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ABSTRACT 
Fidelity of cell division depends on the ability of an internal cell 
structure called the mitotic spindle, to maintain the structural 
integrity of the cellular architecture despite being subject to high 
compressive loading. We propose a generic software tool called 
Spindle FEA that employs continuum mechanics and finite 
elements analysis (FEA) code Abaqus CAE to study the stability of 
mitotic spindles in various phases of mitosis. The proposed 
application has a modular structure which allows easy modification 
of any part of the analysis which is of particular importance 
considering that new knowledge of spindles is constantly emerging. 
Thanks to the highly optimised finite element solver used in 
Abaqus CAE, Spindle FEA is highly suitable for large multi-
parametric studies which in turn may significantly benefit the 
planning of new experiments or identifying new key properties of 
the spindle. We also discuss the main physiological properties of 
spindles and show how they are modelled with the proposed 
technique as well as discuss all the essential analysis steps. We use 
Spindle FEA to study the buckling of a mitotic spindle in anaphase 
B to show how the additional stiffness of the lateral support of the 
spindle affects the left-right symmetry of cell division as well as to 
demonstrate the capacities of the proposed technique. 
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Applied computing → Computer-aided design; Molecular 
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1. INTRODUCTION 
The mitotic spindle is a cytoskeletal structure that plays a crucial 
role in cell division (mitosis) by generating forces needed to 
separate the chromosomes while preserving cell shape under 
external loads and ensuring correct positioning of the nucleus. The 
structural performance of spindles is partially facilitated by their 
highly complex architecture that combines various proteins 
arranged in the form of microtubules (MTs), cross-linkers 
(connectors), protein motors, centrosomes (poles), chromosomes 
and others. Investigation of the arrangement, properties and 
interaction of these structural units is essential to understand the 
high load bearing capacity of the spindle and the consequent 
robustness of the biological functions that rely on its mechanical 
stability. 

 

Many experimental [1–4] and theoretical studies [5–8] at various 
levels of spindle organisation and length scales address the 
questions of force generation, structural performance and stability 
of spindles. They include the near atomic level studies of MT 
connectors and motors [9], investigation of the structural properties 
of individual MTs [10–13] as well as analysis of MT organisation 
[1], coupling and positioning [6,14,15]. Studies of the spindle as a 
whole address spindle structure and orientation within the cell 
[2,16,17] and estimation of forces arising within the spindle as well 
as mechanisms of spindle formation [18].  

The studies focused on creating some unified models of the spindle 
which incorporate the properties of each structural unit into a 
complete hierarchical model of the whole spindle are rather 
incomplete. One such generic model of the inter-polar bundle of 
MTs in the fission yeast cells is proposed by Ward et al. [2] and is 
based on the Langevin dynamics framework [19]. Other models 
aim at producing closed form analytical solutions or scaling laws 
to explain force generation and structural stability of the spindle 
under compression [7,8,20]. These studies are of particular interest 
to us as they lay the foundation for the understanding of the 
structural behaviour of the spindle as a whole and, to some extent, 
incorporate all its hierarchical complexity. Furthermore, they 
clearly make the case for the importance of structural models of the 
spindle as a whole in scaffolding biological mechanism. In addition 
to this, the global models of the spindle are mostly tailored to some 
specific cell types and/or particular phases of mitosis. Motivated by 
this, we propose an alternative approach to structural modelling of 
the spindle as a whole. Here, we lay the foundation for a generic 
computational framework based on continuum mechanics methods 
and the theory of elastic stability which deploys Abaqus CAE finite 
element analysis (FEA) code to studying structural response of 
spindles. The proposed framework is embedded in the developed 
application Spindle FEA [21] which is linked to Abaqus CAE code 
via an API and receives a list of spindle parameters from a user, 
generates a Finite Element (FE) model of a spindle and submits it 
to FEA solver for analysis. In this paper, we discuss a high-level 
architecture of the developed application, formulate essential 
assumptions and limitations, and employ Spindle FEA to study the 
elastic stability of the fission yeast spindle in late anaphase B. Then 
we compare our results with those by Ward et al. [27] and discuss 
the applicability of the proposed framework. Our long-term goal is 
to create an open source modular platform that will be used and 
extended by the community of researchers and incorporate 
continuously emerging new knowledge about spindles.  

