
Gamification of Wearable Data Collection: A Tool for both
Friend and Foe

ABSTRACT
Games are designed to build on certain inherently reward centered
aspects of our psychology. This encourages the user to keep
playing and engaging in the entertainment for just a bit longer. In
this paper we explore the way in which gamification can be used
to benefit researchers aiming to collect large amounts of data from
sometimes less than enthusiastically motivated participants.
We also investigate the risks associated with such mechanisms for
data collection and how malicious entities could use these same
methods to trick users into exposing private information. Across
several experiments used to measure the cross-applicable nature
of the data we collected, we demonstrate that a gamified version
of a data collection tool could be used to predict the pattern used
to unlock a phone.

CCS Concepts
• Security and privacy➝Mobile and wireless security,
Malware and its mitigation, Biometrics.

Keywords
Gamification; Wearables;

1. INTRODUCTION
Data collection is often one of the most difficult yet unavoidable
parts of developing machine learning-driven wearable
applications (see common example applications in Table 1). Not
only is it time consuming and dependent on rigorous data
collection methodologies, but it also requires that a large number
of participants execute a set of actions for significant periods of
time, often repeatedly. For example, in an experiment on the
recognition of gestures, the researcher typically has to recruit a
large number of participants and have them execute the target set
of gestures multiple times, over multiple sessions that are ideally

spread across several days if the dynamics of user behavior
variability over time are to be captured.
The challenge with designing these kinds of experiments is that
they can be monotonous, making it very difficult to not only
attract a large enough number of participants, but to also have
them execute the required activity a large enough number of times
as would be required for a statistically rigorous experiment. If
deep learning-based methods are part of the suite of tools to be
used to drive the analytics, the challenge even becomes more
amplified since deep learning methods often require orders of
magnitude more data than conventional machine learning
approaches [29].
To enhance the data collection process through minimization of
the monotony seen with traditional experimental protocols,
gamification is one of the approaches that are sometimes used
(e.g., see [7], [23], [20], [12]). The basic idea behind gamification
is to build the data collection process in the form of a game in
such a way that a carefully designed application collects relevant
data behind the scenes. Since participants are able to enjoy the
process of data collection because they are playing a game, it
might be possible to recruit large numbers of them, and have them
participate for long periods of time, enabling the collection of
more data.
Using the case study of hand movement pattern analytics based on
wrist-worn, sensor-enabled, devices, this paper examines the
potential of gamification in wearable biometrics. Specifically, we
address the following question: How closely does pattern
execution during a gaming session match with pattern execution
in the traditional setting where participants directly execute the
patterns without any overarching gaming interaction? The patterns
referred to here are those used for authentication on a smart phone
screen (i.e., the pattern lock mechanism - see Figure 1 for
illustration). If these two forms of pattern execution match
closely, this would point to the potential of gamification of data
collection for applications related to our work.
While we use authentication patterns as our case study, it is
noteworthy that our work directly or indirectly applies to a broad
range of applications which involve analytics of hand or wrist
movement patterns as captured by a sensor-enabled wrist-worn
device (example applications include, gesture recognition [33], air
calligraphy [15], gait and handwriting authentication based on
wrist movements [9], etc.).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICCDA 2019, March 14–17, 2019, Kahului, HI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6634-2/19/03...$15.
https://doi.org/10.1145/3314545.3314572

Sraddhanjali Acharya
Texas Tech University
Lubbock, Texas, US

sraddhanjali.acharya@ttu.edu

Richard Matovu
Texas Tech University

Lubbock, Texas US
richard.matovu@ttu.edu

Abdul Serwadda
Texas Tech University
Lubbock, Texas, US

abdul.serwadda@ttu.edu

Isaac Griswold-Steiner
Texas Tech University
Lubbock, Texas, US

isaac.griswold-steiner@ttu.edu

68

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3314545.3314572&domain=pdf&date_stamp=2019-03-14

Figure 1. Illustration of a user wearing a smartwatch entering

her pattern.

Although gamification could be used for benevolent data
collection, we also explore these same techniques and
experimental setup in the context of malicious intent. Could
gamification help an attacker avoid suspicion - e.g., could a
gaming app similar to one used for gaming data collection in our
pattern matching experiment be used to learn a user's (secret)
authentication pattern? To demonstrate these risks, we use the
same experimental setup for both lines of research except for
slight variations in the app design, underlying assumptions, and
performance evaluation specifics (see Section 3.1 for additional
details).
The contributions of this paper are summarized below:

1. Studying gamification, as a means to ease data
collection for wearable applications: Taking the case
of pattern execution at the authentication screen, we
design an experiment that gamifies the data collection
process and study the similarity between the patterns
executed in these two cases. At the heart of this
experiment is a gaming app that we built in such a way
to mimic elements of the popular Flow Free app [36]
that lend themselves to the pattern entry process. We
find that depending on the specific scenario evaluated,
gaming might hold promise as a means for collection of
wearable sensor data in experiments involving wrist
movement dynamics similarly to our experiment.

2. Gamification as a tool for an adversary: We take the
case of a “bad guy” who posts a malicious gaming app
on the app market (e.g., on Google Play) to evaluate
how well such an app could perform at predicting a
user's authentication pattern. The assumption in this
case is that the app advertises a benign (gaming)
functionality, but yet has underlying behavior that
captures gaming patterns and compares them with the
user's pattern at login time. Through the application of
machine learning to the sensor data, we find that the
adversary could reliably infer the user's authentication
pattern using the game. To our knowledge we are the
first to study the question of a gaming app which uses
gaming patterns as training data that is later used to
decode the user's pattern.

