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ABSTRACT 
Games are designed to build on certain inherently reward centered 
aspects of our psychology. This encourages the user to keep 
playing and engaging in the entertainment for just a bit longer. In 
this paper we explore the way in which gamification can be used 
to benefit researchers aiming to collect large amounts of data from 
sometimes less than enthusiastically motivated participants. 
We also investigate the risks associated with such mechanisms for 
data collection and how malicious entities could use these same 
methods to trick users into exposing private information. Across 
several experiments used to measure the cross-applicable nature 
of the data we collected, we demonstrate that a gamified version 
of a data collection tool could be used to predict the pattern used 
to unlock a phone. 

CCS Concepts 
• Security and privacy➝Mobile and wireless security, 
Malware and its mitigation, Biometrics.    
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1. INTRODUCTION 
Data collection is often one of the most difficult yet unavoidable 
parts of developing machine learning-driven wearable 
applications (see common example applications in Table 1). Not 
only is it time consuming and dependent on rigorous data 
collection methodologies, but it also requires that a large number 
of participants execute a set of actions for significant periods of 
time, often repeatedly. For example, in an experiment on the 
recognition of gestures, the researcher typically has to recruit a 
large number of participants and have them execute the target set 
of gestures multiple times, over multiple sessions that are ideally 

spread across several days if the dynamics of user behavior 
variability over time are to be captured. 
The challenge with designing these kinds of experiments is that 
they can be monotonous, making it very difficult to not only 
attract a large enough number of participants, but to also have 
them execute the required activity a large enough number of times 
as would be required for a statistically rigorous experiment. If 
deep learning-based methods are part of the suite of tools to be 
used to drive the analytics, the challenge even becomes more 
amplified since deep learning methods often require orders of 
magnitude more data than conventional machine learning 
approaches [29]. 
To enhance the data collection process through minimization of 
the monotony seen with traditional experimental protocols, 
gamification is one of the approaches that are sometimes used 
(e.g., see [7], [23], [20], [12]). The basic idea behind gamification 
is to build the data collection process in the form of a game in 
such a way that a carefully designed application collects relevant 
data behind the scenes. Since participants are able to enjoy the 
process of data collection because they are playing a game, it 
might be possible to recruit large numbers of them, and have them 
participate for long periods of time, enabling the collection of 
more data. 
Using the case study of hand movement pattern analytics based on 
wrist-worn, sensor-enabled, devices, this paper examines the 
potential of gamification in wearable biometrics. Specifically, we 
address the following question: How closely does pattern 
execution during a gaming session match with pattern execution 
in the traditional setting where participants directly execute the 
patterns without any overarching gaming interaction? The patterns 
referred to here are those used for authentication on a smart phone 
screen (i.e., the pattern lock mechanism - see Figure 1 for 
illustration). If these two forms of pattern execution match 
closely, this would point to the potential of gamification of data 
collection for applications related to our work. 
While we use authentication patterns as our case study, it is 
noteworthy that our work directly or indirectly applies to a broad 
range of applications which involve analytics of hand or wrist 
movement patterns as captured by a sensor-enabled wrist-worn 
device (example applications include, gesture recognition [33], air 
calligraphy [15], gait and handwriting authentication based on 
wrist movements [9], etc.). 
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Figure 1. Illustration of a user wearing a smartwatch entering 

her pattern. 
 

Although gamification could be used for benevolent data 
collection, we also explore these same techniques and 
experimental setup in the context of malicious intent. Could 
gamification help an attacker avoid suspicion - e.g., could a 
gaming app similar to one used for gaming data collection in our 
pattern matching experiment be used to learn a user's (secret) 
authentication pattern? To demonstrate these risks, we use the 
same experimental setup for both lines of research except for 
slight variations in the app design, underlying assumptions, and 
performance evaluation specifics (see Section 3.1 for additional 
details). 
The contributions of this paper are summarized below: 

1. Studying gamification, as a means to ease data 
collection for wearable applications: Taking the case 
of pattern execution at the authentication screen, we 
design an experiment that gamifies the data collection 
process and study the similarity between the patterns 
executed in these two cases. At the heart of this 
experiment is a gaming app that we built in such a way 
to mimic elements of the popular Flow Free app [36] 
that lend themselves to the pattern entry process. We 
find that depending on the specific scenario evaluated, 
gaming might hold promise as a means for collection of 
wearable sensor data in experiments involving wrist 
movement dynamics similarly to our experiment. 

