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Abstract

Programs often evolve by continuously integrating changes
from multiple programmers. The effective adoption of pro-
gram analysis tools in this continuous integration setting
is hindered by the need to only report alarms relevant to a
particular program change. We present a probabilistic frame-
work, Drake, to apply program analyses to continuously
evolving programs. Drake is applicable to a broad range of
analyses that are based on deductive reasoning. The key in-
sight underlying Drake is to compute a graph that concisely
and precisely captures differences between the derivations of
alarms produced by the given analysis on the program before
and after the change. Performing Bayesian inference on the
graph thereby enables to rank alarms by likelihood of rele-
vance to the change. We evaluate Drake using SparrowÐa
static analyzer that targets buffer-overrun, format-string,
and integer-overflow errorsÐon a suite of ten widely-used
C programs each comprising 13kś112k lines of code. Drake
enables to discover all true bugs by inspecting only 30 alarms
per benchmark on average, compared to 85 (3×more) alarms
by the same ranking approach in batch mode, and 118 (4×
more) alarms by a differential approach based on syntactic
masking of alarms which also misses 4 of the 26 bugs overall.

CCS Concepts · Software and its engineering→Auto-

mated static analysis; Software evolution; ·Mathemat-

ics of computing→ Bayesian networks.
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1 Introduction

The application of program analysis tools such as Astrée [5],
SLAM [2], Coverity [4], FindBugs [22], and Infer [7] to large
software projects has highlighted research challenges at the
intersection of program reasoning theory and software engi-
neering practice. An important aspect of long-lived, multi-
developer projects is the practice of continuous integration,
where the codebase evolves through multiple versions which
are separated by incremental changes. In this context, pro-
grammers are typically less worried about the possibility
of bugs in existing codeÐwhich has been in active use in
the fieldÐand in parts of the project which are unrelated
to their immediate modifications. They specifically want to
know whether the present commit introduces new bugs, re-
gressions, or breaks assumptions made by the rest of the
codebase [4, 50, 57]. How do we determine whether a static
analysis alarm is relevant for inspection given a small change
to a large program?
A common approach is to suppress alarms that have al-

ready been reported on previous versions of the program [4,
16, 19]. Unfortunately, such syntactic masking of alarms has
a great risk of missing bugs, especially when the commit
modifies code in library routines or in commonly used helper
methods, since the new code may make assumptions that are
not satisfied by the rest of the program [44]. Therefore, even
alarms previously reported and marked as false positives
may potentially need to be inspected again.

In this paper, we present a probabilistic framework to ap-
ply program analyses to continuously evolving programs.
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The framework, called Drake, must address four key chal-
lenges to be effective. First, it must overcome the limita-
tion of syntactic masking by reasoning about how semantic
changes impact alarms. For this purpose, it employs deriva-
tions of alarmsÐlogical chains of cause-and-effectÐproduced
by the given analysis on the program before and after the
change. Such derivations are naturally obtained from analy-
ses whose reasoning can be expressed or instrumented via
deductive rules. As such, Drake is applicable to a broad
range of analyses, including those commonly specified in
the logic programming language Datalog [6, 46, 59].

Second, Drake must relate abstract states of the two pro-
gram versions which do not share a common vocabulary. We
build upon previous syntactic program differencing work
by setting up a matching function which maps source loca-
tions, variable names, and other syntactic entities of the old
version of the program to the corresponding entities of the
new version. The matching function allows to not only relate
alarms but also the derivations that produce them.

Third, Drake must efficiently and precisely compute the
relevance of each alarm to the program change. For this
purpose, it constructs a differential derivation graph that cap-
tures differences between the derivations of alarms produced
by the given analysis on the program before and after the
change. For a fixed analysis, this graph construction takes
effectively linear time, and it captures all derivations of each
alarm in the old and new program versions.
Finally, Drake must be able to rank the alarms based

on likelihood of relevance to the program change. For this
purpose, we leverage recent work on probabilistic alarm
ranking [53] by performing Bayesian inference on the graph.
This approach also enables to further improve the ranking
by taking advantage of any alarm labels provided by the
programmer offline in the old version and online in the new
version of the program.

We have implemented Drake and demonstrate how to
apply it to two analyses in Sparrow [49], a sophisticated
static analyzer for C programs: an interval analysis for buffer-
overrun errors, and a taint analysis for format-string and
integer-overflow errors. We evaluate the resulting analyses
on a suite of ten widely-used C programs each comprising
13kś112k lines of code, using recent versions of these pro-
grams involving fixes of bugs found by these analyses. We
compare Drake’s performance to two state-of-the-art base-
line approaches: probabilistic batch-mode alarm ranking [53]
and syntactic alarm masking [50]. To discover all the true
bugs, the Drake user has to inspect only 30 alarms on aver-
age per benchmark, compared to 85 (3× more) alarms and
118 (4×more) alarms by each of these baselines, respectively.
Moreover, syntactic alarm masking suppresses 4 of the 26
bugs overall. Finally, probabilistic inference is very unintru-
sive, and only requires an average of 25 seconds to re-rank
alarms after each round of user feedback.

Contributions. In summary, we make the following contri-
butions in this paper:

1. We propose a new probabilistic framework, Drake, to
apply static analyses to continuously evolving programs.
Drake is applicable to a broad range of analyses that are
based on deductive reasoning.

2. We present a new technique to relate static analysis alarms
between the old and new versions of a program. It ranks
the alarms based on likelihood of relevance to the differ-
ence between the two versions.

3. We evaluate Drake using different static analyses on
widely-used C programs and demonstrate significant im-
provements in false positive rates and missed bugs.

2 Motivating Example

We explain our approach using the C program shown in
Figure 1. It is an excerpt from the audio file processing utility
shntool, and highlights changes made to the code between
versions 3.0.4 and 3.0.5, which we will call Pold and Pnew
respectively. Lines preceded by a ł+ž indicate code which
has been added, and lines preceded by a ł-ž indicate code
which has been removed from the new version. The integer
overflow analysis in Sparrow reports two alarms in each
version of this code snippet, which we describe next.

The first alarm, reported at line 30, concerns the command
line option łtž. This program feature trims periods of silence
from the ends of an audio file. The program reads unsani-
tized data into the field info->header_size at line 25, and
allocates a buffer of proportional size at line 30. Sparrow ob-
serves this data flow, concludes that the multiplication could
overflow, and subsequently raises an alarm at the allocation
site. However, this data has been sanitized at line 29, so that
the expression header_size * sizeof(char) cannot over-
flow. This is therefore a false alarm in both Pold and Pnew. We
will refer to this alarm as Alarm(30).

The second alarm is reported at line 45, and is triggered by
the command line option łcž. This program feature compares
the contents of two audio files. The first version has source-
sink flows from the untrusted fields info1->data_size and
info2->data_size, but this is a false alarm since the value
of bytes cannot be larger than CMP_SIZE. On the other hand,
the new version of the program includes an option to offset
the contents of one file by shift_secs seconds. This value is
used without sanitization to compute cmp_size, leading to a
possible integer overflow at line 42, which would then result
in a buffer of unexpected size being allocated at line 45. Thus,
while Sparrow raises an alarm at the same allocation site for
both versions of the program, which we will call Alarm(45),
this is a false alarm in Pold but a real bug in Pnew.