We show that at the current development stage, Spindle FEA 
application based on the continuum mechanics framework is a 
highly customisable and versatile tool that can be tailored to model 
many structural aspects of mitotic spindles in various cell types. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
 



2. ARCHITECTURE OF THE 
APPLICATION  

The basic requirements that we pose to our application are the 
ability to model the hierarchical complexity of a mitotic spindle, 
applicability to various cell types and phases of mitosis, 
extensibility, and scalability & simplicity of use. We aim to develop 
a platform that can be used by researchers in the field and be 
extended by them to account for new experimental and theoretical 
findings as well as to give researchers a numerical tool that they 
can use to test various modelling assumptions.  

The application is based on continuum mechanics discretised using 
a finite element (FE) method in quasi-static approximation. 
Continuum mechanics at a length scale of dozens of nanometres 
(length scale of an MT cross-section) has been successfully used 
before [6,15,22] demonstrating its applicability at such scales. In 
classical mechanics, finite element analysis (FEA) has long become 
a standard tool for computer-aided design and modelling of 
structures, especially when the geometry is complex and/or the 
boundary conditions are difficult for analytical treatment. The 
benefits of FEA are the high versatility of modelling, the 
applicability of the methods to virtually any structural mechanics 
problem and simplicity of its use. Therefore, at the current stage, in 
Spindle FEA we employ a highly optimised, efficient and reliable 
commercial FE solver such as Abaqus CAE. The reason for using 
this closed source solver is that it is one of the industry standards in 
FE analysis and also provides a convenient Python 2.7 API to 
control the solver. In the further releases we will aim to adjust the 
application to work with other open-source FE solvers but after 
their ability to deal with spindle stability problems is thoroughly 
tested.  

Spindle geometry generation, material properties definition, FE 
meshing and model formulation is triggered in Spindle FEA and 
executed in Abaqus CAE. Such formulated problem is then 
wrapped in the form of a specific input file which is passed to the 
FE solver for analysis. The results of the calculations can be then 
extracted and visualised either in the Abaqus graphical user 
interface or using python data tools. In the basic use scenario, the 
user provides the essential model parameters in a single file 
“job.py” located at the root of application and executes a single 
command line command. The model generation and analysis are 
then done automatically. In such a way, altering the geometry of 
the spindle, and/or material properties of its parts and running 
multi-parameter studies is as easy as changing the appropriate 
parameters in “job.py” file. In the case of a more advanced use, new 
material models, geometric and/or material nonlinearities and new 
types of analysis can also be incorporated into the framework by 
modifying the existing modules or adding new ones.  

The detailed interactive user manual for Spindle FEA explaining 
the steps needed to run the analysis as well as to introduce basic 
configurational changes can be found within the Spindle FEA 
directory [21] by following the simple guide in “README.txt” 
file. Alternatively, the application directory can be downloaded or 
cloned from https://git.soton.ac.uk/ai1v14/SpindleFEA.git and the 
interactive documentation can also be accessed and cloned from 
https://git.soton.ac.uk/ai1v14/SpindleFEA-docs.git. A website 
with the interactive documentation as well as modelling examples 
is spindlefea.soton.ac.uk. The link to it will be added to a 
“README” file in https://git.soton.ac.uk/ai1v14/SpindleFEA.git 

2.1. Main assumptions  
Some of the further discussed assumptions and limitations are 
inherited from the continuum mechanics and FEA, others come 

from the physics and biology of a mitotic spindle. Many of these 
assumptions are prone to changes as the understanding of the 
problem evolves and thus new material, geometry models, physical 
and physiological properties may be introduced by the users in the 
future.  

We assume that all the structural parts of the spindle are solid and 
continuous bodies and that the atomic and molecular thermal 
fluctuations are neglected. As we are currently focused on the 
various scenarios in which a spindle becomes structurally unstable 
and buckles, only linear buckling is considered. At this stage we 
assume all spindle parts to be linearly elastic implying a linear 
stress-strain relationship defined by Hooke’s law also assuming all 
deflections and rotations to be small.  

The mechanical model of MTs and connectors is an isotropic 
Bernoulli-Euler beam [23]. Although, several recent studies 
indicate that the orthotropic beam model for the MTs may be more 
realistic [10,13], we use the isotropic model due to its simplicity. 
Going beyond the assumptions of the models used in this paper – 
orthotropic models, geometric and material nonlinearities, as well 
as post-buckling analysis, may be also incorporated relatively 
easily as such problems are typically studied by FEA.  