The rest of the paper is organized as follows: We discuss related
work in Section 2 and the data collection experiments and
machine learning design in Section 3. We then present our results
and conclusions in Sections 4 and 5 respectively.

Table 1. A selection of recent publications that studied
wearable applications. UA stands for User Authentication, GR
stands for Gesture Recognition, ST stands for Sleep Tracking
and HAR stands for Human Activity Recognition. Observe
that several of these papers use very small study populations,
and by extension small datasets. Through gamification, such
studies could be extended in scale while subjecting the
participants and researchers to minimal load.

Publication Application # of
Users

Lee et al. [13] UA 20

Lewis et al. [14] UA 5

Wen et al. [32] GR 10

Zhang et al. [35] GR 5
Chang et al. [5] ST 15

Sun et al. [30] ST 16

Khalifa et al. [11] HAR 10

Roggen et al. [25] HAR 12

2. RELATED WORK
Our work is related to mainly two broad categories of previous
research (1) gamification of cybersecurity training and experiment
data collection, (2) mining user inputs using mobile and wearable
sensor data. In this section, we discuss our related work in these
two broad categories.

2.1 Gamification
Gamification involves use of game design elements in an activity
to motivate users to participate and/or keep them engaged. For the
research on using game design to motivate engagement during
activities, the following cybersecurity training [6, 10, 27] and data
collection [7] papers are among those distantly related to our own
research. Games have also been built into commercial
applications and used for encouraging users to share personal
information, such as location. In De Nadai et al. [22] the authors
used the Foursquare API to get information about user behavior
across Italian cities. Without gamification, some of the data which
facilitates research and commercial applications would be nearly
impossible to gather.
Most closely related to our work in this category are two studies
reported in [4, 7]. In order to motivate users to participate
voluntarily in research studies and keep data collection tasks
enjoyable, Dergous et al. [7] proposed gamifying data collection
experiments and using in-game powerups in those gamified
experiments. The authors designed an experiment involving Fitts
reciprocal tapping tasks and conducted the experiment in three
different ways i.e., using a gamified version deployed on Android
Store, using a gamified version in the laboratory and using a non-
gamified version in the laboratory. The data collected from the
three versions was then compared and the results didn't show any
significant difference in the quality of data collected. Similar to
works in [7], Cechanowicz et al. [4] also designed three gamified
versions of market research survey and conducted them along
with the traditional version of the same surveys. The authors
reported that there were no significant differences found in the
response quality except in two situations where response data
could have changed because of use of certain game elements.
Although our work also used gamification, it significantly differs

69

from past research in the following ways: (1) Rather than using
general methods of evaluating the quality of the data we obtain
from these experiments, we built machine learning models to
predict user behavior as a way of measuring and comparing the
performance of different datasets. This allows us to compare in
concrete terms the impact of differences in the data we collect. (2)
Our work is centered on the use of sensor data rather than the
results of games or easy to measure responses from participants.
One concern might be that sensor data is potentially more unstable
when compared between a game and a non-game version of a data
collection experiment. (3) We explore the security risks associated
with malicious actors who could use games to surreptitiously
collect data on their users with the purpose of leveraging it
directly or selling the information.
Next, we explore some of the previous security research which
has used phone behavior to extract personal or secure information
from users.

2.2 Mining User Inputs Using Sensor Data
Sensor data from mobile and wearable devices has been
extensively used to learn patterns that breach privacy of users.
Malicious applications installed on either smartphone or wearable
device stealthy collect accelerometer and/or gyroscope data to
make inference for user inputs such as keystrokes [3, 16, 19, 24],
PINs [2, 26, 34], or pattern locks [2, 17, 18]. In this subsection,
we discuss previous studies that use sensor data to mine user
inputs categorized based on the source (or device) of the data
used.

2.2.1 Mining user inputs using smartphone sensor
data
The first category of research reported in literature that mined user
inputs from sensor data was based on data from smartphones. Cai
et al. [3] used orientation sensor data collected from smartphone
to learn patterns inferring keys on a number keypad. In this study,
the authors collected sensor data while users pressed number keys,
extracted features pertaining to the angular displacements made
by keys when pressed and then inferred the keys on the number
keypad with an accuracy of over 70%. Owusu et al. [24] advanced
this area of research by inferring complete 6-character passwords
rather than individual characters. Owusu et al. showed that
accelerometer data collected from the smartphone could be used
to infer the screen area pressed by user and 6-character passwords
entered by the user. The authors interpolated the collected
accelerometer data, extracted 46 statistical features and then used
a Random Forest classification algorithm to make inference of the
pressed screen-area and entered passwords. The authors obtained
a prediction accuracy of 24.5% with 60 screen partitions and
predicted the correct passwords within a median of 4.5 trials.
Xu et al. [34] provided a more practical implementation of how
sensor data could be used to learn motion change patterns of tap
events for inference of keys on a number pad and PINs. The
authors presented how the key press detection and inference
would be done in both the training and real-world scenarios. The
authors used k-means to make key press inference. They obtained
an average accuracy of over 62% for each key prediction in the
first 4 attempts and over 80% for PINs in the first 3 attempts.
Other past research in this category include works in [2, 21] which
analyzed more complex privacy leakage scenarios like inferring
pattern locks, letter taps.
An obvious difference between our work and the works presented
in this category is that our work infers user sensitive information
(pattern locks) entered on the smartphone using sensor data from

the smartwatch paired with that phone and not directly using
sensor data from that smartphone on which the user types.