We now restate the central question of this paper: How do
we alert the user to the possibility of a bug at line 45, while
not forcing them to inspect all the alarms of the łbatch modež
analysis, including that at line 30?
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1 - #define CMP_SIZE 529200

2 #define HEADER_SIZE 44

3 + int shift_secs;

4

5 void read_value_long(FILE *file, long *val) {

6 char buf[5];

7 fread(buf, 1, 4, file); // Input Source

8 buf[4] = 0;

9 *val = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];

10 }

11

12 wave_info *new_wave_info(char *filename) {

13 wave_info *info;

14 FILE *f;

15

16 info = malloc(sizeof(wave_info));

17 f = fopen(filename);

18 read_value_long(f, info->header_size);

19 read_value_long(f, info->data_size);

20 return info;

21 }

22

23 void trim_main(char *filename) {

24 wave_info *info;

25 info = new_wave_info(filename);

26 long header_size;

27 char *header;

28

29 header_size = min(info->header_size, HEADER_SIZE);

30 header = malloc(header_size * sizeof(char)); // Alarm(30)

31 /* trim a wave file */

32 }

33 void cmp_main(char *filename1, char *filename2) {

34 wave_info *info1, *info2;

35 long bytes;

36 char *buf;

37

38 info1 = new_wave_info(filename1);

39 info2 = new_wave_info(filename2);

40

41 - bytes = min(min(info1->data_size, info2->data_size), CMP_SIZE);

42 + cmp_size = shift_secs * info1->rate; // Integer Overflow

43 + bytes = min(min(info1->data_size, info2->data_size), cmp_size);

44

45 buf = malloc(2 * bytes * sizeof(char)); // Alarm(45)

46 /* compare two wave files */

47 }

48

49 int main(int argc, char *argv) {

50 int c ;

51 while ((c = getopt(argc, argv, "c:f:ls")) != -1) {

52 switch (c) {

53 case 'c':

54 + shift_secs = atoi(optarg); // Input Source

55 cmp_main(argv[optind], argv[optind + 1]);

56 break;

57 case 't':

58 trim_main(argv[optind]);

59 break;

60 }

61 return 0;

62 }

Figure 1. An example of a code change between two versions of the audio processing utility shntool. Lines 1 and 41 have
been removed, while lines 3, 42, 43, and 54 have been added. In the new version, the use of the unsanitized value shift_secs
can result in an integer overflow at line 42, and consequently result in a buffer of unexpected size being allocated at line 45.

Figure 2 presents an overview of our system, Drake. First,
the system extracts static analysis results from both the old
and new versions of the program. Since these results are
described in terms of syntactic entities (such as source loca-
tions) from different versions of the program, it uses a syn-
tactic matching function δ to translate the old version of the
constraints into the setting of the new program. Drake then
merges the two sets of constraints into a unified differential
derivation graph. These differential derivations highlight the
relevance of the changed code to the static analysis alarms.
Moreover, the differential derivation graph also enables us to
perform marginal inference with the feedback from the user
as well as previously labeled alarms from the old version.
We briefly explain the reasoning performed by Sparrow

in Section 2.1, and explain our ideas in Sections 2.2ś2.3.

2.1 Reflecting on the Integer Overflow Analysis

Sparrow detects harmful integer overflows by performing
a flow-, field-, and context-sensitive taint analysis from un-
trusted data sources to sensitive sinks [21]. While the actual
implementation includes complex details to ensure perfor-
mance and accuracy, it can be approximated by inference
rules such as those shown in Figure 3.

The input tuples indicate elementary facts about the pro-
gram which the analyzer determines from the program text.
For example, the tuple DUEdge(7, 9) indicates that there
is a one-step data flow from line 7 to line 9 of the pro-
gram. The inference rules, which we express here as Datalog
programs, provide a mechanism to derive new conclusions
about the program being analyzed. For example, the rule r2,
DUPath(c1, c3) :− DUPath(c1, c2),DUEdge(c2, c3), indicates
that for each triple (c1, c2, c3) of program points, whenever
there is a multi-step data flow from c1 to c2 and an immediate
data flow from c2 to c3, there may be a multi-step data flow
from c1 to c3. Starting from the input tuples, we repeatedly
apply these inference rules to reach new conclusions, until
we reach a fixpoint. This process may be visualized as dis-
covering the nodes of a derivation graph such as that shown
in Figure 4.
We use derivation graphs to determine alarm relevance.

As we have just shown, such derivation graphs can be nat-
urally described by inference rules. These inference rules
are straightforward to obtain if the analysis is written in
a declarative language such as Datalog. If the analysis is
written in a general-purpose language, we define a set of
inference rules that approximate the reasoning processes
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}
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#include <stdio.h>

int main() {

int x = ;
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while (*y < 10) {
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}
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}
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Figure 2. The Drake system. By applying the analysis to each version of the program, we start with the grounded constraints
for each version. The syntactic matching function δ allows us to compare the constraints and derivation trees of Pold and Pnew,
which we merge to obtain the differential derivation graph GC∆. We treat the resulting structure as a probabilistic model, and
interactively reprioritize the list of alarms as the user triages them and labels their ground truth.

Input relations

DUEdge(c1, c2) : Immediate data flow from c1 to c2
Src(c ) : Origin of potentially erroneous traces

Dst(c ) : Potential program crash point

Output relations

DUPath(c1, c2) : Transitive data flow from c1 to c2
Alarm(c ) : Potentially erroneous trace reaching c

Analysis rules

r1 : DUPath(c1, c2) :− DUEdge(c1, c2).

r2 : DUPath(c1, c3) :− DUPath(c1, c2),DUEdge(c2, c3).

r3 : Alarm(c2) :− DUPath(c1, c2), Src(c1),Dst(c2).

Figure 3. Approximating a complex taint analysis with sim-
ple inference rules. All variables c1, c2, etc. range over the
set of program points.

of the original analyzer. The degree of approximation does
not affect the accuracy of the analysis but only affects the
accuracy of subsequent probabilistic reasoning. Furthermore,
in practice, it requires only a small amount of effort to imple-
ment by instrumenting the original analyzer. We explain this
instrumentation for a general class of analyses in Section 4.2.

2.2 Classifying Derivations by Alarm Transfer

Traditional approaches such as syntactic alarm masking will
deprioritize both Alarm(30) and Alarm(45) as they occur in
both versions of the program. Concretely then, our prob-
lem is to provide a mechanism by which to continue to
deprioritize Alarm(30), but highlight Alarm(45) as needing
reinspection.

Translating clauses. For each grounded clause д in the
derivation from the new program Pnew, we can ask whether
д also occurs in the old program Pold. For example, the clauses

in Figure 4(a) commonly exist in both of the versions, but
the clauses in Figure 4(c) are only present in Pnew. Such
questions presuppose the existence of some correspondence
between program points, variables, functions, and other syn-
tactic entities of Pold, and the corresponding entities of Pnew.
In Section 4.3, we will construct a matching function δ to
perform this translation, but for the purpose of this example,
it can be visualized as simply being a translation between
line numbers, such as that obtained using diff.

Translating derivation trees. The graph of Figure 4 can
be viewed as encoding a set of derivation trees for each alarm.
A derivation tree is an inductive structure which culminates
in the production of a tuple t . It is either: (a) an input tuple,
or (b) a grounded clause t1 ∧ t2 ∧ · · · ∧ tk =⇒r t together
with a derivation tree τi for each antecedent tuple ti .