The implementation of the quasi-static assumption allows us to 
perform linear buckling analysis of the spindle without dealing with 
the complicated step-dependent nonlinear buckling analysis or 
dynamical analysis as done by Ward et al. [2]. The validity of the 
quasi-static assumption requires the slow evolution of the spindle 
in time. Thus, loads and deformations develop slowly and the 
forces are in equilibrium at each time snapshot of the mitosis which 
typically spans over time interval of dozens of minutes [2] and the 
each of the mitotic phases changes slowly over a duration of several 
minutes. Thus, we are able to neglect the time dependence of the 
problem and apply the linear theory of elastic stability. 

Finally, in our use of finite element analysis we divide the spindle 
into a number of small sub-structures (finite elements) connected at 
nodes whose displacements are described by assumed shape 
functions used for the interpolation of the displacement field within 
each element; the shape being controlled by a set of relatively small 
number of generalised coordinates. These displacements are 
approximated by polynomial shape functions that satisfy 
variational constraints on the energy of the system. The matching 
of the displacements, strains, stresses, etc., between elements, is 
ensured by continuity conditions. In the case of linear buckling 
analysis, the FEA returns critical buckling loads of the structure and 
the associated instability shapes or modes.  

2.2. Mitotic Spindle structure 
Consider the scheme of the mitotic spindle structure shown in 
Figure 1 (A). The red arrows indicate the direction of the loads 
generated by protein motors pushing against the antiparallel 
assembly of inter-polar MTs (ipMTs) indicated by purple and green 
lines. The purple lines indicate MTs growing from the left pole 
while the green ones indicate MTs growing from the right pole. A 
detailed view of the mid-zone and near-pole parts of the inter-polar 
assembly is shown in Figure 1 (B) and Figure 1 (C). The inter-polar 
MTs translate the forces generated by motor proteins to the 
centrosomes or poles indicated by two big blue circles in 
Figure 1 (A), causing the two poles to separate. The poles are 
supported inside the cell by a number of radially oriented astral 
MTs (aMTs) indicated by blue thick lines in Figure 1 (A). Astral 
MTs connect centrosomes to the membrane of the cell and 
experience forces transmitted by the poles as well as reaction forces 
from membrane resistance to expansion as indicated by blue arrows 



in Figure 1 (A). Furthermore, centrosomes are also connected to 
both halves of the chromosomes (orange bodies in Figure 1 (A)) by 
means of chromosomal MTs (chMTs) indicated by thin cyan lines. 
Thus, under the influence of protein motors the centrosomes move 
apart, pushing the membrane via the attached aMTs and pulling the 
chromosomes apart due to chMTs. The direction of the 
chromosome splitting loads is indicated with orange arrows. In the 
case of late anaphase B, chromosomes have been already split apart 
so we do not account for chromosome splitting forces.  
Note that the actual spindle of a living cell contains hundreds of 
different MTs and other bodies. The scheme in Figure 1 (A), 
Figure 1 (B) and Figure 1 (C) is simplified to show only the high-
level architecture of the spindle and thus emphasise the key 
structural elements modelled here. A photo of the actual spindle 
reconstructed from the electron microscopy was adapted from [17] 
and is shown in Figure 1 (D) to demonstrate how complex the 
actual spindle is. The white lines are the individual MTs and the 
black circles indicate the poles.  

Following the scheme in Figure 1 (A) Spindle FEA generates a 
structure of a mitotic spindle depicted in Figure 2 (A). Here the 
centrosomes are indicated with the large red circles, the astral MTs 
and inter-polar MTs are represented by light-blue lines and the mid-
zone where the MTs are connected by cross-linkers is shown in 
green. The detailed view of the mid-zone is shown in Figure 2 (B) 
depicting inter-polar MTs as well as connectors and motors. The 
zoomed view of a connector and an MT are shown in Figure 2 (C) 
and Figure 2 (D). The load P arising from motor push is shown with 
black arrows in Figure 2 (C). The centrosome with the radially 
oriented astral MTs is depicted in Figure 2 (E).  