2.2.2 Mining user inputs using smartwatch sensor
data
With the proliferation of smartwatches, new researches showing
privacy leakages using sensor data from the smartwatch coped up
such as [17, 18, 26, 31]. Similar to works in the previous category,
past research in [16, 17, 19, 31] used accelerometer and gyroscope
data to predict keys on a number keypad, PINs and words.
Most recent and closely related to our paper in this category are
works in [18]. Lu et al. [18] used several traditional machine
learning techniques and deep learning techniques to infer PINs
and Android Pattern Locks (APL) drawn on the smartwatch. The
authors achieved an accuracy of over 95% and 98% for PINs and
APLs respectively using the traditional machine learning
techniques and APL prediction accuracy of 39% for the first guess
using the deep learning technique. A notable difference between
this Lu et al.'s work and our work is the pattern locks being
inferred are drawn on the smartwatch itself while the pattern locks
being inferred in our work are drawn on the smartphone.
In this category, our work is more closely related to last
subcategory of research described above in that we mine user
inputs based on sensor data collected from the smartwatch.
However, our work is different from all works described in this
category in the following ways: (1) we designed a malicious
gaming app derived from a popular game (Flow Free [36]) that
uses user behavioral data to learn hidden sensor patterns
corresponding to predetermined patterns of the user. Previous
studies collected training data from custom-designed applications
similar to the pattern locks or PIN interfaces and not a completely
different application with embedded patterns implicitly. (2) we
incorporate several training scenarios (i.e., training using one user
game data and using all user game data) and make comparison
between these scenarios. Previous studies only use one scenario
with both training and testing data obtained from the same
application. (3) we use sensor data from smartwatch to infer user
authentication pattern lock used on the smartphone.

3. DATA COLLECTION AND MACHINE
LEARNING EXPERIMENTS
In this section we describe our data collection experiments and
how we implemented our machine learning mechanism. Note that
for our research, both the benign scenario (i.e., gamification of
data collection) and the attack scenario (i.e., using gamification to
stealthily learn a user's pattern) are based on the same data
collection experiment since the experiment is adequate to collect
all the required information. In a real world setting however, these
two scenarios would have some variations in assumptions of what
and how certain data is accessed, and by extension the design of
the application. We first describe these assumptions before
describing our data collection experiments.

3.1 Assumptions: Threat Scenario vs Benign
Scenario
Threat Scenario - Using gamification for attack: The idea
behind this scenario is that a malicious entity puts a game on the
app market such that users download and play it. Unbeknownst to
the users, the game is instrumented to elicit user moves or actions
that enable the capture of security-sensitive data such as
behavioral biometric data (e.g., swipe patterns that could later be
used to drive attacks such as that in [28]) or even more traditional
authentication credentials (e.g., an unlock pattern). For a more

70

focused exposition, we tailor the rest of the description to the
pattern lock mechanism since this is the case studied in our
experiments. A gaming app built to “steal” an authentication
pattern used for a smart phone pattern lock might be designed in
such a way to have the user execute patterns or pattern-like shapes
during regular game play. We have built an example of this kind
of app for this research (see Section 3.3.2). As the user makes
moves during gaming operations, the game is methodically
getting him to execute certain patterns to build a training set
tailored to the user (in our case the relevant training data is motion
and orientation sensor data collected from a smart watch).
Meanwhile, this gaming app also has a background service
component that runs at all times in the background and logs all
those times when the user executes a pattern to log in (Mobile
OS'es provide broadcasts that apps can use to determine when the
user just logged in - e.g., see [37] for Android).
The combination of data collected by both the regular gaming app
and the background service means that the attacker has access to:
(1) training data of the user executing a wide range of patterns,
and, (2) actual (unlabeled) data of the user's authentication pattern
that could be labelled using data from (1) if the pattern exists in
the training set. The prediction performance obtained from this
case of a malicious gaming app will be captured in Scenario II
during our performance evaluation (see Table 3 for summary of
our scenarios).
Benign Scenario - Using gamification for data collection: The
main requirement in this case is that participants interact with a
gaming app that prompts them to execute the activity required for
the experiments. Depending on the experiment design objectives,
participants may, or may not be told in advance what “actual
experiment” the game represents. Again, tailoring our description
to the pattern lock, the gaming process would involve people
executing patterns selected by the experimenter, and the collected
data labelled accordingly to correspond to the relevant patterns. In
this paper, we measure how well these gaming patterns match
with the real patterns by also having the users execute the real
patterns and making a comparison (see Scenario III in Table 3).

3.2 Data Collection Experiments
After getting approval from our university's Institutional Review
Board (IRB), we conducted two kinds of data collection
experiments: (1) Experiments in which participants interacted
with a gaming app (i.e., played a game) on a smart phone, and, (2)
Experiments in which participants entered patterns into the
Android pattern lock screen (i.e., experiments which simulated the
user authentication process on a pattern lock screen). Going
forward we refer to these experiments as G (for gaming) and P
(for pattern). For both experiments, participants wore a smart
watch whose sensors recorded motion and orientation dynamics
(i.e., linear acceleration and gyroscope readings) during the
process of each user's interaction with the phone. These sensor
measurements enabled us to capture the hand movement patterns
while users interacted with the phones.
For each of the experiments G and P, each user participated in two
sessions that were at least one day apart. Collection of each user's
data on two separate days allowed us to capture some of the user
behavior variability during the gaming and (or) pattern entry
process. A total of 24 users participated in our experiments of
whom 15 were male. All participants were students, faculty or
staff at our university. The smart watch used in our experiments
was the LG Urbane [38], while the smart phone used was a
Samsung Galaxy S8+ [39]. Data from the watch was transmitted
to the phone via a blue tooth connection.