Let us focus on two specific derivation trees from this
graph: first, the sequence τ30 in Figure 4(a):

DUPath(7, 9) → DUPath(7, 18) → · · · → Alarm(30),

and second, the sequence τ45 in Figure 4(c):

DUPath(54, 42) → DUPath(54, 43) → · · · → Alarm(45),

and where each sequence is supplemented with appropriate
input tuples. Observe that each clause of the first tree, τ30, is
common to both Pold and Pnew. More generally, every deriva-
tion tree of Alarm(30) from Pnew is already present in Pold.
As a result, Alarm(30) is unlikely to represent a real bug. On
the other hand, the second tree, τ45, exclusively occurs in the
new version of the program. Therefore, since there are more
reasons to suspect the presence of a bug at Alarm(45) in Pnew
than in Pold, we conclude that it is necessary to reinspect this
alarm.

The first step to identifying relevant alarms is therefore to
determine which alarms have new derivation trees. As we
show in Figure 5, where the new t2 → t3 derivation for t3
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DUEdge(7, 9)

r1 (7, 9)

DUPath(7, 9)DUEdge(9, 18)

r2 (7, 9, 18)

DUPath(7, 18)DUEdge(18, 25)

r2 (7, 18, 25)

DUPath(7, 25)DUEdge(25, 29)

r2 (7, 25, 29)

DUPath(7, 29)DUEdge(29, 30)

r2 (7, 29, 30)

DUPath(7, 30) Dst(30)Src(7)

r3 (7, 30)

Alarm(30)

· · ·

(a) Derivation tree common to Pold and Pnew

· · ·

DUPath(7, 39) DUEdge(39, 41)

r2 (7, 39, 41)

DUPath(7, 41) DUEdge(41, 45)

r2 (7, 41, 45)

DUPath(7, 45)Src(7) Dst(45)

r3 (7, 45)

Alarm(45)

(b) Derivation tree exclusive to Pold

· · ·

DUPath(7, 39) DUEdge(39, 42)

r2 (7, 39, 42)

DUPath(7, 42) DUEdge(42, 43)

r2 (7, 42, 43)

DUPath(7, 43) DUEdge(43, 45)

r2 (7, 43, 45)

DUPath(7, 45)

DUEdge(54, 42)

r1 (54, 42)

DUPath(54, 42)

r2 (54, 42, 43)

DUPath(54, 43)

r2 (54, 43, 45)

DUPath(54, 45)Dst(45)

r3 (7, 45)Src(7) r3 (54, 45) Src(54)

Alarm(45)

(c) Derivation trees exclusive to Pnew

Figure 4. Portions of the old and new derivation graphs by which the analysis identifies suspicious source-sink flows in the
two versions of the program. The numbers indicate line numbers of the corresponding code in Figure 1. Nodes corresponding
to grounded clauses, such as r1 (7, 9), indicate the name of the rule and the instantiation of its variables, i.e., r1 with c1 = 7
and c2 = 9. Notice that in the new derivation graph the analysis has discovered two suspicious flowsÐfrom lines 7 and 54
respectivelyÐwhich both terminate at line 45.

t3

r ′

t4

r ′

t1

(a) GCold

t3

r ′

t4

r ′

t1

r ′

t2

(b) GCnew

t3

r ′

t2

(c) GCnew \GCold

Figure 5. Deleting clauses common to both versionsÐt1 →
t3 and t3 → t4Ðhides the presence of a new derivation tree
leading to t4: t2 → t3 → t4. Naive łlocalž approaches, based
on tree or graph differences, are therefore insufficient to
determine alarms which possess new derivation trees.

transitively extends to t4, this question inherently involves
non-local reasoning. Other approaches based on enumerat-
ing derivation trees by exhaustive unrolling of the fixpoint
graph will fail in the presence of loops, i.e., when the number
of derivation trees is infinite. For a fixed analysis, we will
now describe a technique to answer this question in time
linear in the size of the new graph.

The differential derivation graph. Notice that a deriva-
tion tree τ is either an input tuple t or a grounded clause
t1 ∧ t2 ∧ · · · ∧ tk =⇒r t applied to a set of smaller derivation
trees τ1, τ2, . . . , τk . If τ is an input tuple, then it is exclusive to
the new analysis run iff it does not appear in the old program.
In the inductive case, τ is exclusive to the new version iff,
for some i , the sub-derivation τi is in turn exclusive to Pnew.

For example, consider the tuple DUPath(7, 18) from Fig-
ure 4(a), which results from an application of the rule r2 to
the tuples DUPath(7, 9) and DUEdge(9, 18):

д = DUPath(7, 9) ∧ DUEdge(9, 18)

=⇒r2 DUPath(7, 18). (1)

Observe that д is the only way to derive DUPath(7, 18), and
that both its hypotheses DUPath(7, 9) and DUEdge(9, 18)
are common to Pold and Pnew. As a result, Pnew does not
contain any new derivations of DUPath(7, 18).
On the other hand, consider the tuple DUPath(7, 42) in

Figure 4(c), which results from the following application of
r2:

д′ = DUPath(7, 39) ∧ DUEdge(39, 42)

=⇒r2 DUPath(7, 42), (2)

and notice that its second hypothesis DUEdge(39, 42) is ex-
clusive to Pnew. As a result, DUPath(7, 42), and all its down-
stream consequences includingDUPath(7, 43),DUPath(7, 45),
and Alarm(45) possess derivation trees which are exclusive
to Pnew.

Our key insight is that we can perform this classification of
derivation trees by splitting each tuple t into two variants, tα
and tβ . We set this up so that the derivations of tα correspond
exactly to the trees which are common to both versions, and
the derivations of tβ correspond exactly to the trees which
are exclusive to Pnew. For example, the clause д splits into
four copies, дαα , дα β , дβα and дββ , for each combination of
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DUPathα (7, 9) DUPathβ (7, 9) DUEdgeα (9, 18) DUEdgeβ (9, 18)

дαα дα β дβα дβ β

DUPathα (7, 18) DUPathβ (7, 18)

Figure 6. Differentiating the clause д from Equation 1.

antecedents:

дαα = DUPathα (7, 9) ∧ DUEdgeα (9, 18)

=⇒r2 DUPathα (7, 18), (3)

дα β = DUPathα (7, 9) ∧ DUEdgeβ (9, 18)

=⇒r2 DUPathβ (7, 18), (4)

дβα = DUPathβ (7, 9) ∧ DUEdgeα (9, 18)

=⇒r2 DUPathβ (7, 18), and (5)

дββ = DUPathβ (7, 9) ∧ DUEdgeβ (9, 18)

=⇒r2 DUPathβ (7, 18). (6)

Observe that the only way to deriveDUPathα (7, 18) is by ap-
plying a clause to a set of tuples all of which are themselves
of the α-variety. The use of even a single β-variant hypothe-
sis always results in the production of DUPathβ (7, 18). We
visualize this process in Figure 6. By similarly splitting each
clause д of the analysis fixpoint, we produce the clauses of
the differential derivation graph GC∆.

At the base case, let the set of merged input tuples I∆ be the
α-variants of input tuples which occur in common, and the β-
variants of all input tuples which only occur in Pnew. Observe
then that, since there are no new dataflows from lines 7 to 9,
only DUPathα (7, 9) is derivable but DUPathβ (7, 9) is not.
Furthermore, since DUEdge(9, 18) is common to both pro-
gram versions, we only include itsα-variant,DUEdgeα (9, 18)
in I∆, and excludeDUEdgeβ (9, 18). As a result, both hypothe-

ses of дαα are derivable, so that DUPathα (7, 18) is also deriv-
able, but at least one hypothesis of each of its sibling clauses,
дα β , дβα , and дββ , are underivable, so that DUPathβ (7, 18)
also fails to be derivable. By repeating this process,GC∆ per-
mits us to conclude the derivability of Alarmα (30) and the
non-derivability of Alarmβ (30).
In contrast, the hypothesis DUEdge(39, 42) of д′ is only

present in Pnew, so that we include DUEdgeβ (39, 42) in I∆,

but exclude itsα-variant. As a result,д′
α β
= DUPathα (7, 39)∧

DUEdgeβ (39, 42) =⇒r2 DUPathβ (7, 42) successfully fires,

but all of its siblingsÐд′αα , д
′
βα

, and д′
ββ
Ðare inactive. The

differential derivation graph,GC∆, thus enables the success-
ful derivation of DUPathβ (7, 42), and of all its consequences,
DUPathβ (7, 43), DUPathβ (7, 45), and Alarmβ (45).

