

siderations have been raised both for streaming data, as well as

pre-recorded datasets. Despite growing awareness and concern,

few solutions have been proposed. Our work provides a technical

solution for the privacy of individuals.

2.0.7 Why heatmaps as the first for privacy analysis. Besides scan-
paths, the heatmap is a popular method of visualizing eye move-

ment data [Duchowski 2018]. Heatmaps, or attentional landscapes

as introduced by Pomplun et al. [1996] and popularized by Wood-

ing [2002], are used to represent aggregate fixations [Duchowski

et al. 2012]. Other similar approaches involve gaze represented as

height maps [Elias et al. 1984; van Gisbergen et al. 2007] or Gauss-

ian Mixture Models [Mital et al. 2011]. Heatmaps are generated

by accumulating exponentially decaying intensity I (i, j) at pixel
coordinates (i, j) relative to a fixation at coordinates (x ,y),

I (i, j) = exp

(
−((x − i)2 + (y − j)2)/(2σ 2)

)
where the exponential decay is modeled by the Gaussian point

spread function. A GPU-based implementation [Duchowski et al.

2012] is available for real-time visualization. Though heatmaps are

very popular as a visualization, AOI analyses and temporal data

analysis is key to eye-tracking research. We have focused on static

heatmaps as a proof of concept for the applicability of differential

privacy (DP) to eye tracking data. Insights from this work will

inform future research on privacy in eye tracking.

3 ANALYZING DIFFERENTIAL PRIVACY OF
THE PROPOSED PRIVACY-PRESERVING
MECHANISMS

In this section, we analyze the differential privacy of four natu-

ral random mechanisms. We show two of these mechanisms can-

not preserve privacy under the notion of DP. For the other two

mechanisms, we provide theoretically guaranteed lower bounds

on the noise required for any user-defined privacy level. Because a

heatmap is created from aggregation of gaze maps, and because this

is a reversible (convolution) process, the privacy of a heatmap is

equivalent to that of the aggregated gaze map on which it is based.

3.1 Notations
We use n to denote the number of observers in the database and r
to denote the total number of pixels in the gaze maps. For example,

an image of resolution 800 × 600 corresponds to r = 4.8 × 10
5
. We

introduce an integerm > 1 to cap every observer’s gaze map. For

example, if an observer looked at one pixel more thanm times, we

only countm in his/her gaze map.
3
In Section 4.2, we will discuss

3
Think of this as if the gaze map saturated.

the privacy-utility trade off and provide an algorithm for finding the

“optimal cap”. Let Gi denote the i−th observer’s personal gaze map

(after applying cap). The aggregated gaze map of all n observers in

the database is denoted byG = 1

n
∑n
i=1Gi . Here, we normalizeG by

the number of observers in order to compare the noise-level under

different setups. To simplify notations, we use G = (G1, · · · ,Gn )

to denote the collection of all observers’ gaze maps. Similarly, we

use G−i = (G1, · · · ,Gi−1,Gi+1,Gn ) to denote the collection of all

observers’ personal gaze maps except the i−th observer. Then, we

will define several gaze-map-aggregation mechanisms as follows:

• M
noise-free

: Directly output the aggregated gaze map. For-

mally, M
noise-free

(G1, · · · ,Gn ) = G =
1

n
∑n
i=1Gi .

• M
rs1(c): Randomly select cn gazemaps from dataset (without

replacement) and calculate aggregated gaze map accordingly.

Formally, assuming the selected gaze maps areG j1 · · · ,G jcn ,

Mrs1(G1, · · · ,Gn ) = G =
1

cn
∑cn
k=1G jk .

• M
rs2(c): Similar withM

rs1(c), the only difference is the sam-

pling process is with replacement.

• M
Gaussian(σN ): Adding Gaussian noise with standard devia-

tion (noise-level) σN to all pixels independently. Formally,

M
Gaussian(σN )(G1, · · · ,Gn ) = G + ϵσN , where ϵσN is a r di-

mensional Gaussian noise term with zero mean and standard

deviation σN (all dimensions are mutually independent).