2. Gamification as a tool for an adversary: We take the 
case of a “bad guy” who posts a malicious gaming app 
on the app market (e.g., on Google Play) to evaluate 
how well such an app could perform at predicting a 
user's authentication pattern. The assumption in this 
case is that the app advertises a benign (gaming) 
functionality, but yet has underlying behavior that 
captures gaming patterns and compares them with the 
user's pattern at login time. Through the application of 
machine learning to the sensor data, we find that the 
adversary could reliably infer the user's authentication 
pattern using the game. To our knowledge we are the 
first to study the question of a gaming app which uses 
gaming patterns as training data that is later used to 
decode the user's pattern.  

The rest of the paper is organized as follows: We discuss related 
work in Section 2 and the data collection experiments and 
machine learning design in Section 3. We then present our results 
and conclusions in Sections 4 and 5 respectively.  
 

Table 1. A selection of recent publications that studied 
wearable applications. UA stands for User Authentication, GR 
stands for Gesture Recognition, ST stands for Sleep Tracking 
and HAR stands for Human Activity Recognition. Observe 
that several of these papers use very small study populations, 
and by extension small datasets. Through gamification, such 
studies could be extended in scale while subjecting the 
participants and researchers to minimal load. 

Publication Application # of 
Users 

Lee et al. [13] UA 20 

Lewis et al. [14] UA 5 

Wen et al. [32] GR 10 

Zhang et al. [35] GR 5 
Chang et al. [5] ST 15 

Sun et al. [30] ST 16 

Khalifa et al. [11] HAR 10 

Roggen et al. [25] HAR 12 
 

2. RELATED WORK 
Our work is related to mainly two broad categories of previous 
research (1) gamification of cybersecurity training and experiment 
data collection, (2) mining user inputs using mobile and wearable 
sensor data. In this section, we discuss our related work in these 
two broad categories. 

2.1 Gamification 
Gamification involves use of game design elements in an activity 
to motivate users to participate and/or keep them engaged. For the 
research on using game design to motivate engagement during 
activities, the following cybersecurity training [6, 10, 27] and data 
collection [7] papers are among those distantly related to our own 
research. Games have also been built into commercial 
applications and used for encouraging users to share personal 
information, such as location. In De Nadai et al. [22] the authors 
used the Foursquare API to get information about user behavior 
across Italian cities. Without gamification, some of the data which 
facilitates research and commercial applications would be nearly 
impossible to gather. 
Most closely related to our work in this category are two studies 
reported in [4, 7]. In order to motivate users to participate 
voluntarily in research studies and keep data collection tasks 
enjoyable, Dergous et al. [7] proposed gamifying data collection 
experiments and using in-game powerups in those gamified 
experiments. The authors designed an experiment involving Fitts 
reciprocal tapping tasks and conducted the experiment in three 
different ways i.e., using a gamified version deployed on Android 
Store, using a gamified version in the laboratory and using a non-
gamified version in the laboratory. The data collected from the 
three versions was then compared and the results didn't show any 
significant difference in the quality of data collected. Similar to 
works in [7], Cechanowicz et al. [4] also designed three gamified 
versions of market research survey and conducted them along 
with the traditional version of the same surveys. The authors 
reported that there were no significant differences found in the 
response quality except in two situations where response data 
could have changed because of use of certain game elements. 
Although our work also used gamification, it significantly differs  
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from past research in the following ways: (1) Rather than using 
general methods of evaluating the quality of the data we obtain 
from these experiments, we built machine learning models to 
predict user behavior as a way of measuring and comparing the 
performance of different datasets. This allows us to compare in 
concrete terms the impact of differences in the data we collect. (2) 
Our work is centered on the use of sensor data rather than the 
results of games or easy to measure responses from participants. 
One concern might be that sensor data is potentially more unstable 
when compared between a game and a non-game version of a data 
collection experiment. (3) We explore the security risks associated 
with malicious actors who could use games to surreptitiously 
collect data on their users with the purpose of leveraging it 
directly or selling the information. 
Next, we explore some of the previous security research which 
has used phone behavior to extract personal or secure information 
from users. 

2.2 Mining User Inputs Using Sensor Data 
Sensor data from mobile and wearable devices has been 
extensively used to learn patterns that breach privacy of users. 
Malicious applications installed on either smartphone or wearable 
device stealthy collect accelerometer and/or gyroscope data to 
make inference for user inputs such as keystrokes [3, 16, 19, 24], 
PINs [2, 26, 34], or pattern locks [2, 17, 18]. In this subsection, 
we discuss previous studies that use sensor data to mine user 
inputs categorized based on the source (or device) of the data 
used.  