2.3 A Probabilistic Model of Alarm Relevance

We build our system on the idea of highlighting alarms
Alarm(c ) whose β-variants, Alarmβ (c ), are derivable in the
differential derivation graph. By leveraging recent work on

probabilistic alarm ranking [53], we can also transfer feed-
back across program versions and highlight alarms which are
both relevant and likely to be real bugs. The idea is that since
alarms share root causes and intermediate tuples, labelling
one alarm as true or false should change our confidence in
closely related alarms.

Differential derivation graphs, probabilistically. The in-
ference rules of the analysis are frequently designed to be
sound, but deliberately incomplete. Let us say that a rule
misfires if it takes a set of true hypotheses, and produces
an output tuple which is actually false. In practice, in large
real-world programs, rules misfire in statistically regular
ways. We therefore associate each rule r with the probability
pr of its producing valid conclusions when provided valid
hypotheses.

Consider the rule r2, and its instantiation as the grounded
clause in Figure 6, дα β = r2 (t1, t2), with t1 = DUPathα (7, 9)
and t2 = DUEdgeβ (9, 18) as its antecedent tuples, and with

t3 = DUPathβ (7, 18) as its conclusion. We define:

Pr(дα β | t1 ∧ t2) = pr2 , and (7)

Pr(дα β | ¬t1 ∨ ¬t2) = 0, (8)

so that дα β successfully fires only if t1 and t2 are both true,

and even in that case, only with probability pr2 .
1 The conclu-

sion t3 is true iff any one of its deriving clauses successfully
fires:

Pr(t3 | дα β ∨ дβα ∨ дββ ) = 1, and (9)

Pr(t3 | ¬(дα β ∨ дβα ∨ дββ )) = 0. (10)

Finally, we assign high probabilities (≈ 1) to input tuples
t ∈ I∆ (e.g., DUEdgeα (7, 9)) and low probabilities (≈ 0) to
input tuples t < I∆ (e.g., DUEdgeβ (7, 9)). As a result, the β-

variant of each alarm, Alarmβ (c ), has a large prior probabil-
ity, Pr(Alarmβ (c )), in exactly the cases where it is possesses
new derivation trees in Pnew, and is thus likely to be rele-
vant to the code change. In particular, Pr(Alarmβ (45)) ≫
Pr(Alarmβ (30)), as we originally desired.

Interaction Model. Drake presents the user with a list of
alarms, sorted according to Pr(Alarm(c ) | e ), i.e., the proba-
bility that Alarm(c ) is both relevant and a true bug, condi-
tioned on the current feedback set e . After each round of user
feedback, we update e to include the user label for the last
triaged alarm, and rerank the remaining alarms according
to Pr(Alarm(c ) | e ).
Furthermore, e can also be initialized by applying any

feedback that the user has provided to the old program, pre-
commit, say to Alarm(45), to the old versions of the corre-
sponding tuples inGC∆, i.e., to Alarmα (45). We note that this

1There are various ways to obtain these rule probabilities, but as pointed

out by [53], heuristic judgments, such as uniformly assigning pr = 0.99,

work well in practice.
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combination of differential relevance computation and prob-
abilistic generalization of feedback is dramatically effective
in practice: while the original analysis produces an average
of 563 alarms in each our benchmarks, after relevance-based
ranking, the last real bug is at rank 94; the initial feedback
transfer reduces this to rank 78, and through the process
of interactive reranking, all true bugs are discovered within
just 30 rounds of interaction on average.

3 A Framework for Alarm Transfer

We formally describe the Drake workflow in Algorithm 1,
and devote this section to our core technical contributions:
the constraint merging algorithm Merge in step 3 and en-
abling feedback transfer in step 5. We begin by setting up
preliminary details regarding the analysis and reviewing the
use of Bayesian inference for interactive alarm ranking.

Algorithm 1 DrakeA (Pold, Pnew), where A is an analysis,
and Pold and Pnew are the old and new versions of the program
to be analyzed.

1. Compute Rold = A (Pold) and Rnew = A (Pnew). Ana-
lyze both programs.

2. Define Rδ = δ (Rold). Translate the analysis results
and feedback from Pold to the setting of Pnew.

3. Compute the differential derivation graph:

R∆ = Merge(Rδ ,Rnew). (11)

4. Pick a bias ϵ according to Section 3.2 and convert R∆

into a Bayesian network, Bnet(R∆). Let Pr be its joint
probability distribution.

5. Initialize the feedback set e according to the chosen
feedback transfer mode (see Section 3.3).

6. While there exists an unlabelled alarm:
a. Let Au be the set of unlabelled alarms.
b. Present the highest probability unlabelled alarm for

user inspection:

a = argmax
a∈Au

Pr(aβ | e ).

If the user marks it as true, update e ≔ e ∧ aβ .
Otherwise update e ≔ e ∧ ¬aβ .

3.1 Preliminaries

Declarative program analysis. Drake assumes that the
analysis result A (P ) is a tuple, R = (I ,C,A,GC ), where I is
the set of input facts, C is the set of output tuples, A is the
set of alarms, and GC is the set of grounded clauses which
connect them. We obtain I by instrumenting the original
analysis (A, I ) = Aorig (P ). For example, in our experiments,
Sparrow outputs all immediate dataflows, DUEdge(c1, c2)
and potential source and sink locations, Src(c ) and Dst(c ).
We obtain C and GC by approximating the analysis with a
Datalog program.

ADatalog program [1]Ðsuch as that in Figure 3Ðconsumes
a set of input relations and produces a set of output relations.
Each relation is a set of tuples, and the computation of the out-
put relations is specified using a set of rules. A rule r is an ex-
pression of the form Rh (vh ) :− R1 (v1),R2 (v2), . . . ,Rk (vk ),
where R1, R2, . . . , Rk are relations, Rh is an output relation,
v1,v2, . . . ,vk andvh are vectors of variables of appropriate
arity. The rule r encodes the following universally quantified
logical formula: łFor all values of v1, v2, . . . , vk and vh , if
R1 (v1) ∧ R2 (v2) ∧ · · · ∧ Rk (vk ), then Rh (vh ).ž

To evaluate the Datalog program, we initialize the set of
conclusions C ≔ I and the set of grounded clauses GC ≔ ∅,
and repeatedly instantiate each rule to add tuples to C and
grounded clauses to GC: i.e., whenever R1 (c1),R2 (c2), . . . ,

Rk (ck ) ∈ C , we update C ≔ C ∪ {Rh (ch )} and

GC ≔ GC ∪ {R1 (c1) ∧ R2 (c2) ∧ · · · ∧ Rk (ck ) =⇒r Rh (ch )}.

For each grounded clause д of the form Hд =⇒ cд , we refer
to Hд as the set of antecedents of д, and cд as its conclusion.
We repeatedly add tuples to C and grounded clauses to GC
until a fixpoint is reached.