• M
Laplacian(σL ): Similar withM

Gaussian(σN ), the only differ-

ence is Laplacian noise with noise level σL is added instead

of Gaussian noise.

In short, M
rs1(c) and M

rs2(c) inject sampling noise to the output

while M
Gaussian(σN ) and M

Laplacian(σL ) inject additive noise.

3.2 Defining eye-tracking differential privacy
We start with re-phrasing the definition of (ϵ,δ )−differential pri-
vacy to eye tracking data. In the following discussion, we assume

that the aggregated gaze map G (or its noisy version) has been

publicly released
4
. The goal of our research is to protect observers’

personal gaze maps G1, · · · ,Gn by adding appropriate noise to the

aggregated gaze map. Using the notation in Section 3.1, we assume

that G−i , all gaze maps other than Gi , are known by the adversary.

For any set S of outputting gaze maps, (ϵ,δ )−differential privacy
is formally defined as follows.

Definition 3.1 ((ϵ,δ )−DP). For any set of event S, any collection

of gaze maps G−i known by the adversary, we say a mechanism

M is (ϵ,δ )−differentially private if and only if

Pr[M(G∗
i ,G−i ) ∈ S | G−i ] ≤ eϵ Pr[M(G∗∗

i ,G−i ) ∈ S | G−i ] + δ ,
(2)

where G∗
i and G

∗∗
i are any gaze maps of the i−th observer.

According to differential privacy literatures [Dwork et al. 2014],

there is no hard threshold between good and poor privacy. For the

purpose of illustration, we define the following “privacy levels” in

the remainder of this paper:

• Poor privacy: δ = Ω(1/n).

• Okay privacy: ϵ = 3 and δ = n−3/2.

• Good privacy: ϵ = 1 and δ = n−3/2.

4
Because DP focuses on worst case scenarios, the adversary also knows all other

observers individual gazemaps.
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Note “okay privacy” and “good privacy” are two examples we used

for implementation. Practitioners can set their values of ϵ and

δ according to their requirements (smaller ϵ and δ means better

privacy). Note again δ = Ω(1/n) is widely acknowledged as poor

privacy [Dwork et al. 2014].

3.3 There is no free privacy
We first use M

noise-free
(poor privacy) as an example to connect

intuition and the definition of DP. Intuitively, if the adversary has

the noiseless aggregated gaze map G and all other observers’ gaze

maps G−i , he/she can perfectly recover Gi by calculating nG −∑
j,i G j =

(∑n
j=1G j

)
−

∑
j,i G j = Gi .

Using Definition 3.1 and letting G∗
i = Gi , G

∗∗
i and S = {G},

Pr[M(G∗
i , G−i ) ∈ S | G−i ] = 1 and Pr[M(G∗∗

i , G−i ) ∈ S | G−i ] = 0,

because G will not be a possible output if Gi , G∗
i . Thus, we

know δ can’t be less than 1 to make Inequality 2 hold. Considering

δ = Ω(1) corresponds to poor privacy, we know M
noise-free

has

poor privacy in the language of (ϵ,δ )−DP defined in Definition 3.1.

3.4 Random selection gives poor privacy
In Section 3.1, we proposed two versions of random selection mech-

anisms. The first version (Mrs1) randomly selects cn observers

without replacement while the second version (Mrs2) selects cn
with replacement.

Theorem 3.2 (without replacement). Mechanism Mrs1 has
poor privacy.

Proof. We proveMrs1’s privacy by considering the following

case: assuming resolution r = 1
5
, all observers other than the i−th

did not look at the only pixel, we have,

Pr

[
Mrs1(G1, · · · , Gn ) =

1

cn

����Gi = 1, G−i = 0

]
= c and

Pr

[
Mrs1(G1, · · · , Gn ) =

1

cn

����Gi = 0, G−i = 0

]
= 0,

where G−i = 0 means all elements in collection G−i equals to

0. Thus, we know δ can’t be less than c to make (2) hold. Then,

Theorem 3.2 follows because c = Ω(1/n) (cn = Ω(1) is the number

of observers selected). □

Theorem 3.3 (with replacement). Mechanism Mrs2 has poor
privacy.