3.3 Design of Applications used for Data
Collection
3.3.1 App for Experiment P
Since Experiment P is the standard pattern entry process on an
Android phone, we built for it an application that emulates the
Android pattern lock for GUI of our app. The only variation from
the standard Android pattern lock was that our application
recorded a time stamp at each touch point, which enabled us to
delimit each pattern. Note that in practice the attacker could
delimit a pattern in many different ways (e.g., through broadcasts
sent by the OS during login [8], or through fingerprinting the
behavioral quirks of pattern entry [1]).

3.3.2 App for Experiment G
Recall that the idea behind experiment G is to have participants
play a game whose operations mimic the entry of different kinds
of patterns. As users play moves on the app (e.g., connecting
objects, tracing paths, etc.), they are executing different kinds of
patterns similar to those that people typically use for
authentication.
After exploring a wide range of gaming apps on the Google play
app market, we identified the Flow Free puzzle game (Figure (2))
as a good model for this kind of application. In the Flow Free
puzzle game, a user connects pairs of similar colored dots using
links that must not intersect. Since these dots are located on a grid
shaped similarly to the Android pattern lock grid, the process of
connecting these dots is like the pattern entry process. Figure 2
shows example screenshots of the Flow Free game during typical
game play.

(a)

(b)

(c)

(d)

Figure 2. Screenshots of Flow Free puzzle game levels. Figure
2a and 2b and 2c show first pipes drawn in different levels.
Figure 2d shows the screenshot of when a level is completed.
Our game follows the same general idea as Flow Free, except that
it: (1) permits the intersection of paths, (2) involves a finger
trailing, or tracing out the path of, a moving ball (as opposed to
joining dots), and, (3) only shows the most recent segment of the
path (as opposed to the full path) traversed by the finger.
The idea behind (1) is to provide support for all sorts of arbitrary
patterns while the idea behind (2) is to force the user to execute a
path determined by the app since the movement of the ball
determines the user's finger trajectory. The combination of (2) and
(3) forces the user to execute at a speed determined by the gaming
app (i.e., if the ball moves fast, the user will move fast in order to
traverse the path while it is still visible, otherwise the user might
get the path wrong and get a low score). Figure 3 shows an
example execution of the game. As the ball moves from one point
to the next (Figure 3a is the first step while Figure 3d is the last
step), the finger follows it and traverses its full path. Figure 3d
shows the pattern resulting from the combination of operations
shown in Figures 3a, 3b and 3c. Note that in practice Figure 3d is
not shown to the user. We only show it here for illustration
purposes. During gameplay our app had users execute the patterns
shown in Figure 4, which are adopted from [40]. The majority of
these are frequently used for authentication.

71

(a) First

(b) Second

(c) Third

(d) Fourth

Figure 3. Screenshots of our game in action from the first step
to fourth. Our game level finishes at the fourth step (Figure

3d). Users do not see the whole pattern in the end as shown in
Figure 3d and is only presented for illustration purpose.

3.4 Building Machine Learning Models
3.4.1 Preprocessing and Feature Extraction
In this section, we describe our data preprocessing and feature
extraction process before we apply the data to various
classification models. The linear acceleration gives the
acceleration of the device along the three axes (x, y and z) and
gyroscope measures the rate of rotation around the device's axes.
We use all three dimensions of these two sensors in our study.
The first basic step of data preprocessing is removing the noise
and outliers from sensor readings. We undertake this by applying
a median filter algorithm (from Scikit-Learn) to all the axes.
Having filtered the data, we then build 4 data vectors for each
sensor and each axis, creating a total of 24 (=4 vectors x 2 sensors
x 3 axes) different data vectors that we later use to compute the
features. Here, we first describe these 4 data vectors before
proceeding to describe the feature computation.

[1] Vector #1 - Raw Time Series Data: Let the notation S1
denote the sensor readings of linear acceleration. Then a
sequence of readings of S1 can be denoted by S1 = a1,
a2,an of size n. This sequence represents the first data
vector.

[2] Vector #2 - Derivative of Raw Time Series Data:
From S1, we calculate its derivative and get S1d = [a1d,
a2d, a3d,and], the second data vector.

[3] Vector #3 - Fast Fourier Transform (FFT): Calculate
the FFT of S1 and get S1f = [a1f, a2f, a3f,anf], the third
data vector.

[4] Vector #4 -Derivative of FFT: Perform a derivative on
data vector S1f and obtain S1df= [a1df, a2df, a3df,andf],
the fourth data vector.

After computing the above 4 vectors on each axis of each sensor,
we then compute the features according to the feature types
described below and presented in Table 2.
Feature Type Description: The feature set used in our study are
classified into Type A, B, C and D depending on the nature of
vectors (time and frequency domain) they operate on and the axis
(x, y, z) over which they are computed.
The vectors 1 (raw time series data) and 2 (derivative of raw time
series data) are in time domain (i.e. values in the vector are known
with respect to time) whereas vectors 3 (FFT of raw time series
data) and 4 (derivative of FFT) are in frequency domain (i.e.
values are known with respect to frequency). To present how
these feature types differ from one another, we discuss the
differences in their computation.
The feature types – Type A, C and D are applied to both time
domain (1, 2) and frequency domain vectors (3, 4), however Type
A features are computed from each axis separately. These feature
types result in different lengths of feature. Type A feature results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w)
Figure 4. The 23 patterns used in our experiments. For
Experiment G, the user simply follows a ball around the
screen but ends up executing each of these patterns multiple
times in the process. The game only shows part of the path to
the user in order to minimize the likelihood that the user
keeps track of any patterns being executed during the game.
In Experiment P, users are shown the patterns and hence
execute them in just the same way they would execute them
while logging into a phone. Data collected in P is used to
measure how well the patterns collected in G match with real
patterns.
in 8 features per vector on each axis for each sensor, and Type C
and D feature types result in 3 and 1 features from three axes
respectively. Feature Type C (inter-axis) uses pairings of axis (xy,
yz and yz) to compute 3 features. Feature Type D uses all the axis
(x, y, and z) to compute 1 feature. The feature `correlation' (Type
C (inter-axis)) is calculated between axes x, y; y, z and x, z giving
three features namely- corrxy, corryz and corrxz respectively and
feature “signal magnitude area” (Type D) is computed as the sum
of absolute value of x, y and z giving a single feature.
For the last feature Type B, we compare it with feature Type A.
Feature Type B is similar to Type A, in that its features are also
computed separately for each axis but differs to Type A in that it
is only applied on frequency domain vectors (3, 4). The
application of Type B features result in 4 features per vector per