Bayesian alarm ranking. The main observation behind
Bayesian alarm ranking [53] is that alarms are correlated in
their ground truth: labelling one alarm as true or false should
change our confidence in the tuples involved in its produc-
tion, and transitively, affect our confidence in a large number
of other related alarms. Concretely, these correlations are
encoded by converting the set of grounded clauses GC into
a Bayesian network: we will now describe this process.
Let G be the derivation graph formed by all tuples t ∈ C

and grounded clauses д ∈ GC . Figure 4 is an example. Con-
sider a grounded clause д ∈ GC of the form t1 ∧ t2 ∧ · · · ∧

tk =⇒r th . Observe that д requires all its antecedents to
be true to be able to successfully derive its output tuple. In
particular, if any of the antecedents fails, then the clause
is definitely inoperative. Let us assume a function p which
maps each rule r to the probability of its successful firing, pr .
Then, we associate д with the following conditional proba-
bility distribution (CPD) using an assignment P:

P (д | t1 ∧ t2 ∧ · · · ∧ tk ) = pr , and (12)

P (д | ¬(t1 ∧ t2 ∧ · · · ∧ tk )) = 0. (13)

The conditional probabilities of an event and its complement
sum to one, so that Pr(¬д | t1 ∧ t2 ∧ · · · ∧ tk ) = 1 − pr and
Pr(¬д | ¬(t1 ∧ t2 ∧ · · · ∧ tk )) = 1.
On the other hand, consider some tuple t which is pro-

duced by the clauses д1, д2, . . . , дl . If there exists some clause
дi which is derivable, then t is itself derivable. If none of the
clauses is derivable, then neither is t . We therefore associate
t with the CPD for a deterministic disjunction:

P (t | д1 ∨ д2 ∨ · · · ∨ дl ) = 1, and (14)

P (t | ¬(д1 ∨ д2 ∨ · · · ∨ дl )) = 0. (15)
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Let us also assume a function pin which maps input tuples
t to their prior probabilities. In the simplest case, input tuples
are known with certainty, so that pin (t ) = 1. In Section 3.2,
we will see that the choice of pin allows us to uniformly
generalize both relevance-based and traditional batch-mode
ranking. We define the CPD of each input tuple t as:

P (t ) = pin (t ). (16)

By definition, a Bayesian network is a pair (G,P), where
G is an acyclic graph and P is an assignment of CPDs to
each node [31]. We have already defined the CPDs in Equa-
tions 12ś16; the challenge is that the derivation graphG may
have cycles. Raghothaman et al. [53] present an algorithm
to extract an acyclic subgraph Gc ⊆ G which still preserves
derivability of all tuples. Using this, we may define the final
Bayesian network, Bnet(R) = (Gc ,P).

3.2 The Constraint Merging Process

As motivated in Section 2.2, we combine the constraints
from the old and new analysis runs into a single differential
derivation graph R∆. Every derivation tree τ of a tuple from
Rnew is either common to both Rδ and Rnew, or is exclusive
to the new analysis run.

Recall that a derivation tree is inductively defined as either:
(a) an individual input tuple, or (b) a grounded clause t1∧t2∧
· · · ∧ tk =⇒r th together with derivation trees τ1, τ2, . . . , τk
for each of the antecedent tuples. Since the grounded clauses
are collected until fixpoint, the only way for a derivation tree
to be exclusive to the new program is if it is either: (a) a new
input tuple t ∈ Inew\Iδ , or (b) a clause t1∧t2∧· · ·∧tk =⇒r th
with a new derivation tree for at least one child ti .

The idea behind the construction ofR∆ is therefore to split
each tuple t into two variants, tα and tβ , where tα precisely
captures the common derivation trees and tβ exactly captures
the derivation trees which only occur in Rnew. We formally
describe its construction in Algorithm 2. Theorem 3.1 is a
straightforward consequence.

Theorem 3.1 (Separation). Let the combined analysis results
from Pold and Pnew be R∆ = Merge(Rδ ,Rnew). Then, for each
tuple t ,

1. tα is derivable from R∆ iff t has a derivation tree which
is common to both Rδ and Rnew, and

2. tβ is derivable from R∆ iff t has a derivation tree which
is absent from Rδ but present in Rnew.

Proof. In each case, by induction on the tree which is given
to exist. All base cases are all immediate. Wewill now explain
the inductive cases.

Of part 1, in the⇒ direction. Let tα be the result of a clause
t ′1 ∧ t

′
2 ∧ · · · ∧ t

′
k
=⇒r tα . By construction, it is the case that

each t ′i is of the form tiα , and by IH, it must already have a
derivation tree τi which is common to both analysis results.
It follows that tα also has a derivation tree r (τ1,τ2, . . . ,τk )
in common to both results.

Algorithm 2 Merge(Rδ ,Rnew), where Rδ is the translated
analysis result from Pold and Rnew is the result from Pnew.

1. Unpack the input-, output-, alarm tuples, and
grounded clauses from each version of the anal-
ysis result. Let (Iδ ,Cδ ,Aδ ,GCδ ) = Rδ and
(Inew,Cnew,Anew,GCnew) = Rnew.

2. Form two versions, tα , tβ , of each output tuple inRnew:

C∆ = {tα , tβ | t ∈ Cnew}, and

A∆ = {tα , tβ | t ∈ Anew}.

3. Classify the input tuples into those which are common
to both versions and those which are exclusively new:

I∆ = {tα | t ∈ Inew ∩ Iδ } ∪ {tβ | t ∈ Inew \ Iδ }.

4. Populate the clauses ofGC∆: For each clauseд ∈ GCnew

of the form t1 ∧ t2 ∧ · · · ∧ tk =⇒r th , and for each
H ′д ∈ {t1α , t1β } × {t2α , t2β } × · · · × {tkα , tkβ },

a. if H ′д = (t1α , t2α , . . . , tkα ) consists entirely of łαž-
tuples, produce the clause:

H ′д =⇒r thα .

b. Otherwise, if there is at least one łβž-tuple, then
emit the clause:

H ′д =⇒r thβ .

5. Output the merged result R∆ = (I∆,C∆,A∆,GC∆).

In the⇐ direction. t is the result of a clause t1 ∧ t2 ∧ · · · ∧
tk =⇒r t , where each ti has a derivation tree τi which is
common to both versions. By IH, it follows that tiα is deriv-
able in R∆ for each i , and therefore that tα is also derivable
in the merged results.

Of part 2, in the⇒ direction. Let tβ be the result of a clause
t ′1 ∧ t

′
2 ∧ · · · ∧ t

′
k
=⇒r tβ . By construction, t

′
i = ti β for at least

one i , so that ti has an exclusively new derivation tree τi .
For all j , i , so that t ′j ∈ {tjα , tj β }, tj has a derivation tree τj
either by IH or by part 1. By combining the derivation trees
τl for each l ∈ {1, 2, . . . ,k }, we obtain an exclusively new
derivation tree r (τ1,τ2, . . . ,τl ) which produces t .

In the⇐ direction. Let the exclusively new derivation tree
τ of t be an instance of the clause t1 ∧ t2 ∧ . . . tk =⇒ t ,
and let τi be one sub-tree which is exclusively new. By IH, it
follows that ti β , and that therefore, tβ are both derivable in
R∆. □

Notice that the time and space complexity of Algorithm 2
is bounded by the size of the analysis rather than the program
being analyzed. If kmax is the size of the largest rule body,
then the algorithm runs inO (2kmax |Rnew |) time and produces
R∆ which is also of size O (2kmax |Rnew |). Given a tuple t ∈
Cnew, the existence of a derivation tree exclusive to Rnew

can be determined using Theorem 3.1 in time O ( |R∆ |). In
practice, since the analysis is fixed with kmax < 4, these
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computations can be executed in time which is effectively
linear in the size of the program.