Proof of Theorem 3.3 (see Appendix A in Supplementary materi-

als) is similar to the proof of Theorem 3.2.

3.5 Achieving good privacy with random noise
In this section, we show that adding Gaussian or Laplacian noise

can give good privacy if the noise level satisfies certain conditions

based on user-defined privacy levels.

5
This case also holds for r > 1 because the first pixel already leaked information.

3.5.1 Gaussian Noise. Gaussian noise is widely used noise in many

optical systems. In M
Gaussian(σN ), we add Gaussian noise with

standard deviation σN independently to all pixels of the aggregated

gaze map. The probability density pN of outputting aggregated

gaze map G(N )
is

pN
(
M

Gaussian(σN )(G1, · · · , Gn ) = G (N )
)

=
1

(2πσN )r /2
· exp

(
−

����G (N ) −G
����2
2

2σ 2

N

)
,

(3)

which is a r dimensional Gaussian distribution such that all dimen-

sions are independent. Note all ℓ2 norm in main paper and appendix

represent Frobenius norm of matrices. For simplification, we use

pN

(
G(N )

)
to represent pN

(
M

Gaussian(σN )(G1, · · · ,Gn ) = G
(N )

)
when without ambiguity. The next Theorem shows announcing

G(N )
(M

Gaussian(σN )’s output) will not give much information to

adversary if the noise-level is as required (for any (ϵ,δ ), we can
always find noise level σN to guarantee (ϵ,δ )−DP).

Theorem 3.4 (Gaussian Noise). For any noise level σN ≥ m
nϵ ·√

r
(
ϵ
2
+ ln r

δ

)
,MGaussian(σN ) is (ϵ,δ )−differentially private.

Theorem 3.4 basically says we can always find a noise level σN
to meet any user-defined privacy level (any ϵ and δ ).

Proof. LetG∗
i andG

∗∗
i to denote any two possible gaze maps of

the i−th observer. To simplify notation, we useG−i =
1

n−1
∑
j,i G j

to denote the aggregated gaze map from observers other than the

i−th. If the i−th observer’s gaze map is G∗
i , the probability density

of the outputting pN (G(N ) | Gi = G
∗
i ) is

pN (G (N ) | Gi = G∗
i ) =

1

(2πσN )r /2
exp

(
−

1

2σ 2

N

��������G∗
i

n
+
n − 1

n
G−i −G (N )

��������2
2

)
,

Similarly, if the i−th observer’s gaze map is G∗∗
i , we have,

pN (G (N ) | Gi = G∗∗
i ) =

1

(2πσN )r /2
exp

(
−

1

2σ 2

N

��������G∗∗
i

n
+
n − 1

n
G−i −G (N )

��������2
2

)
,

For any G∗
i , G

∗∗
i and G−i , we have,

pN (G (N ) | Gi = G∗∗
i )

pN (G (N ) | Gi = G∗
i )

= exp

(
1

2σ 2

N
·

(��������G∗
i

n
+
n − 1

n
G−i −G (N )

��������2
2

−

��������G∗∗
i

n
+
n − 1

n
G−i −G (N )

��������2
2

))

≤ exp

©­­­­«
2

��������G∗
i
n +

n−1
n G−i −G (N )

��������
2

·
����G∗∗

i −G∗
i

����
2
+

����G∗∗
i −G∗

i

����2
2

2σ 2

N

ª®®®®¬
.