In the model presented here, we reduce the complex structural 
behaviour of the spindle to a problem of stability of equilibrium of 
the elastic system consisting of elastically coupled flexible bodies. 
The initial state of the system is taken to be in equilibrium. When 
loading is quasi-statically increased it reaches the critical point after 
which a pitch-fork bifurcation occurs, leading to symmetry 
breaking via buckling mode. We are interested in the onset of 
buckling and in the dependence of buckling loads and 
corresponding deformed configurations of the spindle on spindle 
parameters. Hence, in order to be able to study this problem, we 
first need to discuss the structure and mechanical behaviour of each 
individual part of a typical spindle.  

2.3. Structure and properties of a 
microtubule 
Microtubules are hollow filaments with cylindrical cross-section 
[5,10,13]. The outer diameter of a typical MT is !	 ≈ 	25	nm while 
its inner diameter (	 ≈ 	15	nm as indicated in Figure 1 (F). The 
length of MTs varies depending on the cell type and is between 1 −
10	µm  to 50 − 100	µm. Stiffness of MTs is derived from the 
characteristic length scale called persistence length which is 
measured in experiments [10], [23] and represents a ratio of MT 
bending stiffness - to thermal noise ./0 written as 12 	= 	-/./0; 
here -  is the bending moment per unit curvature response. The 
simplest mechanical model of an MT that has been often used in 
literature [6,15,22] is based on isotropic Bernoulli-Euler beam. 
However, the values of persistence length measured in experiments 
[24,25] indicate that an orthotropic beam model with shear effects 
would more accurately capture the MT mechanics when MT length 
5	 < 	21	µm [10]. In the current study we restrain ourselves to the 
isotropic model with the orthotropic MT model to be incorporated 
in the near future. 

Typically, MTs that form a spindle are prone to large levels of 
compression due to forces generated by motor proteins that may 
destabilise them and cause buckling. In contrast to the typical beam 
buckling, MTs retain a considerable level of initial load bearing 
capacity even when buckled [6,15]. This may be explained by the 
effect of a short wave-length buckling occurring thanks to the extra 
support that is provided by the cross-linkers. Furthermore, it has 
been shown that MTs in a living cell are also embedded in the mesh 
of connectors attaching them to the rest of the cytoskeleton and 

Figure 1. Mitotic spindle architecture at various hierarchical 
levels. Forces acting in spindle are shown in (A) along with 
the cell membrane, centrosomes, chromosomes, chromosome 
MTs (chMTs), astral MTs (aMTs) and inter-polar MTs 
(ipMTs). The magnified view of the spindle mid-zone with 
protein motors and mesh of MT connectors reported in [17] 
are shown in (B). The inter-polar MTs along with the 
connector mesh near poles are shown in (C). Red arrows 
indicate the direction of protein motors push. The view of the 
spindle constructed from electron microscopy data is 
adapted from [15] and shown in (D) The cross-section of 
inter-polar MT bundles as reported in [27] near pole is shown 
in (E) while the cross-section of the inter-polar MT bundle in 
mid-zone as reported in [27] is shown in (F). The cross-
section architecture was enriched by considering that inter-
polar bundle is embedded in a mesh of connectors as reported 
in [17]. The motor proteins are omitted in (E) and (F) to 
simplify the scheme.  



providing considerable lateral support [3] (see Figure 1 (B) and 
Figure 1 (C)) which also leads to the short-wave buckling mode.  

We model MTs as long slender cylindrical elastic beams with 
circular cross-section as shown in Figure 1 (E) and Figure 1 (D). 
We employ the isotropic Bernoulli-Euler beam model. Every MT 
is defined by length 5 and cross-sectional stiffness 78 as shown in 
Figure 2 (D). The MTs are embedded within the cytoskeleton by 
means of a dense network of protein connectors that we model 
using elastic springs . uniformly distributed along the MT contour 
as shown in Figure 2 (C) and Figure 2 (D).  