Distinguishing abstract derivations. One detail is that
since the output tuples indicate program behaviors in the
abstract domain, it may be possible for Pnew to have a new
concrete behavior, while the analysis continues to produce
the same set of tuples. This could conceivably affect ranking
performance by suppressing real bugs in R∆. Therefore, in-
stead of using I∆ as the set of input tuples in Bnet(R∆), we
use the set of all input tuples t ∈ {tα , tβ | t ∈ Inew}, with prior
probability: if t ∈ Inew \ Iδ , then pin (tβ ) = 1 − pin (tα ) = 1.0,
and otherwise, if t ∈ Inew ∩ Iδ , then pin (tβ ) = 1−pin (tα ) = ϵ .
Here, ϵ is our belief that the same abstract state has new con-
crete behaviors. The choice of ϵ also allows us to interpolate
between purely change-based (ϵ = 0) and purely batch-mode
ranking (ϵ = 1).

3.3 Bootstrapping by Feedback Transfer

It is often the case that the developer has already inspected
some subset of the analysis results on the program from
before the code change. By applying this old feedback eold
to the new program, as we will now explain, the differential
derivation graph also allows us to further improve the alarm
rankings beyond just the initial estimates of relevance.

Conservativemode. Consider some negatively labelled alarm
¬a ∈ eold. The programmer has therefore indicated that all
of its derivation trees in Rold are false. If a

′
= δ (a), since the

derivation trees of a′α in R∆ correspond to a subset of the
derivation trees of a in Rold, we can additionally deprioritize
these derivation trees by initializing:

e ≔ {¬aα | ∀ negative labels ł¬až ∈ δ (eold)}. (17)

Strong mode. In many cases, programmers have a lot of
trust in Pold since it has been tested in the field. We can then
make the strong assumption that Pold is bug-free, and extend
inter-version feedback transfer, by initializing:

e ≔ {¬aα | ∀a ∈ Aδ }. (18)

Our experiments in Section 5 are primarily conducted with
this setting.

Aggressive mode. Finally, if the programmer is willing to
accept a greater risk of missed bugs, then we can be more
aggressive in transferring inter-version feedback:

e ≔ {¬aα ,¬aβ | ∀a ∈ Aδ }. (19)

In this case, we not only assume that all common derivations
of the alarms are false, but also additionally assume that the
new alarms are false. It may be thought of as a combination
of syntactic alarm masking and Bayesian alarm prioritiza-
tion. We also performed experiments with this setting and,
as expected, observed that it misses 4 real bugs (15%), but
additionally reduces the average number of alarms to be
inspected before finding all true bugs from 30 to 22.

4 Implementation

In this section, we discuss key implementation aspects of
Drake, in particular: (a) extracting derivation trees from pro-
gram analyzers that are not necessarily written in a declara-
tive language, and (b) comparing two versions of a program.
In Section 4.2, we explain how we extract derivation trees
from complex, black-box static analyses, while Section 4.3
describes the syntactic matching function δ for a pair of
program versions.

4.1 Setting

We assume that the analysis is implemented on top of a
sparse analysis framework [48] which is a general method
for achieving sound and scalable global static analyzers. The
framework is based on abstract interpretation [14] and sup-
ports relational as well as non-relational semantic properties
for various programming languages.

Program. A program is represented as a control flow graph
(C,→, c0) where C denotes the set of program points, (→)

⊆ C×C denotes the control flow relation, and c0 is the entry
node of the program. Each program point is associated with
a command.

Program analysis. We target a class of analyses whose ab-
stract domain maps program points to abstract states:

D = C→ S.

An abstract state maps abstract locations to abstract values:

S = L→ V.

The analysis produces alarms for each potentially erroneous
program points.

The data dependency relation (⇝) ⊆ C×L×C is defined
as follows:

c0
l
⇝ cn = ∃[c0, c1, . . . , cn] ∈ Paths,∃.l ∈ L.

l ∈ D(c0) ∩ U(cn ) ∧ ∀i ∈ (0,n).l < D(ci )

where D(c ) ⊆ L and U(c ) ⊆ L denote the def and use sets
of abstract locations at program point c . A data dependency

c0
l
⇝ cn represents that abstract location l is defined at

program point c0 and used at cn through path [c0, c1, . . . , cn],
and no intermediate program points on the path re-define l .

4.2 Extracting Derivation Trees from Complex,

Non-declarative Program Analyses

To extract the Bayesian network, the analysis additionally
computes derivation trees for each alarm. In general, in-
strumenting a program analyzer to do bookkeeping at each
reasoning step would impose a high engineering burden. We
instead abstract the reasoning steps using dataflow relations
that can be extracted in a straightforward way in static anal-
yses based on the sparse analysis framework [48], including
many practical systems [42, 58, 61].
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Figure 3 shows the relations and deduction rules to de-
scribe the reasoning steps of the analysis. Data flow relation
DUEdge ⊆ C×C which is a variant of data dependency [48]
is defined as follows:

DUEdge(c0, cn ) = ∃.l ∈ L.c0
l
⇝ cn .

A dataflow relation DUEdge(c0, cn ) represents that an ab-
stract location is defined at program point c0 and used at cn .
Relation DUPath(c1, cn ) represents transitive dataflow rela-
tion from point c1 to cn . Relation Alarm(c1, cn ) describes an
erroneous dataflow from point c1 to cn where c1 and cn are
the potential origin and crash point of the error, respectively.
For a conventional source-sink property (i.e., taint analysis),
program points c1 and cn correspond to the source and sink
points for the target class of errors. For other properties such
as buffer-overrun that do not fit the source-sink problem
formulation, the origin c1 is set to the entry point c0 of the
program and cn is set to the alarm point.

4.3 Syntactic Matching Function

To relate program points of the old version P1 and the new
version P2 of the program, we compute function δ ∈ CP1 →

(CP1 ⊎ CP2 ):

δ (c1) =




c2 if c1 corresponds to a unique point c2 ∈ CP2
c1 otherwise

where CP1 and CP2 denote the sets of program points in P1
and P2, respectively. The function δ translates program point
c1 in the old version to the corresponding program point c2
in the new version. If no corresponding program point exists,
or multiple possibilities exist, then c1 is not translated. In
our implementation, we check the correspondence between
two program points c1 and c2 through the following steps:

1. Check whether c1 and c2 are from the matched file. Our
implementation matches the old file with the new file
if their names match. This assumption can be relaxed if
renaming history is available in a version control system.

2. Check whether c1 and c2 are from the matched lines. Our
implementation matches the old line with the new line
using the GNU diff utility.

3. Check whether c1 and c2 have the same program com-
mands. In practice, one source code line can be translated
into multiple commands in the intermediate representa-
tion of program analyzer.

It is conceivable that our current syntactic matching func-
tion, based on diff, may perform sub-optimally with tricky
semantics-preserving code changes such as statement re-
orderings. However, we have not observed such complicated
changes much in mature software projects. Moreover, we
anticipate Drake being used at the level of individual com-
mits or pull-requests that typically change only a few lines of
code. In such cases, strong feedback transfer would leave just

a handful of alarms with non-zero probability, all of which
can then be immediately resolved by the developer.

5 Experimental Evaluation

Our evaluation aims to answer the following questions:

Q1. How effective is Drake for continuous and interactive
reasoning?