Letting µ =
G∗
i
n +

n−1
n G−i and considering

����G∗∗
i −G∗

i
����
2
≤

m
√
r

n ,

we have,

pN (G (N ) | Gi = G∗∗
i )

pN (G (N ) | Gi = G∗
i )

≤ exp

©­«
2m

√
r

n

����G (N ) − µ
����
2
+ m2r

n2

2σ 2

N

ª®¬ .
Thus, for any G(N )

such that

������G(N ) − µ
������
2

≤ n
m
√
r
ϵσ 2 −

m
√
r

2n ,

the ϵ requirement of DP is always met. Then, we bound the tail
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(a) Surfaces for a chosen privacy level. (b) Slice of the surface for 300 × 300 im-
ages.

(c) Original heatmap. (d) Privacy enhanced heatmap for ϵ = 1

level.

Figure 2:We examine the privacy-utility tradeoff for selected values of σN for a simulated heatmap. The greater the noise level
we choose to add, the stronger is the privacy guarantee. The relevant stakeholders decide what level of noise is acceptable for
a given application. For example, in Figure 2d, the hotspots are still clear, and a UX designer may find this acceptable for the
purpose of getting feedback on the design of a website.

probability for all cases where ϵ ’s requirement is not met.

Pr

[������G (N ) − µ
������
2

>
n

m
√
r
ϵσ 2

N −
m
√
r

2n

]
≤

r∑
j=1

Pr

[���G (N )

j − µ j
��� > n

m
√
r
ϵσ 2

N −
m
√
r

2n

]
≤ r · exp

(
−
n2ϵ 2σ 2

N
2m2r

+
ϵ
4

)
.

When σN ≥ m
nϵ ·

√
r
(
ϵ
2
+ ln r

δ

)
, we have,

Pr

[������G (N ) − µ
������
2

>
n

m
√
r
ϵσ 2

N −
m
√
r

2n

]
≤ r · exp

(
−
n2ϵ 2σ 2

N
2m2r

+
ϵ
4

)
≤ δ

Then, Theorem 3.4 follows by the definition of (ϵ,δ )−DP. □

3.5.2 Laplacian Noise. Laplacian noise is the most widely used

in many differential privacy problems. However, we will show

Laplacian noise is not as suitable as Gaussian noise for protecting

eye tracking data. The next Theorem showsG(L)
will not give much

information to the adversary if the noise-level is as required.

Theorem 3.5 (Laplacian Noise). Using the notations above, for

any σL ≥

√
2·mr
ϵn , MLaplacian(σL ) is (ϵ, 0)−differentially private.

Proof of Theorem 3.5 (see Appendix A.2 in supplementary mate-

rial) is very similar with Theorem 3.4. However, the required noise

level, σL ≥

√
2·mr
ϵn , normally is much higher than the requirement

of Gaussian noise, σN ≥ m
nϵ ·

√
r
(
ϵ
2
+ ln r

δ

)
. One can see the Lapla-

cian mechanism requires one more

√
r term on noise level, which

normally corresponds to ∼ 10
2
times higher noise level.

4 PRIVACY-UTILITY TRADEOFF
According to Theorem 3.4 and Theorem 3.5, we know better privacy

(smaller ϵ and δ ) usually requires higher noise level. In this section,

we will conduct experiments to show how Gaussian and Laplacian

noise influence the utility, i.e., the corresponding heatmap.

4.1 Noise level vs. information loss
In Figure 2(a), we show a three-dimensional plot where the x and y

axes are

√
r and n respectively. The reader may revisit notations in

Section 3.1. On the vertical z-axis, we plot σN , specifically based

on the formula given by Theorem 3.4. The upper surface shows σN
for good privacy (ϵ = 1 and δ = n−3/2). The lower surface shows

for okay privacy (ϵ = 3 and δ = n−3/2). Any value of σN above this

surface will provide okay privacy, and any value above the upper

surface will provide good privacy.