Two types of MTs participate in a spindle, namely, inter- polar MTs 
in a pole-to-pole bundle which has length ≈ 10	µm  in late 
anaphase B and astral MTs that extend from poles to the membrane 
and are ≈ 2	µm long. The locations of astral MTs are randomly 
generated on the centrosome sphere as shown in Figure 2 (A) and 
Figure 2 (E). The inter-polar bundle has a well-defined morphology 
presented in Figure 2 (B). The antiparallel alignment of MTs in a 
bundle implies that MTs do not span the entire inter-polar distance 
but grow towards each other from opposite poles and meet in the 
mid-zone where they are linked by cross-linkers and protein motors 
as shown in Figure 2 (A) and Figure 2 (B) as well as in Figure 1 (B) 
and Figure 1 (C). The cross-sectional assembly of ipMTs is defined 
by the inter MT distance 9  and MT angle :  as shown in 
Figure 1 (E) and Figure 1 (F). For our modelling, we use values of 
9  and :  generated by the Gaussian distribution with mean and 
standard deviation taken from the spindle measurements performed 
by Ward et al. [2]. These parameters, as well as other model 
parameters, are given in Table A of Appendix A. The length of the 
inter-polar MTs is also picked from a Gaussian distribution defined 
by mean and standard deviation given in in Table A of Appendix 
A. The inter-polar MTs grow from the centrosomes and thus are 
rigidly attached to them. In the model, it is represented by imposing 
continuity of displacements and rotations between the centrosomes 
and the ipMTs ends. The number of ipMTs in late anaphase B is 
between 5 and 6 [2].  

2.4. Cross-linkers and protein motors 
Consider a zone of overlap in the inter-polar bundle where MTs are 
strongly cross-linked by actin-binding and kinesin proteins [3,26] 
as shown in Figure 1 (B). The protein motors push the antiparallel 
MTs into the opposite directions thus separating poles. Fidelity of 
this mechanism as well as structural integrity of the inter-polar 
bundle are crucial for mitosis and, thus, need to be accounted for 
by our modelling.  
In the model both tubulin motors and other cross-linkers are 
regarded as thin 6	 − 	40	nm  long struts randomly distributed 
along the mid-zone. Ward et al. [2] adopt from [26] the assumption 
that cross-linkers do not contribute to bending stiffness of the MT 
bundle. Yet, we assume that they have a finite but small thickness 
of ≈ 5	nm. This allows us to have the cross-linker radius as another 
arbitrarily small parameter which we believe would represent the 
actual physics of the connector more accurately. It was shown [9], 
[3] that connectors are well coupled to the adjacent MTs which 
allows us to assume continuity of displacement and rotation be- 
tween the adjacent nodes of the connector and the MT in the FE 
model. The estimated number of cross-linkers coupling inter-polar 
MTs varies in a wide range and they are randomly distributed along 
the MT length. The detailed scheme of the inter-polar bundle 
featuring dozens of connectors randomly distributed along five 
ipMTs is shown in Figure 2 (B). The detailed view of the connector 
linking two MTs is depicted in Figure 2 (C). The direction of force 
generated by the protein motor is shown with vectors = and the 

connector length 5>  as well as cross-sectional stiffness 78>  are 
indicated in the scheme. 

Brangwynne et al. [15] have shown that individual microtubules 
bear up to 100 times larger compression loads in leaving cells. 

Figure 2. Late anaphase B mitotic spindle FE model. The 
generic architecture with centrosomes (red), inter-polar and 
astral MTs (blue) are shown in (A). The parts of the ipMTs 
interlinked by bridges and protein motors are green. The 
detailed view of the inter-polar zone is shown in (B). This blue 
links between MTs are MT connectors and motor proteins. 
The magnified view of a connector is shown in (C). Here, MTs 
are green and connector/motor is a blue link. When the 
motors walk in MTs they create two antiparallel loads = 
shown with arrows. The connector length is ?@ and stiffness 
is AB@. The MTs have stiffness AB and are also embedded in 
a highly chaotic mesh of cytoskeletal proteins. The effect of 
such embedding is modelled using distributed elastic springs 
C which are shown in (C) and (D). The detailed view of the 
centrosome with the radially extending astral MTs is shown 
in (E).  