2.2.1 Mining user inputs using smartphone sensor 
data 
The first category of research reported in literature that mined user 
inputs from sensor data was based on data from smartphones. Cai 
et al. [3] used orientation sensor data collected from smartphone 
to learn patterns inferring keys on a number keypad. In this study, 
the authors collected sensor data while users pressed number keys, 
extracted features pertaining to the angular displacements made 
by keys when pressed and then inferred the keys on the number 
keypad with an accuracy of over 70%. Owusu et al. [24] advanced 
this area of research by inferring complete 6-character passwords 
rather than individual characters.  Owusu et al. showed that 
accelerometer data collected from the smartphone could be used 
to infer the screen area pressed by user and 6-character passwords 
entered by the user. The authors interpolated the collected 
accelerometer data, extracted 46 statistical features and then used 
a Random Forest classification algorithm to make inference of the 
pressed screen-area and entered passwords. The authors obtained 
a prediction accuracy of 24.5% with 60 screen partitions and 
predicted the correct passwords within a median of 4.5 trials.  
Xu et al. [34] provided a more practical implementation of how 
sensor data could be used to learn motion change patterns of tap 
events for inference of keys on a number pad and PINs. The 
authors presented how the key press detection and inference 
would be done in both the training and real-world scenarios. The 
authors used k-means to make key press inference. They obtained 
an average accuracy of over 62% for each key prediction in the 
first 4 attempts and over 80% for PINs in the first 3 attempts. 
Other past research in this category include works in [2, 21] which 
analyzed more complex privacy leakage scenarios like inferring 
pattern locks, letter taps. 
An obvious difference between our work and the works presented 
in this category is that our work infers user sensitive information 
(pattern locks) entered on the smartphone using sensor data from 

the smartwatch paired with that phone and not directly using 
sensor data from that smartphone on which the user types. 

2.2.2 Mining user inputs using smartwatch sensor 
data 
With the proliferation of smartwatches, new researches showing 
privacy leakages using sensor data from the smartwatch coped up 
such as [17, 18, 26, 31]. Similar to works in the previous category, 
past research in [16, 17, 19, 31] used accelerometer and gyroscope 
data to predict keys on a number keypad, PINs and words. 
Most recent and closely related to our paper in this category are 
works in [18]. Lu et al. [18] used several traditional machine 
learning techniques and deep learning techniques to infer PINs 
and Android Pattern Locks (APL) drawn on the smartwatch. The 
authors achieved an accuracy of over 95% and 98% for PINs and 
APLs respectively using the traditional machine learning 
techniques and APL prediction accuracy of 39% for the first guess 
using the deep learning technique. A notable difference between 
this Lu et al.'s work and our work is the pattern locks being 
inferred are drawn on the smartwatch itself while the pattern locks 
being inferred in our work are drawn on the smartphone.  
In this category, our work is more closely related to last 
subcategory of research described above in that we mine user 
inputs based on sensor data collected from the smartwatch. 
However, our work is different from all works described in this 
category in the following ways: (1) we designed a malicious 
gaming app derived from a popular game (Flow Free [36]) that 
uses user behavioral data to learn hidden sensor patterns 
corresponding to predetermined patterns of the user. Previous 
studies collected training data from custom-designed applications 
similar to the pattern locks or PIN interfaces and not a completely 
different application with embedded patterns implicitly. (2) we 
incorporate several training scenarios (i.e., training using one user 
game data and using all user game data) and make comparison 
between these scenarios. Previous studies only use one scenario 
with both training and testing data obtained from the same 
application. (3) we use sensor data from smartwatch to infer user 
authentication pattern lock used on the smartphone. 

3. DATA COLLECTION AND MACHINE 
LEARNING EXPERIMENTS  
In this section we describe our data collection experiments and 
how we implemented our machine learning mechanism. Note that 
for our research, both the benign scenario (i.e., gamification of 
data collection) and the attack scenario (i.e., using gamification to 
stealthily learn a user's pattern) are based on the same data 
collection experiment since the experiment is adequate to collect 
all the required information. In a real world setting however, these 
two scenarios would have some variations in assumptions of what 
and how certain data is accessed, and by extension the design of 
the application. We first describe these assumptions before 
describing our data collection experiments.  