In Figure 2 (a), as the image resolution increases, a larger number

of observers is needed in the dataset to maintain the guarantee of

good privacy. If there is a small number of observers, good privacy

can be achieved by downsampling the image. In Figure 2 (b) we

show a slice of this surface at

√
r = 300. The dotted lines show

an example noise level that we could have set based on what we

find acceptable for utility. This is of course user-defined, and will

vary depending on the application. The graphs illustrate that at a

selected noise level, e.g., σN = 1.5, we can achieve good privacy for

a 300×300 image if we have of the order of n = 900 observers. For a

dataset that has n = 300 observers, we can tell the participants that

we can achieve Okay privacy. We show two simulated heatmaps in

Figure 2 (c) and (d). The location of the hotspots is unchanged for

all practical purposes in the noisy but private heatmap.

We quantify the privacy-utility tradeoff in Figure 3. 100 noisy

heatmaps are generated using the workflow in Figure 1. Real-world

1050× 1680 gaze maps from five observers looking at a portrait of a

woman are used here.
6
The original heatmap is shown in Figure 1

to the right. For the purpose of the noisy heatmap, we assume

the number of observers in dataset is 50, 0007 (the noise is added

according to n = 50, 000 and Theorem 3.4 and Theorem 3.5). We

simulate this large number of observers by replicating each of the

five real observers 10000 times.

In the supplementary materials, we show the original heatmap

overlaid on the stimulus image in high resolution (original.png). We

6
Gaze data from dataset of Raiturkar et al. [2018], stimulus image from Farid and Bravo

[2012] and Mader et al. [2017].

7
If the number of observer is much smaller than 50,000, the practitioner could either

down-sample gazemaps or sacrifice privacy (setting larger ϵ and δ ) to get an acceptable
noise level.
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Figure 3: Similarity between the privacy enhanced heatmap
andoriginal heatmapwhen ϵ is varied. The smaller the value
of ϵ the stronger is the privacy guarantee from the DP per-
spective. This graph illustrates the privacy-utility tradeoff:
as ϵ is made smaller, the mean squared error increases and
the cross-correlation decreases. The Laplacian mechanism
results in lesser similarity than the Gaussian mechanism.

also show examples of privacy enhanced heatmaps for this original

heatmap at the ϵ = 1.5 privacy level (privancyenhanced.mpg). For

this image resolution, σG = 0.0986 based on Theorem 3.5.

We numerically analyzed correlation coefficient (CC) and mean
square error (MSE) of noisy heatmaps under different privacy levels

(different values of ϵ while fixing δ = n−3/2). The cap m = 1 is

decided according to Algorithm 1 (see Section 4.2 for details). 100

noisy heatmaps are generated under each setting. The average CC

and MSE of those generated noisy heatmaps are plotted in Figure 3.

Error bars in Figure 3 represent the standard deviations.

It can be seen from the Figure 3 that Laplacian mechanism results

inmuchmore information loss thanGaussianmechanism to achieve

same level of privacy under our setting. For both Gaussian and

Laplacian mechanisms, one can see that better privacy (smaller ϵ)
usually means more information loss in the outputting heatmap.

We note that these graphs are based on real data of only five

observers on one stimulus image. This graph is an example of how a

practitioner may visualize the privacy-utility tradeoff in any given

application domain. In practice, stakeholders would use our pro-

posed workflow on their dataset to prepare such visualizations for

different settings of the internal parameters (m, ϵ,δ ) to help them

evaluate the privacy-utility tradeoff. We note also that Theorem 3.4

is specific to aggregate heatmaps. For any other mechanism, the

appropriate theorems would need to be worked out and the work-

flow modified to be consistent with the problem definition. We also

point out that while mean squared error and cross-correlation are

readily computed, they do not fully reflect the information lost or

retained when noise is added. As an illustration, in Figure 2, the

hotspots in the privacy enhanced heatmap are still clear, and a UX

designer may find that the heatmap acceptable for their use case

even though the MSE and CC metrics suggest otherwise.

4.2 Computing the optimal “cap”
In order to achieve better privacy with less information loss, we set

a cap on the maximum number of times an observer’s gaze position

falls on a pixel. This cap was denoted bym in Section 3. Here we

discuss the information loss on different settings onm.