72

per axis and per sensor.
Feature Extraction: In our study, we extracted 136 features from
each sensor. Since the feature extraction process is the same for
both the sensors, we only show the process for any one sensor.
Recall that, each sensor has vectors 1 through 4 for each axis. For
vectors 1 and 2, we compute 8 features from Type A for each of
six axes of the vector (8 x 6). Then, using inter axis of each
vector, we compute 3 features from Type C (3 x 2) and 1 feature
from Type D (1 x 2) from all axes. In total, we get 8 features from
Type C and Type D. These 56 features from vectors 1 and 2 are
appended to a feature vector, F (no. of features = 56).
From vectors 3 and 4, for all six axis of these vectors, 8 features
from Type A and 4 features from Type B are computed ((8+4) x
6); Similar to above calculation for Type C and Type D, we get 8
additional features. The resulting 80 features are appended to F
(no. of features 56+80 = 136).
The whole process of feature extraction from both sensors gives
us 272 features in total. Our preliminary experiments showed that
all these features contributed to good classification accuracy, so
we did not perform any feature selection.

3.4.2 Training and Testing Details
Datasize of Experiments G and P: If we recall our experiment
design, we have two experiments G and P where a user either
plays or enters pattern and, in both experiments we use the same
24 users. In experiment G, in the guise of a game, a user enters 23
patterns (Figure 4) for ten repetitions, same as in experiment P.
From each of these experiments, we get 230 instances of data for
a user. The total data size in experiment G can be calculated as no.
of users x no. of patterns x no. of repetitions and in a similar
manner for experiment P. Given we have 24 users, 23 patterns and
the number of repetitions is 10, the datasize of experiments G and
P is 5520 each.
Size of Feature Matrix: From the above feature set calculation,
the number of features computed for each pattern is 272. For both
experiments G and P, each with 5520 instances of data, we have a
feature matrix of size (5520, 272) with no. of rows = 5520 and no.
of columns = 272.
Scenarios: Here, we model two potential use cases for our study
and create three scenarios (I, II, III) in Table 3. The first use case
is user-specific such as gesture recognition, classification of

medical problems. The second use case is generic such as when an
attacker is trying to infer pattern lock of a user using data corpus
of other users. Scenario I-III model these use cases in the way
they choose the training and testing data. The application of
scenarios I and III falls under generic use case and, II falls under
user-specific use case.
Let's denote the data instances from experiment G to be d1 and
data from experiment P to be d2. Depending on the use cases for
scenarios I-III, we pick either d1 or d2 as training or testing data,
the detail of which is explained below.

1. Scenario I: Scenario I uses data from d2 from all users
except one user for training the classification model,
and tests against that user's d2 data. The size of the
training data is computed as (no. of users - 1 x no. of
patterns x no. of repetitions = 5290) and the testing data
size is 230. This scenario is the baseline against which
we compare the other two scenarios described below.

2. Scenario II: Scenario II combines all users' data d1
except one user's data d1 for training a classification
model and tests against the same user's data d2. Like I,
the training data size is 5290 and the testing data size is
230. This scenario can be used by an attacker to predict
a user's pattern lock from data corpus of other users.

3. Scenario III: Scenario III tries predict a user's pattern
lock from d2, given we train the model using that user's
d1. So, d1 from a user is used for training the
classification model, the same user’s d2 is used for
testing. As discussed above, each pattern is entered 10
times in both experiments G and P, so in each user’s
experiment, both the training and testing data size is
230. This scenario can be a model for benign data
collection games.

To summarize, scenarios I and II do a leave-one-out classification,
whereas scenario III does a user-to-user classification using same
user's data for training and testing. In leave-one-out, the model is
built from training data from all users except one and is evaluated
against testing data from the left-out user. The results of
classification of these scenarios are averaged for all 24 users.
Thus, these three scenarios are ways in which a classification
model is built from various pairings of training and testing data of
users for potential use cases (Table 3).

Table 2. The feature types, Type A and Type B are extracted for each dimension of a sensor reading. The features in Type C are
extracted from inter axis (xy, yz, xz) and Type D is extracted from all axes of a sensor reading.

Feature Type Features Data Vectors on which Features
are computed

of Features

Type A (time-freq domain) mean, standard deviation,
mean, absolute deviation,
minimum, maximum,
energy, interquartile
range, entropy

Vectors 1, 2, 3, 4 8 x 4 x 3 = 96

Type B (frequency-domain) spectral maximum index,
spectral mean frequency,
spectral skewness,
spectral kurtosis

Vectors 3, 4 4 x 2 x 3 = 24

Type C (inter-axis: —xy, yz
and xz)

correlation Vectors 1, 2, 3, 4

3 x 4 = 12

Type D (all-axis: — x, y and
z)

signal magnitude area Vectors 1, 2, 3, 4 4

73

Classification Algorithms: For our analysis, we use classifiers
Support Vector Machine (SVM) and Logistic Regression (LR).
The SVM model is set with a linear kernel and a penalty
parameter (C=2), and the LR model is set with a “libfgs” solver, a
multinomial loss function and a penalty parameter (C=2) using
the Scikit-Learn library. In addition, we set both the classifiers to
give probability estimates.