3.1 Assumptions: Threat Scenario vs Benign 
Scenario 
Threat Scenario - Using gamification for attack: The idea 
behind this scenario is that a malicious entity puts a game on the 
app market such that users download and play it. Unbeknownst to 
the users, the game is instrumented to elicit user moves or actions 
that enable the capture of security-sensitive data such as 
behavioral biometric data (e.g., swipe patterns that could later be 
used to drive attacks such as that in [28]) or even more traditional 
authentication credentials (e.g., an unlock pattern). For a more 
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focused exposition, we tailor the rest of the description to the 
pattern lock mechanism since this is the case studied in our 
experiments. A gaming app built to “steal” an authentication 
pattern used for a smart phone pattern lock might be designed in 
such a way to have the user execute patterns or pattern-like shapes 
during regular game play. We have built an example of this kind 
of app for this research (see Section 3.3.2). As the user makes 
moves during gaming operations, the game is methodically 
getting him to execute certain patterns to build a training set 
tailored to the user (in our case the relevant training data is motion 
and orientation sensor data collected from a smart watch).  
Meanwhile, this gaming app also has a background service 
component that runs at all times in the background and logs all 
those times when the user executes a pattern to log in (Mobile 
OS'es provide broadcasts that apps can use to determine when the 
user just logged in - e.g., see [37] for Android).  
The combination of data collected by both the regular gaming app 
and the background service means that  the attacker has access to: 
(1) training data of the user executing a wide range of patterns, 
and, (2) actual (unlabeled) data of the user's authentication pattern 
that could be labelled using data from (1) if the pattern exists in 
the training set. The prediction performance obtained from this 
case of a malicious gaming app will be captured in Scenario II 
during our performance evaluation (see Table 3 for summary of 
our scenarios).  
Benign Scenario - Using gamification for data collection: The 
main requirement in this case is that participants interact with a 
gaming app that prompts them to execute the activity required for 
the experiments.  Depending on the experiment design objectives, 
participants may, or may not be told in advance what “actual 
experiment” the game represents. Again, tailoring our description 
to the pattern lock, the gaming process would involve people 
executing patterns selected by the experimenter, and the collected 
data labelled accordingly to correspond to the relevant patterns. In 
this paper, we measure how well these gaming patterns match 
with the real patterns by also having the users execute the real 
patterns and making a comparison (see Scenario III in Table 3).  

3.2 Data Collection Experiments 
After getting approval from our university's Institutional Review 
Board (IRB), we conducted two kinds of data collection 
experiments: (1) Experiments in which participants interacted 
with a gaming app (i.e., played a game) on a smart phone, and, (2) 
Experiments in which participants entered patterns into the 
Android pattern lock screen (i.e., experiments which simulated the 
user authentication process on a pattern lock screen). Going 
forward we refer to these experiments as G (for gaming) and P 
(for pattern). For both experiments, participants wore a smart 
watch whose sensors recorded motion and orientation dynamics 
(i.e., linear acceleration and gyroscope readings) during the 
process of each user's interaction with the phone. These sensor 
measurements enabled us to capture the hand movement patterns 
while users interacted with the phones. 
For each of the experiments G and P, each user participated in two 
sessions that were at least one day apart. Collection of each user's 
data on two separate days allowed us to capture some of the user 
behavior variability during the gaming and (or) pattern entry 
process. A total of 24 users participated in our experiments of 
whom 15 were male. All participants were students, faculty or 
staff at our university. The smart watch used in our experiments 
was the LG Urbane [38], while the smart phone used was a 
Samsung Galaxy S8+ [39]. Data from the watch was transmitted 
to the phone via a blue tooth connection. 

3.3  Design of Applications used for Data 
Collection 
3.3.1 App for Experiment P 
Since Experiment P is the standard pattern entry process on an 
Android phone, we built for it an application that emulates the 
Android pattern lock for GUI of our app. The only variation from 
the standard Android pattern lock was that our application 
recorded a time stamp at each touch point, which enabled us to 
delimit each pattern. Note that in practice the attacker could 
delimit a pattern in many different ways (e.g., through broadcasts 
sent by the OS during login [8], or through fingerprinting the 
behavioral quirks of pattern entry [1]). 

3.3.2 App for Experiment G 
Recall that the idea behind experiment G is to have participants 
play a game whose operations mimic the entry of different kinds 
of patterns. As users play moves on the app (e.g., connecting 
objects, tracing paths, etc.), they are executing different kinds of 
patterns similar to those that people typically use for 
authentication. 
After exploring a wide range of gaming apps on the Google play 
app market, we identified the Flow Free puzzle game (Figure (2)) 
as a good model for this kind of application. In the Flow Free 
puzzle game, a user connects pairs of similar colored dots using 
links that must not intersect. Since these dots are located on a grid 
shaped similarly to the Android pattern lock grid, the process of 
connecting these dots is like the pattern entry process. Figure 2 
shows example screenshots of the Flow Free game during typical 
game play. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Screenshots of Flow Free puzzle game levels. Figure 
2a and 2b and 2c show first pipes drawn in different levels. 
Figure 2d shows the screenshot of when a level is completed. 
Our game follows the same general idea as Flow Free, except that 
it: (1) permits the intersection of paths, (2) involves a finger 
trailing, or tracing out the path of, a moving ball (as opposed to 
joining dots), and, (3) only shows the most recent segment of the 
path (as opposed to the full path) traversed by the finger. 
The idea behind (1) is to provide support for all sorts of arbitrary 
patterns while the idea behind (2) is to force the user to execute a 
path determined by the app since the movement of the ball 
determines the user's finger trajectory. The combination of (2) and 
(3) forces the user to execute at a speed determined by the gaming 
app (i.e., if the ball moves fast, the user will move fast in order to 
traverse the path while it is still visible, otherwise the user might 
get the path wrong and get a low score). Figure 3 shows an 
example execution of the game. As the ball moves from one point 
to the next (Figure 3a is the first step while Figure 3d is the last 
step), the finger follows it and traverses its full path. Figure 3d 
shows the pattern resulting from the combination of operations 
shown in Figures 3a, 3b and 3c. Note that in practice Figure 3d is 
not shown to the user. We only show it here for illustration 
purposes. During gameplay our app had users execute the patterns 
shown in Figure 4, which are adopted from [40]. The majority of 
these are frequently used for authentication. 
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(a) First 