Q2. How do different parameter settings of Drake affect
the quality of ranking?

Q3. Does Drake scale to large programs?

5.1 Experimental Setup

All experiments were conducted on Linux machines with i7
processors running at 3.4 GHz and with 16 GB memory. We
performed Bayesian inference using libDAI [45].

Instance analyses. We have implemented our system with
Sparrow, a static analysis framework for C programs [49].
Sparrow is designed to be soundy [40] and its analysis is
flow-, field-sensitive and partially context-sensitive. It ba-
sically computes both numeric and pointer values using
the interval domain and allocation-site-based heap abstrac-
tion. Sparrow has two analysis engines: an interval analysis
for buffer-overrun errors, and a taint analysis for format-
string and integer-overflow errors. The taint analysis checks
whether unchecked user inputs and overflowed integers are
used as arguments of printf-like functions and malloc-like
functions, respectively. Since each engine is based on dif-
ferent abstract semantics, we run Drake separately on the
analysis results of each engine.
We instrumented Sparrow to generate the elementary

dataflow relations (DUEdge, Src, and Dst) in Section 4 and
used an off-the-shelf Datalog solver Soufflé [25] to compute
derivation trees. The dataflow relations are straightforwardly
extracted from the sparse analysis framework [48] on which
Sparrow is based. Our instrumentation comprises 0.5K lines
while the original Sparrow tool comprises 15K lines of
OCaml code.

Benchmarks. We evaluatedDrake on the suite of 10 bench-
marks shown in Table 1. The benchmarks include those
from previous work applying Sparrow [21] as well as GNU
open source packages with recent bug-fix commits. We ex-
cluded benchmarks if their old versions were not available.
All ground truth was obtained from the corresponding bug
reports. Of the 10 benchmarks, 8 bugs were fixed by de-
velopers and 4 bugs were also assigned CVE reports. Since
commit-level source code changes typically introduce mod-
est semantic differences, we ran our differential reasoning
process on two consecutive minor versions of the programs
before and after the bugs were introduced.

Baselines. We compare Drake to two baseline techniques:
Bingo [53] and SynMask. Bingo is an interactive alarm rank-
ing system for batch-mode analysis. It ranks the alarms using
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Table 1. Benchmark characteristics. Old andNew denote program versions before and after introducing the bugs. Size reports
the lines of code before preprocessing. ∆ reports the percentage of changed lines of code across versions.

Program Version Size (KLOC) ∆ #Bugs Bug Type Reference

Old New Old New (%)

shntool 3.0.4 3.0.5 13 13 1 6 Integer overflow [21]
latex2rtf 2.1.0 2.1.1 27 27 3 2 Format string [11]
urjtag 0.7 0.8 45 46 18 6 Format string [21]
optipng 0.5.2 0.5.3 60 61 2 1 Integer overflow [12]
wget 1.11.4 1.12 42 65 47 6 Buffer overrun [55, 56]
readelf 2.23.2 2.24 63 65 6 1 Buffer overrun [13]
grep 2.18 2.19 68 68 7 1 Buffer overrun [10]
sed 4.2.2 4.3 48 83 40 1 Buffer overrun [18]
sort 7.1 7.2 96 98 3 1 Buffer overrun [15]
tar 1.27 1.28 108 112 4 1 Buffer overrun [43]

Table 2. Effectiveness of Drake. Batch reports the number of alarms in each program version. Bingo and SynMask show
the results of the baselines: the number of interactions until all bugs have been discovered, and the number of highlighted
alarms and missed bugs respectively. DrakeUnsound and DrakeSound show the performance of Drake in each setting.

Program Batch Bingo SynMask DrakeUnsound DrakeSound

#Old #New #Iters #Missed #Diff Initial Feedback #Iters Initial Feedback #Iters

shntool 20 23 13 3 3 N/A N/A N/A 8 21 19
latex2rtf 7 13 6 0 6 5 6 5 12 9 6
urjtag 15 35 22 0 27 25 16 18 28 25 21
optipng 50 67 14 0 17 11 5 4 26 5 9
wget 850 793 168 0 218 123 140 55 393 318 124
readelf 841 882 80 0 108 28 4 4 216 182 25
grep 916 913 53 1 204 N/A N/A N/A 15 10 9
sed 572 818 102 0 398 262 209 60 154 118 41
sort 684 715 177 0 41 14 14 10 33 9 13
tar 1,229 1,369 219 0 156 23 29 15 56 82 32

Total 5,184 5,628 854 4 1,178 491 423 171 941 779 299

the Bayesian network extracted only from the new version
of the program. SynMask, on the other hand, performs dif-
ferential reasoning using the syntactic matching algorithm
described in Section 4.3. This represents the straightforward
approach to estimating alarm relevance, and is commonly
used in tools such as Facebook Infer [50].

5.2 Effectiveness

This section evaluates the effectiveness of Drake’s ranking
compared to the baseline systems. We instantiate Drake

with two different settings, DrakeSound and DrakeUnsound
as described in Section 3.3. DrakeSound is bootstrapped by
assuming the old variants of common alarms to be false
(strongmode in Section 3.3) and its input parameter ϵ is set to
0.001. DrakeUnsound aggressively deprioritizes the alarms by
assuming both of the old and new variants of common alarms

to be false (aggressive mode in Section 3.3), and setting ϵ to 0.
For each setting, we measure three metrics: (a) the quality of
the initial ranking based on the differential derivation graph,
(b) the quality of ranking after transferring old feedback, and
(c) the quality of the interactive ranking process. For Bingo,
we show the number of user interactions on the alarms only
from the new version. For SynMask, we report the number
of alarms and missed bugs after syntactic masking.

Table 2 shows the performance of each system. The łInitialž
and łFeedbackž columns report the positions of last true
alarm in the initial ranking before and after feedback transfer
(corresponding to metrics (a) and (b) above). In each step,
the user inspects the top-ranked alarm, and we rerank the
remaining alarms according to their feedback. The ł#Itersž
columns report the number of iterations after which all bugs
were discovered (metric (c)). Recall that both SynMask and
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Figure 7. The normalized number of iterations until the
last true alarm has been discovered with different values of
parameter ϵ for DrakeSound.

DrakeUnsound may miss real bugs: in cases where this occurs,
we mark the field as N/A.

In general, the number of alarms of the batch-mode anal-
yses (the łBatchž columns) are proportional to the size of
program. Likewise, the number of syntactically new alarms
by SynMask is proportional to the amount of syntactic
difference. Counterintuitive examples are wget, grep, and
readelf. In case of wget, the number of alarms decreased
even though the code size increased. It is mainly because
a part of user-defined functionalities which reported many
alarms has been replaced with library calls. Furthermore, a
large part of the newly added code consists of simple wrap-
pers of library calls that do not have buffer accesses. On the
other hand, small changes of grep and readelf introduced
many new alarms because the changes are mostly in core
functionalities that heavily use buffer accesses. When such
a complex code change happens, SynMask cannot suppress
false alarms effectively and can even miss real bugs. In case
of grep, SynMask still reports 22.3% of alarms compared to
the batch mode and misses the newly introduced bug.
On the other hand, Drake consistently shows effective-

ness in the various cases. For example, DrakeUnsound ini-
tially shows the bug in readelf at rank 28, and this ranking
rises to 4 after transferring the old feedback. Finally the bug
is presented at the top only within 4 iterations out of 108
syntactically new alarms. Furthermore, DrakeSound requires
only 9 iterations to detect the bug in grep that is missed
by the syntactic approach, which was initially ranked at 15.
In some benchmarks, such as shntool and tar, the rank-
ings sometimes become worse after feedback. For example,
the last true alarm of tar drops from its initial rank of 56
to 82 after feedback transfer. Observe that, in these cases,
the number of alarms is either small (shntool), or the initial
ranking is already very good (tar). Therefore, small amounts
of noise in these benchmarks can result in a few additional
iterations to discover all real bugs. This phenomenon occurs

Table 3. Sizes of the old, new andmerged Bayesian networks
in terms of the number of tuples (#T) and clauses (#C), and
the average iteration time on the merged network.