4. PERFORMANCE EVALUATION
In this section, we report the results from three experimental
scenarios in Table 3 to evaluate our ability to infer patterns using
the sensor data (linear acceleration and gyroscope) collected from
a smartwatch. We then explore the user and pattern level results
which contribute to the overall success of the classifiers in these
experiments. In the following section we provide a high-level look
at the performance of each experiment.

4.1 Pattern Lock Inference Accuracy
A smartphone allows a user to unlock their android lock pattern
even after three unsuccessful attempts but for our study we report
pattern inference results for up to three guesses only. Our study
uses a small dataset of 23 patterns. So, it does not make sense to
use more than three guesses.
Overview of Scoring and Figures: The objective of the three
scenarios in Table 3 is to find how accurately the patterns in
Figure 4 can be predicted from the sensor data. The results of
pattern lock inference are shown in Figure 5 for classifier LR
(Figure 5a) and classifier SVM (Figure 5b). In the bar plot, each
of the scenarios are put together side-by-side and their average

accuracy (y-axis) over number of guesses (x-axis) is shown. For
each set of test data (as described in Table 3), the classifiers
output the top three labels in order of probability. If the test data is
correctly predicted in the first guess, we count this data in the
accuracy calculation for first guess. Similarly, we get the accuracy
for the second and third guess. Figure 5 reports the accuracy for
each of the guesses and classifiers. Note the black line that lays
along each set of plots. In all the scenarios, the prediction
accuracies of the patterns are over 26%, 40% and 47% better than
random guess (black line) for the first, second and third attempts
respectively.
Baseline Experiment: As we review the performance of the
experiments, Scenario I should be thought of as the baseline
experiment. If an attacker trying to predict unlock patterns was
determined they could gather a large amount of data from their
associates or people they pay, to swipe different phone unlock
patterns. In both Figures (5a and 5b), Scenario I performs 1-15%
better than the other two scenarios. It makes sense that although
the game has been designed to be similar, only using the P dataset
will provide slightly better results in most cases.
Comparison of Performance: However, it is not always true that
there is a significant difference between Scenario I and Scenario
III. Looking at Figure (5a) shows that Logistic Regression (LR)
for Scenario III performs almost as well as Scenario I.
Additionally, although it might make sense for Scenario III to
perform better than Scenario II if there was enough data to
effectively generalize across individual users, it isn't always true.
Although LR fits this pattern, the SVM might be overfitting on the

Table 3. Experimental scenarios I, II, and III used to model the study for potential use cases.
Scenarios Description Relevance to our Study
I Train a model using other user’s data from P and

test using the user’s data from P.
Baseline experiment where pattern data is used for both
training and testing. It provides a reference for how well
scenarios II and III perform.

II Train a model using a user’s data from G, and test
against data of the same user from P.

Represents the malicious gaming app scenario.

III Train a model using other user’s data from G and
test using the user’s data from P.

Represents the gamification scenario used for regular
experimentation.

(a) Logistic Regression (LR) classifier (b) Support Vector Machine (SVM) classifier

Figure 5. The prediction accuracies for Scenarios I, II and III are averaged over guesses of first, second and third for all users. The
plots are results for classifiers LR (5a) and SVM (5b) respectively. The horizontal black line drawn over the bar graphs for

scenarios I, II and III are prediction accuracies of random guesses (first, second and third).

74

data from other users. If this is true, it would explain why LR is
able to outperform Scenario II with III, even though this does not
occur for the SVM.
Implications of Experimental Performance: Scenarios II and III
were designed to evaluate how a game designed to collect data for
a specific experiment would perform for the real task. Although
both scenarios demonstrated that the approach is feasible, it seems
likely that the more successful case is when the researcher or
attacker collects a large amount of data from an app that can infer
how you might unlock your phone. After three guesses, the LR
classifier is able to predict the unlock pattern 76% of the time,
while when using only the target's data from playing the game, the
success rate is only 62%.
Next, we explore how the user level performance of the
experimental approach impacts the overall performance.

4.2 User-Level Performance
To examine the impact that each user might have had on the
overall performance of the algorithm in predicting phone unlock
patterns, we plotted a Cumulative Density Function (CDF) for the
accuracy of the algorithm on specific users with its third guess.
Looking at Figure 6a, we again use Scenario I as the baseline. By
looking at the location of the curves in the plot, it is clear that our
baseline scenario performs far better than the other two
experiments for almost all users except a small subset of them.
While the model had an accuracy of at least 60% for nearly 80%
of users for Scenario I, 80% of users only had an accuracy of over
40% for the other two experiments. This means that it isn't likely
to be just a small subset of users for Scenarios II and III which
are dragging down the results. In fact, this is more likely the case
for Scenario I.