 
(b) Second 

 
(c) Third 

 
(d) Fourth 

Figure 3. Screenshots of our game in action from the first step 
to fourth. Our game level finishes at the fourth step (Figure 

3d). Users do not see the whole pattern in the end as shown in 
Figure 3d and is only presented for illustration purpose. 

3.4 Building Machine Learning Models 
3.4.1 Preprocessing and Feature Extraction 
In this section, we describe our data preprocessing and feature 
extraction process before we apply the data to various 
classification models. The linear acceleration gives the 
acceleration of the device along the three axes (x, y and z) and 
gyroscope measures the rate of rotation around the device's axes. 
We use all three dimensions of these two sensors in our study. 
The first basic step of data preprocessing is removing the noise 
and outliers from sensor readings. We undertake this by applying 
a median filter algorithm (from Scikit-Learn) to all the axes. 
Having filtered the data, we then build 4 data vectors for each 
sensor and each axis, creating a total of 24 (=4 vectors x 2 sensors 
x 3 axes) different data vectors that we later use to compute the 
features. Here, we first describe these 4 data vectors before 
proceeding to describe the feature computation. 

[1] Vector #1 - Raw Time Series Data: Let the notation S1 
denote the sensor readings of linear acceleration. Then a 
sequence of readings of S1 can be denoted by S1 = a1, 
a2, ....an of size n. This sequence represents the first data 
vector.  

[2] Vector #2 - Derivative of Raw Time Series Data: 
From S1, we calculate its derivative and get S1d = [a1d, 
a2d, a3d, ....and], the second data vector.  

[3] Vector #3 - Fast Fourier Transform (FFT): Calculate 
the FFT of S1 and get S1f = [a1f, a2f, a3f, ....anf], the third 
data vector.   

[4] Vector #4 -Derivative of FFT: Perform a derivative on 
data vector S1f and obtain S1df= [a1df, a2df, a3df, ....andf], 
the fourth data vector.  

After computing the above 4 vectors on each axis of each sensor, 
we then compute the features according to the feature types 
described below and presented in Table 2. 
Feature Type Description: The feature set used in our study are 
classified into Type A, B, C and D depending on the nature of 
vectors (time and frequency domain) they operate on and the axis 
(x, y, z) over which they are computed.  
The vectors 1 (raw time series data) and 2 (derivative of raw time 
series data) are in time domain (i.e. values in the vector are known 
with respect to time) whereas vectors 3 (FFT of raw time series 
data) and 4 (derivative of FFT) are in frequency domain (i.e. 
values are known with respect to frequency). To present how 
these feature types differ from one another, we discuss the 
differences in their computation. 
The feature types – Type A, C and D are applied to both time 
domain (1, 2) and frequency domain vectors (3, 4), however Type 
A features are computed from each axis separately. These feature 
types result in  different lengths of feature. Type A  feature results  

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) (p) 

(q) (r) (s) (t) 