Whenm is larger, higher noise level is required to get the same

privacy (both the upper bound for σN and σL are proportional to

m). However, larger m also corresponds to less information loss

on every observer’s gaze map. In other words, there is tradeoff

between variance (noise) and bias (cap) on cap. Let G(N ,m,σ ∗)
to

denote the gaze map outputted by Gaussian mechanism with cap

m and noise level σN =mσ ∗
. Thus, G(N ,∞,0)

denotes the original

aggregated gaze map and G(N ,m,0)
denotes the aggregated gaze

map with capm without adding any Gaussian noise. Algorithm 1

provides an implementable way to choose the best value ofm to

optimize mean square error (MSE). In the next theorem, we will

Algorithm 1: Utility optimization algorithm on choosingm

1 Input: Individual gaze maps G1, · · · ,Gn and noise factor σ ∗
.

2 Initialization: Calculate G(N ,∞,0)
and the maximum number

of times one observer look at one pixel: дmax = maxi, j [Gi (j)].

3 form = 1, · · · ,дmax do
4 Calculate E

[
MSE

(
G(N ,m,σ ∗)

)]
according to Theorem 4.1.

5 end
6 Output:m value with the smallest expected MSE.

analytically analyze the expectation of MSE.

Theorem 4.1. The expected MSE of Gaussian mechanism with
capm and noise level σN =mσ ∗ is

E
[
MSE

(
G (N ,m,σ ∗)

)]
=m2σ ∗2 +

1

r

r∑
j=1

(
G (N ,m,0)(j) −G (N ,∞,0)(j)

)
2

.

Proof. By the definition of MSE, we have,

E
[
MSE

(
G(N ,m,σ ∗)

)]
=

1

r

r∑
j=1
E

[(
G(N ,m,σ ∗)(j) −G(N ,∞,0)(j)

)
2

]
Using the notations defined above, the expected square error on

j−th pixel is

E

[(
G (N ,m,σ ∗)(j) −G (N ,∞,0)(j)

)
2

]
= E

[(
G (N ,m,σ ∗)(j)

)
2

]
− 2G (N ,∞,0)(j) · E

[
G (N ,m,σ ∗)(j)

]
+

(
G (N ,∞,0)(j)

)
2

.

(4)

because G
(N ,m,σ ∗)

j ∼ N

(
G
(N ,m,0)
j ,m2σ ∗2

)
, we have,

E
[(
G(N ,m,σ ∗)(j)

)]
= G(N ,m,0)(j) and

E

[(
G(N ,m,σ ∗)(j)

)
2

]
= σ ∗2m2 +

(
G(N ,m,0)(j)

)
2

.
(5)

Theorem 4.1 follows by combining (4) and (5). □

Then, we analyze the complexity of Algorithm 1 in the next

theorem, which says Algorithm 1 is with linear-time complexity.

Theorem 4.2. The complexity of Algorithm 1 is O (дmax · nr ).
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Proof. Rewriting the expected MSE in Theorem 4.1, we have,

E [MSE] =m2σ ∗2 +
1

r

������G(N ,m,0) −G(N ,∞,0)
������2
2

,

where the ℓ2 norm still represents Frobenius norm. Since G(N ,m,0)

and G(N ,∞,0)
are r -dimensional vectors, the complexity of comput-

ing expected MSE for a givenm and G(N ,m,0)
will be O(m).