4.3 Pattern-Level Performance
The pattern-level analysis of the results can tell us a lot about the
performance of our models and scenarios (Table 3). Figure 6b
reports the pattern-level accuracy of individual scenarios for LR
classifier. Scenario I performs almost as well as the other two
scenarios (II, III) which affirms feasibility of the use cases shown
in Table 3. The results demonstrate that the gamification of
benign applications such as data collection and of malicious
intents such as pattern lock inference, are plausible. Looking at
the confusion matrix of LR classifier (Figure 7) for Scenario III,
we observe most of the patterns get classified correctly in three
attempts. For Scenario III, the average performance of pattern
inference of the LR classifier is around 76%. Despite we observe

Figure 7. Confusion matrix of an LR classifier for Scenario III
for 23 patterns (Figure 4). The confusion matrix gives an idea
of which pattern(s) tends to be misclassified as another
pattern(s). Looking at the non-diagonal elements, the figure
reveals very few cells with dark blue color, which implies very
few misclassifications overall. Note that this confusion matrix
corresponds to the case of 3 guesses, where overall accuracies
are in the 70’s.
some prominent misclassification of patterns in the non-diagonal
areas of the confusion matrix. Patterns which are very similar to
one another seem to be harder to distinguish. It is possible to find
pairs that are likely to be confused with one another. For example,
patterns (r) and (s) have largely the same individual swiping
actions, except one of them switches swiping direction near the
end. Another example to look at is pattern (f), (f) is a Z-like
pattern from the top left to the bottom right and several other
patterns get frequently classified as (f) (e.g., (l), (n), (p), and (w)).
Several of these falsely classified patterns share parts of their
pattern with (f).
With additional data and more sophisticated techniques that
require large amounts of data (such as deep learning), we might be
able to better distinguish between the relatively small number of
patterns that are being mistaken for one another. However, in
most cases the classifier performs well and is able to clearly
distinguish between patterns that are quite similar. For example,
although (r) is very similar to (u), it is rarely mistaken for the
similar pattern. These pattern level results explain some of the

(a) User-Level Accuracy of SVM classifier (b) Pattern-Level Accuracy of LR classifier

Figure 6. The CDF plots are user-level and pattern-level performance of our classification models SVM(6a) and LR(6b).
The plot results are User-Level (6a) and Pattern-Level (6b) accuracies averaged over third guess for scenarios in Table 3.

75

source of error for our experiments and they motivate further
research.

5. CONCLUSION
In this paper, we have explored the idea of gamification of
experiments involving wearables data collection. Concurrently
with the gamification, we have also studied the case of a
malicious entity who leverages the appeal of gaming to bait users
into having their information (in our case authentication patterns)
stolen. Our results have shown that gamification is able to illicit
data that closely matches with data collected in the conventional
experimental setup(s). Further, we have shown that the attack
exploiting the gamification idea is also able to generate patterns
that very closely match user's real patterns. In our future work, we
will continue to explore the notion of gamification in other data
collection settings and identify and examine potential attacks
related to those settings.

6. ACKNOWLEDGMENT
This research was supported by National Science Foundation
Award Number: 1527795.

7. REFERENCES
[1] Angulo, J. and Wästlund, E. 2011. Exploring touch-screen

biometrics for user identification on smart phones. IFIP
PrimeLife International Summer School on Privacy and
Identity Management for Life (2011), 130–143.

[2] Aviv, A.J., Sapp, B., Blaze, M. and Smith, J.M. 2012.
Practicality of accelerometer side channels on smartphones.
Proceedings of the 28th Annual Computer Security
Applications Conference (2012), 41–50.

[3] Cai, L. and Chen, H. 2011. TouchLogger: Inferring
Keystrokes on Touch Screen from Smartphone Motion.
HotSec. 11, (2011), 9.

[4] Cechanowicz, J., Gutwin, C., Brownell, B. and Goodfellow,
L. 2013. Effects of gamification on participation and data
quality in a real-world market research domain. Proceedings
of the first international conference on gameful design,
research, and applications (2013), 58–65.

[5] Chang, L., Lu, J., Wang, J., Chen, X., Fang, D., Tang, Z.,
Nurmi, P. and Wang, Z. 2018. SleepGuard: capturing rich
sleep information using smartwatch sensing data.
Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies. 2, 3 (2018), 98.

[6] Dabrowski, A., Kammerstetter, M., Thamm, E., Weippl, E.
and Kastner, W. 2015. Leveraging competitive gamification
for sustainable fun and profit in security education. 2015
USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 15). (2015).

[7] Dergousoff, K. and Mandryk, R.L. 2015. Mobile
gamification for crowdsourcing data collection: Leveraging
the freemium model. Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(2015), 1065–1074.

[8] Diao, W., Liu, X., Li, Z. and Zhang, K. 2016. No pardon for
the interruption: New inference attacks on android through
interrupt timing analysis. Security and Privacy (SP), 2016
IEEE Symposium on (2016), 414–432.

[9] Griswold-Steiner, I., Matovu, R. and Serwadda, A. 2017.
Handwriting watcher: A mechanism for smartwatch-driven

handwriting authentication. Biometrics (IJCB), 2017 IEEE
International Joint Conference on (2017), 216–224.

[10] Jin, G., Tu, M., Kim, T.-H., Heffron, J. and White, J. 2018.
Game based Cybersecurity Training for High School
Students. Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (2018), 68–73.

[11] Khalifa, S., Lan, G., Hassan, M., Seneviratne, A. and Das,
S.K. 2018. Harke: Human activity recognition from kinetic
energy harvesting data in wearable devices. IEEE
Transactions on Mobile Computing. 17, 6 (2018), 1353–
1368.

[12] Laso Bayas, J.C., See, L., Fritz, S., Sturn, T., Perger, C.,
Dürauer, M., Karner, M., Moorthy, I., Schepaschenko, D.,
Domian, D. and others 2016. Crowdsourcing in-situ data on
land cover and land use using gamification and mobile
technology. Remote Sensing. 8, 11 (2016), 905.

[13] Lee, W.-H., Liu, X., Shen, Y., Jin, H. and Lee, R.B. 2017.
Secure pick up: Implicit authentication when you start using
the smartphone. Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies
(2017), 67–78.