Also, in vivo buckling wavelengths of MTs appear much shorter 
than those predicted for isolated MTs [15,22]. It is argued that MTs 
in the cell are mechanically coupled not only to each other but also 
to the surrounding cytoskeleton by a mesh of cross-linkers which 
adds considerable stiffness to the MTs and contributes to short-
wave buckling and to a dramatic increase in buckling loads 
compared to isolated MTs [3]. This network or mesh of proteins 
surrounding the MTs and linking them to the rest of the 
cytoskeleton has been observed using 3D reconstruction of electron 
microscopy data [3]. It was reported that this network has a chaotic 
morphology and can link 2, 3 or even 4 MTs at once which is shown 
in Figure 1 (B), Figure 1 (C), Figure 1 (E) and Figure 1 (F) with the 
help of yellow and orange dots.  
We model the effect of the embedding of MTs into a cytoskeletal 
mesh by attaching an evenly distributed elastic springs . (stiffness 
per unit length) to the contours of MTs while the second ends of the 
springs are attached to some fixed points in space mimicking high 
rigidity of the cytoskeleton of the cell. Therefore, the distributed 
spring contributes to the stiffness of each individual MT. The 
proposed distributed springs are sketched in Figure 2 (C) and 
Figure 2 (D). We further omit displaying these springs to simplify 
the graphics.  

2.5. Spindle analysis algorithm 
The standard modelling case of a mitotic spindle employing 
Spindle FEA contains the following steps. 
3. User specifies all the spindle analysis parameters in the 

“job.py” file located in the root of the application directory. 
The example of the user input data used in our modelling is 
shown in Table A of Appendix A and in the interactive user 
manual.  

4. In “job.py” user may also specify the computation parameters 
such as number of CPUs requested, memory allocation and 
parallelisation algorithms.  

5. The analysis may be run either from Abaqus graphical user 
interface or from command line. The “job.py” file is then 
submitted as an input file for the application.  

6. The	 modelling	 starts	 by	 generating	 the	 geometry	 of	
individual	parts	of	the	spindle	such	as	MTs,	cross-linkers	
and	centrosomes.	 

7. The	material	properties	are	then	assigned	to	each	part.	 
8. The	parts	are	combined	in	the	mitotic	spindle	assembly.	 
9. The	connection	properties	between	parts	are	specified.	 
10. The	finite	element	mesh	is	generated	on	each	part	of	the	

spindle.	 
11. The	analysis	input	file	is	generated	and	submitted	to	the	

FE	 solver	 which	 formulates	 the	 generalised	 eigenvalue	
problem	 for	 the	 whole	 structure	 and	 works	 out	 the	
eigenvalues	 which	 represent	 the	 critical	 buckling	 loads	
and	the	eigenvectors	that	describe	the	buckling	mode	of	
the	spindle.	 

12. The	 analysis	 is	 terminated	 and	 the	 files	 with	 results	
“job.odb”	and	“job.dat”	are	written	and	can	be	manipulated	
with	either	from	Abaqus	GUI	or	directly	executing	python	
code.	 

3. STABILITY OF A MITOTIC 
SPINDLE IN ANAPHASE B  
The stiffness added to the inter-polar MT bundle due to coupling 
with the rest of the cell cytoskeleton is challenging to measure in 
an experiment. Hence, we assume it as the governing parameter of 
our study and, thus, investigate how it affects the deformation 
profile of the late anaphase B spindle in buckling. We perform a 

Figure 3. Buckling modes of late anaphase B mitotic spindle 
for various lateral support stiffness C . The colour code 
represents the non-dimensional relative displacement 
amplitude of the buckling mode with near-zero deflection 
being blue and the near-one deflection labelled with red 
colour.  