(u) (v) (w)  
Figure 4. The 23 patterns used in our experiments. For 
Experiment G, the user simply follows a ball around the 
screen but ends up executing each of these patterns multiple 
times in the process. The game only shows part of the path to 
the user in order to minimize the likelihood that the user 
keeps track of any patterns being executed during the game. 
In Experiment P, users are shown the patterns and hence 
execute them in just the same way they would execute them 
while logging into a phone. Data collected in P is used to 
measure how well the patterns collected in G match with real 
patterns. 
in 8 features per vector on each axis for each sensor, and Type C 
and D feature types result in 3 and 1 features from three axes 
respectively. Feature Type C (inter-axis) uses pairings of axis (xy, 
yz and yz) to compute 3 features. Feature Type D uses all the axis 
(x, y, and z) to compute 1 feature.  The feature `correlation' (Type 
C (inter-axis)) is calculated between axes x, y; y, z and x, z giving 
three features namely- corrxy, corryz and corrxz respectively and 
feature “signal magnitude area” (Type D) is computed as the sum 
of absolute value of x, y and z giving a single feature.  
For the last feature Type B, we compare it with feature Type A. 
Feature Type  B  is  similar to Type A, in  that its features are also 
computed separately for each axis but differs to Type A in that it 
is only applied on frequency domain vectors (3, 4). The 
application of Type B features result in 4  features  per  vector  per  
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per axis and per sensor. 
Feature Extraction: In our study, we extracted 136 features from 
each sensor. Since the feature extraction process is the same for 
both the sensors, we only show the process for any one sensor. 
Recall that, each sensor has vectors 1 through 4 for each axis. For 
vectors 1 and 2, we compute 8 features from Type A for each of 
six axes of the vector (8 x 6). Then, using inter axis of each 
vector, we compute 3 features from Type C (3 x 2) and 1 feature 
from Type D (1 x 2) from all axes. In total, we get 8 features from 
Type C and Type D. These 56 features from vectors 1 and 2 are 
appended to a feature vector, F (no. of features = 56).  
From vectors 3 and 4, for all six axis of these vectors, 8 features 
from Type A and 4 features from Type B are computed ((8+4) x 
6); Similar to above calculation for Type C and Type D, we get 8 
additional features. The resulting 80 features are appended to F 
(no. of features 56+80 = 136).  
The whole process of feature extraction from both sensors gives 
us 272 features in total. Our preliminary experiments showed that 
all these features contributed to good classification accuracy, so 
we did not perform any feature selection.  

3.4.2 Training and Testing Details 
Datasize of Experiments G and P: If we recall our experiment 
design, we have two experiments G and P where a user either 
plays or enters pattern and, in both experiments we use the same 
24 users. In experiment G, in the guise of a game, a user enters 23 
patterns (Figure 4) for ten repetitions, same as in experiment P. 
From each of these experiments, we get 230 instances of data for 
a user. The total data size in experiment G can be calculated as no. 
of users x no. of patterns x no. of repetitions and in a similar 
manner for experiment P. Given we have 24 users, 23 patterns and 
the number of repetitions is 10, the datasize of experiments G and 
P is 5520 each.  
Size of Feature Matrix: From the above feature set calculation, 
the number of features computed for each pattern is 272. For both 
experiments G and P, each with 5520 instances of data, we have a 
feature matrix of size (5520, 272) with no. of rows = 5520 and no. 
of columns = 272.  
Scenarios: Here, we model two potential use cases for our study 
and create three scenarios (I, II, III) in Table 3. The first use case 
is user-specific such as gesture recognition, classification of 

medical problems. The second use case is generic such as when an 
attacker is trying to infer pattern lock of a user using data corpus 
of other users. Scenario I-III model these use cases in the way 
they choose the training and testing data. The application of 
scenarios I and III falls under generic use case and, II falls under 
user-specific use case.   
Let's denote the data instances from experiment G to be d1 and 
data from experiment P to be d2. Depending on the use cases for 
scenarios I-III, we pick either d1 or d2 as training or testing data, 
the detail of which is explained below. 

1. Scenario I: Scenario I uses data from d2 from all users 
except one user for training the classification model, 
and tests against that user's d2 data. The size of the 
training data is computed as (no. of users - 1 x no. of 
patterns x no. of repetitions = 5290) and the testing data 
size is 230. This scenario is the baseline against which 
we compare the other two scenarios described below. 

2. Scenario II: Scenario II combines all users' data d1 
except one user's data d1 for training a classification 
model and tests against the same user's data d2. Like I, 
the training data size is 5290 and the testing data size is 
230. This scenario can be used by an attacker to predict 
a user's pattern lock from data corpus of other users. 

3. Scenario III: Scenario III tries predict a user's pattern 
lock from d2, given we train the model using that user's 
d1. So, d1 from a user is used for training the 
classification model, the same user’s d2 is used for 
testing. As discussed above, each pattern is entered 10 
times in both experiments G and P, so in each user’s 
experiment, both the training and testing data size is 
230. This scenario can be a model for benign data 
collection games. 

To summarize, scenarios I and II do a leave-one-out classification, 
whereas scenario III does a user-to-user classification using same 
user's data for training and testing. In leave-one-out, the model is 
built from training data from all users except one and is evaluated 
against testing data from the left-out user. The results of 
classification of these scenarios are averaged for all 24 users. 
Thus, these three scenarios are ways in which a classification 
model is built from various pairings of training and testing data of 
users for potential use cases (Table 3). 

Table 2. The feature types, Type A and Type B are extracted for each dimension of a sensor reading. The features in Type C are 
extracted from inter axis (xy, yz, xz) and Type D is extracted from all axes of a sensor reading. 