Then, we evaluate the complexity of calculating the capped noise-

free aggregated gaze mapG(N ,m,0)
. Since we are adding cap to each

observer’s individual gaze map, we can add cap to every pixel of all

observers. Thus, one can see there are nr pixels from n observers

in total. Considering the for loop in Algorithm 1 runs дmax times,

Theorem 4.2 follows. □

5 IMPLICATIONS
5.0.1 Datasets are growing. In contrast to the previous research

paradigm where datasets were collected, archived, and then re-

leased, there is a growing trend to crowd-source data collection,

via mobile apps for example, so that new data is continually being

added to the dataset. With the methods presented, the new data

is safe as long as the publicly available dataset is put through the

Gaussian noise mechanism. Another way that eye tracking datasets

might seek to preserve a user’s privacy is by releasing their eye

movements, but not what they were looking at. With the methods

we present, releasing the stimulus image/video that observers look

at is safe because even in the worst case an adversary will not be

able to guess at what a particular individual looked at.

5.0.2 Why can the generic theorem of differential privacy not be
applied to eye tracking? Unlike classical databases, every observer

in eye tracking database contributes much richer information (i.e.,

millions of pixels) than individuals in classical databases. However,

the generic theorems in differential privacy do not focus on high-

dimensional data. Simply applying union bounds will result in very

loose privacy bounds and unacceptable noise levels.

5.0.3 Why are we adding noise when the field is spending so much
time and effort removing it? There has been much research in eye

tracking to improve the accuracy of eye tracking to maximize the

utility and applicability of eye tracking devices for diverse use cases.

This work has been directed at sources of noise that are inherent

to the process, such as sensor and measurement noise. However, as

eye tracking becomes ubiquitous, there is a cost for the individual

user whose data is being recorded and for the organizations who

are safeguarding and distributing this data. This cost is the sacrifice

of privacy of the individual. We do not argue for reversing the

technological push towards reliable, accurate eye tracking. Rather,

we argue that our objective as a community must expand to include

privacy in addition to utility. For those situations where privacy is

deemed to be worth protecting, we introduce flexible mechanisms

to do so. Noise is added to data in the aggregate, not to any indi-

vidual’s data. Further, the noise function is fully understood, and

its parameters are set based on the desired privacy-utility tradeoff.

Unlike measurement noise, whose source may not be fully under-

stood, we add noise in a controlled and measured way to achieve a

specific objective.

5.0.4 Why should the research community care? This research re-

quires an interdisciplinary approach. The eye tracking community

cannot just “leave it to the privacy researchers” because the theo-

retical guarantees that form the basis of this framework are highly

dependent on the particular mechanisms that the data goes through

(the functional forms in the equations, the particular thresholds,

etc.). These mechanisms have to be developed collaboratively to

preserve the utility of the output for eye tracking applications.

5.0.5 Why should the industry care? The push towards ubiquitous

eye tracking is being driven by large investments by major industry

players. While their applications are highly data-dependent, their

customers are increasingly data-sensitive. This paper proposes the

first of a class of solutions which pair theoretical analysis from

a DP-perspective with a practically implementable workflow for

developers. This work opens the door for a responsible industry

that can inform their users that while they may eye track the users

at very high accuracy and resolution to enable foveated rendering

(for example), they would put this data through mechanism A or B

before releasing it to the app developers.

6 CONCLUSIONS AND FUTURE DIRECTIONS
We have proposed to apply the notion of differential privacy to-

ward the analysis of privacy of eye-tracking data. We have analyzed

the privacy guarantees provided by the mechanisms of random se-

lection, and additive noise (Gaussian and Laplacian noise). Themain

takeaway from this paper is that adding Gaussian noise will guar-

antee differential privacy; the noise level should be appropriately

selected based on the application. Our focus is on static heatmaps as

a sandbox to understand how the definitions of differential privacy

apply to eye tracking data. In this sense, this paper is a proof of

concept. Eye tracking data is fundamentally temporal in nature,

and the privacy loss if an adversary could access saccade veloci-

ties and dynamic attention allocation would be much greater than

static heatmaps. Future work would systematically consider all the

different ways in which eye tracking data is analyzed and stored.

We have considered two noise models (Gaussian and Laplacian

noise). Follow up work might consider the privacy-utility trade-off

for different noise models like pink noise. For temporal data such as

raw eye movements, it may even be relevant to understand which

noise models are more realistic. In other words, if the user’s virtual

avatar was driven by privacy enhanced eye tracking data, it should

still appear realistic and natural.