[14] Lewis, A., Li, Y. and Xie, M. 2016. Real time motion-based
authentication for smartwatch. 2016 IEEE Conference on
Communications and Network Security (CNS) (2016), 380–
381.

[15] Li, Q., Cao, H., Lu, Y., Yan, H. and Li, T. 2016. Controlling
Non-Touch Screens as Touch Screens Using Airpen, a
Writing Tool with In-Air Gesturing Mode. System and
Software Reliability (ISSSR), International Symposium on
(2016), 68–76.

[16] Liu, X., Zhou, Z., Diao, W., Li, Z. and Zhang, K. 2015.
When good becomes evil: Keystroke inference with
smartwatch. Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security
(2015), 1273–1285.

[17] Liu, Y. and Li, Z. 2018. aleak: Privacy leakage through
context-free wearable side-channel. IEEE INFOCOM 2018-
IEEE Conference on Computer Communications (2018),
1232–1240.

[18] Lu, C.X., Du, B., Wen, H., Wang, S., Markham, A.,
Martinovic, I., Shen, Y. and Trigoni, N. 2018. Snoopy:
Sniffing your smartwatch passwords via deep sequence
learning. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies. 1, 4 (2018), 152.

[19] Maiti, A., Jadliwala, M., He, J. and Bilogrevic, I. 2015.
(Smart) watch your taps: side-channel keystroke inference
attacks using smartwatches. Proceedings of the 2015 ACM
International Symposium on Wearable Computers (2015),
27–30.

[20] McKenzie, G. 2011. Gamification and location-based
services. Workshop on Cognitive Engineering for Mobile GIS
(2011).

[21] Miluzzo, E., Varshavsky, A., Balakrishnan, S. and
Choudhury, R.R. 2012. Tapprints: your finger taps have
fingerprints. Proceedings of the 10th international
conference on Mobile systems, applications, and services
(2012), 323–336.

[22] De Nadai, M., Staiano, J., Larcher, R., Sebe, N., Quercia, D.
and Lepri, B. 2016. The death and life of great Italian cities:

76

a mobile phone data perspective. Proceedings of the 25th
international conference on world wide web (2016), 413–
423.

[23] Odobašić, D., Medak, D. and Miler, M. 2013. Gamification
of geographic data collection. (2013).

[24] Owusu, E., Han, J., Das, S., Perrig, A. and Zhang, J. 2012.
ACCessory: password inference using accelerometers on
smartphones. Proceedings of the Twelfth Workshop on
Mobile Computing Systems & Applications (2012), 9.

[25] Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster,
K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G.,
Ferscha, A. and others 2010. Collecting complex activity
datasets in highly rich networked sensor environments.
Networked Sensing Systems (INSS), 2010 Seventh
International Conference on (2010), 233–240.

[26] Sarkisyan, A., Debbiny, R. and Nahapetian, A. 2015.
WristSnoop: Smartphone PINs prediction using smartwatch
motion sensors. Information Forensics and Security (WIFS),
2015 IEEE International Workshop on (2015), 1–6.

[27] Schreuders, Z.C. and Butterfield, E.M. 2016. Gamification
for teaching and learning computer security in higher
education. 2016 USENIX Workshop on Advances in Security
Education (ASE 16) (2016).

[28] Serwadda, A., Phoha, V. V, Wang, Z., Kumar, R. and
Shukla, D. 2016. Toward robotic robbery on the touch
screen. ACM Transactions on Information and System
Security (TISSEC). 18, 4 (2016), 14.

[29] Sun, C., Shrivastava, A., Singh, S. and Gupta, A. 2017.
Revisiting unreasonable effectiveness of data in deep
learning era. Computer Vision (ICCV), 2017 IEEE
International Conference on (2017), 843–852.

[30] Sun, X., Qiu, L., Wu, Y., Tang, Y. and Cao, G. 2017.
Sleepmonitor: Monitoring respiratory rate and body position
during sleep using smartwatch. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies.
1, 3 (2017), 104.

[31] Wang, H., Lai, T.T.-T. and Roy Choudhury, R. 2015. Mole:
Motion leaks through smartwatch sensors. Proceedings of the
21st Annual International Conference on Mobile Computing
and Networking (2015), 155–166.

[32] Wen, H., Ramos Rojas, J. and Dey, A.K. 2016. Serendipity:
Finger gesture recognition using an off-the-shelf smartwatch.
Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (2016), 3847–3851.

[33] Xu, C., Pathak, P.H. and Mohapatra, P. 2015. Finger-writing
with smartwatch: A case for finger and hand gesture
recognition using smartwatch. Proceedings of the 16th
International Workshop on Mobile Computing Systems and
Applications (2015), 9–14.

[34] Xu, Z., Bai, K. and Zhu, S. 2012. Taplogger: Inferring user
inputs on smartphone touchscreens using on-board motion
sensors. Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks (2012), 113–
124.

[35] Zhang, Y. and Harrison, C. 2015. Tomo: Wearable, low-cost
electrical impedance tomography for hand gesture
recognition. Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology
(2015), 167–173.

[36] Google Play.
https://play.google.com/store/apps/details?id=com.bigduckga
mes.flow

[37] Intent | Android Developers.
https://developer.android.com/reference/android/content/Inte
nt#ACTION_USER_UNLOCKED

[38] LG W150: Watch Urbane - Sleek, Stylish Smartwatch | LG
USA. https://www.lg.com/us/smart-watches/lg-W150-lg-
watch-urbane

[39] Samsung Galaxy S8 and S8+ - The Official Samsung Galaxy
Site.
https://www.samsung.com/global/galaxy/galaxy-s8/

[40] Trickytricks.
http://mytrickytricks.blogspot.com/2013/07/commonlockpatt
ern.html

77