Feature Type Features  Data Vectors on which Features 
are computed 

# of Features 

Type A (time-freq domain)  mean, standard deviation, 
mean, absolute deviation, 
minimum, maximum, 
energy, interquartile 
range, entropy 

Vectors 1, 2, 3, 4 8 x 4 x 3 = 96 

Type B (frequency-domain) spectral maximum index, 
spectral mean frequency, 
spectral skewness, 
spectral kurtosis 

Vectors 3, 4 4 x 2 x 3 = 24 

Type C (inter-axis: —xy, yz 
and xz) 

correlation Vectors 1, 2, 3, 4 
 

3 x 4 = 12 

Type D (all-axis: — x, y and 
z) 

signal magnitude area Vectors 1, 2, 3, 4 4 
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Classification Algorithms: For our analysis, we use classifiers 
Support Vector Machine (SVM) and Logistic Regression (LR). 
The SVM model is set with a linear kernel and a penalty 
parameter (C=2), and the LR model is set with a “libfgs” solver, a 
multinomial loss function and a penalty parameter (C=2) using 
the Scikit-Learn library. In addition, we set both the classifiers to 
give probability estimates. 

4. PERFORMANCE EVALUATION 
In this section, we report the results from three experimental 
scenarios in Table 3 to evaluate our ability to infer patterns using 
the sensor data (linear acceleration and gyroscope) collected from 
a smartwatch. We then explore the user and pattern level results 
which contribute to the overall success of the classifiers in these 
experiments. In the following section we provide a high-level look 
at the performance of each experiment. 

4.1 Pattern Lock Inference Accuracy 
A smartphone allows a user to unlock their android lock pattern 
even after three unsuccessful attempts but for our study we report 
pattern inference results for up to three guesses only. Our study 
uses a small dataset of 23 patterns. So, it does not make sense to 
use more than three guesses. 
Overview of Scoring and Figures: The objective of the three 
scenarios in Table 3 is to find how accurately the patterns in 
Figure 4 can be predicted from the sensor data. The results of 
pattern lock inference are shown in Figure 5 for classifier LR 
(Figure 5a) and classifier SVM (Figure 5b). In the bar plot, each 
of  the  scenarios  are  put  together  side-by-side and their average 

 

 
accuracy (y-axis) over number of guesses (x-axis) is shown. For 
each set of test data (as described in Table 3), the classifiers 
output the top three labels in order of probability. If the test data is 
correctly predicted in the first guess, we count this data in the 
accuracy calculation for first guess. Similarly, we get the accuracy 
for the second and third guess. Figure 5 reports the accuracy for 
each of the guesses and classifiers. Note the black line that lays 
along each set of plots. In all the scenarios, the prediction 
accuracies of the patterns are over 26%, 40% and 47% better than 
random guess (black line) for the first, second and third attempts 
respectively. 
Baseline Experiment: As we review the performance of the 
experiments,  Scenario  I  should  be  thought  of  as  the   baseline 
experiment. If an attacker trying to predict unlock patterns was 
determined they could  gather a large  amount  of data  from   their 
associates or people they pay, to swipe different phone unlock 
patterns. In both Figures (5a and 5b), Scenario I performs 1-15% 
better than the other two scenarios. It makes sense that although 
the game has been designed to be similar, only using the P dataset 
will provide slightly better results in most cases. 
Comparison of Performance: However, it is not always true that 
there is a significant difference between Scenario I and Scenario 
III. Looking at Figure (5a) shows that Logistic Regression (LR) 
for Scenario III performs almost as well as Scenario I.  
Additionally, although it might make sense for Scenario III to 
perform better than Scenario II if there was enough data to 
effectively generalize across individual users, it isn't always true. 
Although LR fits this pattern, the SVM might be overfitting on the  

Table 3. Experimental scenarios I, II, and III used to model the study for potential use cases. 
Scenarios  Description Relevance to our Study 
I Train a model using other user’s data from P and 

test using the user’s data from P. 
Baseline experiment where pattern data is used for both 
training and testing. It provides a reference for how well 
scenarios II and III perform.  

II Train a model using a user’s data from G, and test 
against data of the same user from P. 
 

Represents the malicious gaming app scenario. 
 

III Train a model using other user’s data from G and 
test using the user’s data from P. 

Represents the gamification scenario used for regular 
experimentation. 