parametric study of the dependence of the buckling and left-right 
symmetric properties of the spindle on the stiffness .  of the 
embedding of the inter-polar MT bundle in the surrounding 
cytoskeleton. This is also a test case for the utility of our tool 
Spindle FEA. In contrast to [2] we consider not only the inter-polar 
MT bundle but also astral MTs which are attached to the 
centrosomes and to the cell membrane. Six cases defined by . 
being equal to 0.01	Pa, 10	Pa, 15	Pa, 20	Pa, 40	Pa and 200	Pa 
were considered.  
The computed deformed configurations of the spindle are presented 
in Figure 3 for various values of lateral restoring force constant .. 
Each deformed configuration is characterised by the mode shape 
which is obtained from the eigenvector of the generalised 
eigenvalue problem constructed using the minimisation of the total 
potential energy according to the FE method. The eigenvector is 
determined up to an unknown scaling constant or amplitude of the 
buckling mode. Therefore, the analysis returns the shape of the 
deformation profile of the beam normalised to unity rather than the 
actual displacement in meters. The correspondent eigenvalue is, 
however, a physical critical buckling load in pN. It is essential to 
calculate the critical buckling loads of the spindle and the 
associated buckling modes as they give an estimate of the 
deformation pattern developing in a spindle should it be loaded to 
a particular critical load magnitude.  
In Figure 3 a large relative displacement is indicated in red while 
the small relative displacement is shown in blue. The black circles 
represent the cell membrane which starts to split in the middle to 
form two new cells. The dotted ellipse shows the central plane of 
cell division with respect to which the division may be symmetric 
or asymmetric. The red arrows indicate the direction of the 
antiparallel push by protein motors.  
From Figure 3, we observe that for .	 = 	0.01	Pa  the buckling 
mode of the inter-polar bundle resembles the Euler mode of the 
fixed-fixed beam-column [23] and also resembles the one reported 
in [2] for .	 = 	0	Pa. In this case, the lateral reinforcement of the 
bundle is neglectfully small and the bundle forms an arc symmetric 
with respect to the central plain.  
When .	 = 	10	Pa, we see that the deformation profile starts to 
alter. The maximum displacement (shown in red) shifts slightly 
towards the left pole. As the support stiffness increases to .	 =
	15	Pa we observe that the symmetric arc is no longer present. The 
high curvature zone indicated in red is now fully shifted to the left 
pole indicating the possibility of a violation of the division 
symmetry with respect to the central plane. In this case, the motor 
push may be unevenly distributed between the left and the right 
halves of the spindle. Also note, the local buckling of one or two 
MTs prevails over the global buckling mode of the whole spindle. 
When .	 = 	20	Pa and then .	 = 	40	Pa this effect becomes even 
more prominent clearly demonstrating asymmetric buckling with 
respect to the central plane. Furthermore, the wavelength of the 
buckling mode decreases with .. In the case of .	 = 	0.01	Pa, the 
single arc extends over the whole bundle. However, for .	 = 	20	Pa 
the arc spans roughly a half of the bundle. When .	 = 	40	Pa the 
arc is even shorter while the deformation of the whole bundle is 
strongly reduced. When .	 = 	200	Pa the two arcs buckling mode 
is observed and the global mode of the whole bundle is mostly 
absent. This leads to the conclusion that the lateral support 
transforms the global long-wavelength buckling mode into the local 
short-wavelength buckling, thus enhancing the structural 
performance of the spindle. But on the other hand, the short-
wavelength buckling mode is much more sensitive to the 
irregularities in the bundle geometry resulting in the effect of 

localisation of high relative displacement amplitudes towards either 
of the poles which presumably may affect the capacity of the cell 
to undergo symmetric division. Nevertheless, a cell still possesses 
a very reliable division mechanism which obviously should have 
some means of correcting the left-right symmetry breaking. This 
mechanism is not yet fully understood but we believe that the whole 
cell mechanical model may enrich our understanding of mitosis. 
We aim to create one such model in the future by extending the 
current application.  
Interestingly, for .	 = 	200	Pa, we have observed another type of 
mode which has not been reported before. For some bundle 
morphologies when the support stiffness is high it is energetically 
favourable not only to shorten the buckling wavelength but also to 
develop another type of deformation such as torsion. Such 
behaviour represents a bending- torsion deformation coupling and 
can be observed only in three-dimensional modes. The torsional 
part of the buckling mode arises from the rotation of the inter-polar 
bundle cross-section about the axis that goes through the shear 
centre of the cross-section. The actual three-dimensional view of 
such a mode along with its projections on IJ  and KJ	 planes 
discarding the aMTs are shown in Figure 4 (A). The view on the 
inter-polar bundle from the IK plane is shown in Figure 4 (B). The 
direction of cross-section rotation is indicated by the grey arrow. 
Notice, that the inter-polar MTs deform in the helix-like fashion 
having both bending and torsion components to the deformation.  
It should be also emphasised that due to the random positioning of 

MTs and cross-linkers mitotic spindles vary considerably in 
stiffness and structural morphology which, in turn, affect their 
critical loads and buckling mode shapes. The reported results are 
preliminary as many more computations are needed to gather 
reliable statistics. Yet, the application testing and comparison of the 
modelling results with ones reported by Ward et al. [2] indicates 
the potential for our proposed method to address the complex 
questions of spindle structural performance and of cell mitosis as a 
whole.  