Old New Merged

Program #T #C #T #C #T #C Time(s)

shntool 208 296 236 341 924 1,860 21

latex2rtf 152 179 710 943 1,876 3,130 17

urjtag 547 765 676 920 1,473 2,275 23

optipng 492 561 633 730 1,905 3,325 7

wget 3,959 4,484 3,297 3,608 9,264 14,549 23

grep 4,265 4,802 4,346 4,901 10,703 16,677 31

readelf 3702 4283 3,952 4,565 10,978 17,404 31

sed 1,887 2,030 2,971 3,265 6,914 9,998 15

sort 2,672 2,951 2,796 3,085 8,667 14,545 31

tar 5,620 6,197 6,096 6,708 18,118 30,252 47

Total 23,504 26,548 25,713 29,066 70,822 114,015 246

because of false generalization from user feedback, which
in turn results from various sources of imprecision includ-
ing abstract semantics, approximate derivation graphs, or
approximate marginal inference. However, interactive repri-
oritization gradually improves the quality of the ranking, and
the bug is eventually found within 32 rounds of feedback
out of a total 1,369 alarms reported in the new version.
In total, Drake dramatically reduces manual effort for

inspecting alarms. The original analysis in the batch mode
reports 5,184 and 5,628 alarms for old and new versions of
programs, respectively. Applying Bingo on the alarms from
new versions requires the user to inspect 854 (15.2%) alarms.
SynMask suppresses all the previous alarms and reports
1,178 (20.9%) alarms. However, SynMask misses 4 bugs that
were previously false alarms in the old version.DrakeUnsound
misses the same 4 bugs because it also suppresses the old
alarms. Instead, DrakeUnsound presents the remaining bugs
only within 171 (3.0%) iterations. DrakeSound finds all the
bugs within 299 (5.3%) iterations, a significant improvement
over the baseline approaches.

5.3 Sensitivity analysis on different configurations

This section conducts a sensitivity studywith different values
of parameter ϵ for DrakeSound. Recall that ϵ represents the
degree of belief that the same abstract derivation tree from
two versions has different concrete behaviors. Therefore, the
higher ϵ is set, the more conservatively Drake behaves.

Figure 7 shows the normalized number of iterations until
all the bugs have been found by DrakeSound with different
values for ϵ . We observe that the overall number of itera-
tions generally increases as ϵ increases because DrakeSound
conservatively suppresses the old information. However, the
rankings move opposite to this trend in some cases such as
latex2rtf, readelf, and tar. In practice, various kinds of
factors are involved in the probability of each alarm such
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as structure of the network. For example, when bugs are
closely related to many false alarms that were transformed
from the old versions, an aggressive approach (i.e., small ϵ)
can introduce negative effects. In fact, the bugs in the three
benchmarks are closely related to huge functions or recur-
sive calls that hinder precise static analysis. In such cases,
aggressive assumptions on the previous derivations can be
harmful for the ranking.

5.4 Scalability

The scalability of the iterative ranking process mostly de-
pends on the size of the Bayesian network. Drake optimizes
the Bayesian networks using optimization techniques de-
scribed in previous work [53]. We measure the network size
in terms of the number of tuples and clauses in derivation
trees after the optimizations, and report the average time for
each marginal inference computation where ϵ is set to 0.001.
Table 3 show the size and average computation time for

each iteration. The merged networks have 3x more tuples
and 4x more clauses compared to the old and new versions
of networks. The average iteration time for all benchmarks is
less than 1 minute which is reasonable for user interaction.

6 Related Work

Our work is inspired by recent industrial scale deployments
of program analysis tools such as Coverity [4], Facebook
Infer [50], Google Tricorder [57], and SonarQube [8]. These
tools primarily employ syntactic masking to suppress re-
porting alarms that are likely irrelevant to a particular code
commit. Indeed, syntactic program differencing goes back
to the classic Unix diff algorithm proposed by Hunt and
McIlroy in 1976 [23]. Our work builds upon these works and
uses syntactic matching to identify abstract states before and
after a code commit.
Program differencing techniques have been developed

by the software engineering community [24, 29, 62]. Their
goal is to summarize, to a human developer, the semantic
code changes using dependency analysis or logical rules.
The reports are typically based on syntactic features of the
code change. On the other hand, our goal is to identify newly
introduced bugs, andDrake captures deep semantic changes
indicated by the program analysis in the derivation graph.
The idea of checking program properties using informa-

tion obtained from its previous versions has also been studied
by the program verification community, as the problem of
differential static analysis [36]. Differential assertion check-
ing [35], verification modulo versions [41], and the SymDiff
project [20] are prominent examples of research in this area.
The SafeMerge system [60] considers the problem of de-
tecting bugs introduced while merging code changes. These
systems typically analyze the old version of the program
to obtain the environment conditions that preclude buggy
behavior, and subsequently verify that the new version is

bug-free under the same environment assumptions. There-
fore, these approaches usually need general-purpose pro-
gram verifiers, significant manual annotations, and do not
consider the problems of user interaction or alarm ranking.
Research on hyperproperties [9] and on relational ver-

ification [3] relates the behaviors of a single program on
multiple inputs or of multiple programs on the same in-
put. Typical problems studied include equivalence check-
ing [28, 34, 51, 54], information flow security [47], and ver-
ifying the correctness of code transformations [27]. Vari-
ous logical formulations, such as Hoare-style partial equiv-
alence [17], and techniques such as differential symbolic
execution [52, 54] have been explored. In contrast to our
work, such systems focus on identifying divergent behaviors
between programs. On the other hand, in our case, it is al-
most certain that the programs are semantically inequivalent,
and our focus is instead on differential bug-finding.
Finally, there is a large body of research leveraging prob-

abilistic methods and machine learning to improve static
analysis accuracy [26, 30, 32, 37, 38] and find bugs in pro-
grams [33, 39]. The idea of using Bayesian inference for
interactive alarm prioritization which figures prominently
in Drake follows our recent work on Bingo [53]. However,
the main technical contribution of the present paper is the
concept of semantic alarm masking which is enabled by the
syntactic matching function and the differential derivation
graph. This allows us to prioritize alarms that are relevant
to the current code change. Orthogonally, when integrated
with Bingo, the differential derivation graph also allows for
generalization from user feedback, and transferring this feed-
back across multiple program versions. To the best of our
knowledge, our work is the first to apply such techniques to
reasoning about continuously evolving programs.

7 Conclusion

We have presented a system, Drake, for the analysis of
continuously evolving programs. Drake prioritizes alarms
according to their likely relevance relative to the last code
change, and reranks alarms in response to user feedback.
Drake operates by comparing the results of the static analy-
sis runs from each version of the program, and builds a prob-
abilistic model of alarm relevance using a differential deriva-
tion graph. Our experiments on a suite of ten widely-used
C programs demonstrate that Drake dramatically reduces
the alarm inspection burden compared to other state-of-the-
art techniques without missing any bugs.
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