  
(a) Logistic Regression (LR) classifier (b) Support Vector Machine (SVM) classifier 

Figure 5. The prediction accuracies for Scenarios I, II and III are averaged over guesses of first, second and third for all users. The 
plots are results for classifiers LR (5a) and SVM (5b) respectively. The horizontal black line drawn over the bar graphs for 

scenarios I, II and III are prediction accuracies of random guesses (first, second and third). 
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data from other users. If this is true, it would explain why LR is 
able to outperform Scenario II with III, even though this does not 
occur for the SVM. 
Implications of Experimental Performance: Scenarios II and III 
were designed to evaluate how a game designed to collect data for 
a specific experiment would perform for the real task. Although 
both scenarios demonstrated that the approach is feasible, it seems 
likely that the more successful case is when the researcher or 
attacker collects a large amount of data from an app that can infer 
how you might unlock your phone. After three guesses, the LR 
classifier is able to predict the unlock pattern 76% of the time, 
while when using only the target's data from playing the game, the 
success rate is only 62%.  
Next, we explore how the user level performance of the 
experimental approach impacts the overall performance.                                  

4.2 User-Level Performance 
To examine the impact that each user might have had on the 
overall performance of the algorithm in predicting phone unlock 
patterns, we plotted a Cumulative Density Function (CDF) for the 
accuracy of the algorithm on specific users with its third guess. 
Looking at Figure 6a, we again use Scenario I as the baseline. By 
looking at the location of the curves in the plot, it is clear that our 
baseline scenario performs far better than the other two 
experiments for almost all users except a small subset of them. 
While the model had an accuracy of at least 60% for nearly 80% 
of users for Scenario I, 80% of users only had an accuracy of over 
40% for the other two experiments. This means that it isn't likely 
to be just a small subset of users for Scenarios II and III which  
are  dragging down the results. In fact, this is more likely the  case 
for Scenario I. 

4.3 Pattern-Level Performance 
The pattern-level analysis of the results can tell us a lot about the 
performance of our models and scenarios (Table 3). Figure 6b 
reports the pattern-level accuracy of individual scenarios for LR 
classifier. Scenario I performs almost as well as the other two 
scenarios (II, III) which affirms feasibility of the use cases shown 
in Table 3. The results demonstrate that the gamification of 
benign applications such as data collection and of malicious 
intents such as pattern lock inference, are plausible. Looking at 
the confusion matrix of LR classifier (Figure 7) for Scenario III, 
we observe most of the patterns get classified correctly in three 
attempts. For Scenario III, the average performance of pattern 
inference of the LR classifier is around 76%. Despite we observe 

Figure 7. Confusion matrix of an LR classifier for Scenario III 
for 23 patterns (Figure 4). The confusion matrix gives an idea 
of which pattern(s) tends to be misclassified as another 
pattern(s). Looking at the non-diagonal elements, the figure 
reveals very few cells with dark blue color, which implies very 
few misclassifications overall. Note that this confusion matrix 
corresponds to the case of 3 guesses, where overall accuracies 
are in the 70’s. 
some prominent misclassification of patterns in the non-diagonal 
areas of the confusion matrix. Patterns which are very similar to 
one another seem to be harder to distinguish. It is possible to find 
pairs that are likely to be confused with one another. For example, 
patterns (r) and (s) have largely the same individual swiping 
actions, except one of them switches swiping direction near the 
end. Another example to look at is pattern (f), (f) is a Z-like 
pattern from the top left to the bottom right and several other 
patterns get frequently classified as (f) (e.g., (l), (n), (p), and (w)).  
Several of these falsely classified patterns share parts of their 
pattern with (f).  
With additional data and more sophisticated techniques that 
require large amounts of data (such as deep learning), we might be 
able to better distinguish between the relatively small number of 
patterns that are being mistaken for one another. However, in 
most cases the classifier performs well and is able to clearly 
distinguish between patterns that are quite similar. For example, 
although (r) is very similar to (u), it is rarely mistaken for the 
similar  pattern.  These  pattern  level  results  explain  some of the  

  
(a) User-Level Accuracy of SVM classifier (b) Pattern-Level Accuracy of LR classifier 

Figure 6. The CDF plots are user-level and pattern-level performance of our classification models SVM(6a) and LR(6b). 
The plot results are User-Level (6a) and Pattern-Level (6b) accuracies averaged over third guess for scenarios in Table 3. 
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source of error for our experiments and they motivate further 
research. 

5. CONCLUSION 
In this paper, we have explored the idea of gamification of 
experiments involving wearables data collection. Concurrently 
with the gamification, we have also studied the case of a 
malicious entity who leverages the appeal of gaming to bait users 
into having their information (in our case authentication patterns) 
stolen. Our results have shown that gamification is able to illicit 
data that closely matches with data collected in the conventional 
experimental setup(s). Further, we have shown that the attack 
exploiting the gamification idea is also able to generate patterns 
that very closely match user's real patterns. In our future work, we 
will continue to explore the notion of gamification in other data 
collection settings and identify and examine potential attacks 
related to those settings.  
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