CONCLUSIONS 
In this paper, we have discussed a generic modular application 
focused on studying the structural stability of a mitotic spindle in 
cell division based on the continuum mechanics approach using 

Figure 4. Three-dimensional buckling mode is depicted with 
its LM and NM projections in (A). The LN view of the buckling 
mode showing the inter-polar MT bundle cross-section 
rotation and the development of helical buckling shape due 
to torsion is shown in (B).  



finite element analysis. The application is created in Python 2.7 
programming language and employs commercial FE code Abaqus 
CAE via Abaqus python API. The application can be easily applied 
to study various mitotic spindles provided that relevant 
experimental data is given. Large-scale parametric studies can be 
easily performed as the application uses a highly optimised FE 
solver that can be easily multithreaded. The application is easy to 
use as all the essential parameters need to be provided in a single 
file “job.py” and it can be also easily extended due to the module-
based architecture. We have tested the application on the anaphase 
B spindle stability of the fission yeast cells and compared the 
buckling modes with ones reported in [2].  
We have applied Spindle FEA to studying the effect of lateral 
reinforcement of the inter-polar MT bundle on the left-right 
symmetry of a mitotic spindle buckling. We have also reported a 
new type of buckling mode of the inter-polar MT bundle that can 
be observed only in 3D analysis and employs bending-torsion 
coupled deformation mechanism. Further testing and improving the 
application to facilitate user experience as well as to extend a range 
of application applicability is planned for the future work.  
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APPENDIX 
A. GEOMETRIC AND PHYSICAL 
PARAMETERS OF THE SPINDLE 
The geometric and physical parameters of the spindle employed in 
the study and supplied to “job.py” file located within the root 
directory of the application are presented in Table A. The first 
column contains the explanation of the parameter, the second 
column contains name of the variable representing the parameter 
and the third column contains parameter values. The content of the 
“job.py” as well as the rules to modify it can be found in the 
interactive documentation to the Spindle FEA [21]. 

Table A. Mitotic spindle parameters 
Name Name in “job.py” Values 

Spindle architecture 
Total spindle length 
[2] - 14.3	µm 

Cell radius [2] - 1.6	 ± 	1	µm 
Inter-pole distance 
[2] SpindleLength 10	µm 

Length of 
interconnected zone 
[2] 

- 
2	µm 

 

Microtubules 
MT inner diameter 
[10] d 0.015	µm 

MT outer diameter 
[10] D 0.025	µm 

Inter-polar MT 
length defined by 
Gaussian 
distribution 

lengthInterval 
Q	 = 	5	µm,	
S	 = 	2	µm 

Astral MT length aMTlength 2	µm 
Number of ipMTs 
[2] ipMTnumber 6	

Number of aMTs aMTnumbers 20	
Distance between 
ipMTs, distribution 
fitted to [2] 

separation 
Q	 = 0.029	µm,	
S	 = 	0.04	µm	

Angle between 
ipMTs, distribution 
fitted to [2] 

angle 
Q	 = 	96.4°	
S	 = 	11.1°	

Elastic modulus of 
MTs [10] ElasticModulus 1.5 × 10V 	

pN
µmW	

Assumed Poisson 
ratio of MT material 
for isotropic case  

PoissonRatio 

 
0.3	

Centrosomes 
Centrosome radius  CentrosomeRadiu

s 240	nm 

Centrosome length CentrosomeLengt
h 480	nm 

Elastic modulus of 
centrosome material  CentrosomeE 1.5 × 10V 	

pN
µmW	

Poisson ratio 
of centrosome 
material  

CentrosomeNu 0.3	

Connectors 

Connector radius connectorRadius 5	nm 
Connector length 
[27] - 20	– 	50	nm 
Number of 
connectors per MT 

Nconnectors 10	

Elastic modulus of 
connector material  connectorE 1.5 × 10V 	

pN
µmW	

Poisson ratio 
of connector 
material  

connectorNu 
 

0.3	

Other parameters 
Astral MT 
connecting spring 
stiffness  

aMTspring 0 − 200	
pN
µmW	

Inter-polar bundle 
supporting spring  groundSpring 0 − 200	

pN
µmW	

Number of 
requested 
eigenvalues  

NumberOfEigs 5	

 
Columns on Last Page Should Be Made As Close As 

Possible to Equal Length 