The mechanisms and analyses presented here apply to real-

valued data that can be aligned to a grid and capped to a maximum

value without loss of utility. Though our focus has been on eye

tracking heatmaps, there are other data that fall in this category, for

example, gestures on a touchscreen, or readings from a force plate.

It would also be interesting to generalize these mechanisms and

analyses to other physiological data such as heart rate, galvanic

skin response, and even gestures or gait. These data are conceptu-

ally similar to eye tracking data in that they carry signatures of the

individual’s identity and markers of their health and well-being.

Furthermore, in physiological domains many data and analyses are

temporal in nature. It would be interesting and important to define

and analyze differential privacy for temporal data.
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A MISSING PROOFS FOR THEOREMS
A.1 Proof and discussion for Theorem 3.3
Theorem 3.3 says Mrs2 has poor privacy.

Proof. Considering the same case as the proof of Theorem 3.2,

we have,

Pr

[
Mrs2(G1, · · · , Gn ) ≥

1

cn

����Gi = 0, G−i = 0

]
= 0 and

Pr

[
Mrs2(G1, · · · , Gn ) ≥

1

cn

����Gi = 1, G−i = 0

]
= 1 −

(
1 −

1

n

)cn
≈ 1 − e−c = Θ(c)

Thus, we know δ can’t be less than c to make Inequality 2 hold

and Theorem 3.3 follows. □

A.2 Proof for Theorem 3.5
Proof. The probability density function pL of output G(L) =

(G(L)(1). · · · ,G(L)(r )) is

pL
(
M

Laplacian(σL )(G1, · · · , Gn ) = G (L)
)

=
1(√

2σL
)r · exp

(
−

√
2

σL

������G −G (L)
������
1

)
.

To simplify notations, we use pL

(
G(L)

)
to represent

pL

(
M

Laplacian(σL )(G1, · · · ,Gn ) = G
(L)

)
when without ambiguity.

Let G∗
i and G

∗∗
i to denote any two possible gaze maps of the i−th

observer. If the i−th observer’s gaze map is G∗
i , the probability

density function of the outputting pL(G
(L) | Gi = G

∗
i ) is

pL (G (L) | Gi = G∗
i ) =

1(√
2σL

)r exp

(
−

√
2

σL

��������G∗
i

n
+
n − 1

n
G−i −G (L)

��������
1

)
,

where we abused notation to let G−i =
1

n−1
∑
j,i G j , which is the

aggregated gaze map except Gi . Similarly, if the i−th observer’s

gaze map is G∗∗
i , we have,

pL (G (L) | Gi = G∗∗
i ) =

1(√
2σL

)r exp

(
−

√
2

σL

��������G∗∗
i

n
+
n − 1

n
G−i −G (L)

��������
1

)
.

For any G∗
i , G

∗∗
i and G−i , we have,

pL (G (L) | Gi = G∗∗
i )

pL (G (L) | Gi = G∗
i )

= exp

(√
2

σL
·

(��������G∗
i

n
+
n − 1

n
G−i −G (L)

��������
1

−

��������G∗∗
i

n
+
n − 1

n
G−i −G (L)

��������
1

))
≤ exp

(√
2 · | |G∗∗

i −G∗
i | |1

σLn

)
≤ exp

(√
2 ·mr
σLn

)
.

Since the probability is the integral of PDF, the above upper bound

for PDF ratio is also an upper bound for probability ratio. Thus, for

any possible output set S , we have,

Pr

[
M

Laplacian(σL )(G
∗
i ,G−i ) ∈ S | G−i

]
≤ exp

(√
2 ·mr

σLn

)
Pr

[
M

Laplacian(σL )(G
∗∗
i ,G−i ) ∈ S | G−i

]
.

and Theorem 3.5 follows by applying Definition 3.1. □
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