
bombs inside Petersburg. Brasilia has a hot but equable climate.
Petersburg has floods, subsidence, sweltering summers, and
merciless frost heave. Bmsilia is run down in places and has its
slums, but the level of decay in Petersburg is truly gothic. Brasilia
is young, but at least it knows what it stands for. Petersburg has
a full-blown identity crisis. In the past century it's been Peters-
burg, Petrograd, Leningrad, and then Petersburg over again.
And now it's not even a political capital any more.

But Brasilia's just not very interesting. Petersburg has real

magic. •

Bruce $terliBg is a wrltcr, editor, and net activist. He was co-founder,
with William Gibson, of the c3be~punk movement, and his face was on
the cover of the first issue of Wired. He can be reached at "bruces~
well corn"

Udylc Online is the companion publication to International Type-
face Corporation's quarterly magazine, U~'le (Upper and Lower Case:
The lnternational ~onrnal of Graphic Design and Digital Media). Sou
can visit their web site at %rarw.itoconls.com ".

The Chronology of Y2K Problems
- - by Clement Kent

Toronto, Ontario, Canada

T
HE eHaONOLOgY OF Y2K PROW.~-~s is more varied than
most people recognize. Many have of course already
happened, like the woman in England who recendy

received notice of her insurance policy which would expire in
1900, or the various credit card processing systems which last
year failed to accept cards expiring in "00".

By the time you read this, two much discussed failure dates
will most likely have passed. Numerous Cobol systems are re-
puted to have used '~9/9/99" as a null or error value in date fields.
When these systems encounter September 9, 1999 in reality,
they may suffer from a form of
cognitive dissonance. While not
precisely a Y2K problem, this is
obviously closely related.

Similar, but not really a Y2K
problem, is the date rollover in
the Global Positioning System's
date field in August 1999. When
specified in the 1970's, space-
hardened memory was expensive, and the system's designers
chose to implement dates as week number since the beginning of
1980 plus a day number. The field chosen to hold the week
number has already overflowed by the time you read this and it
is now officially January or February 1980, according to the GPS
satellite time. This won't effect the actual location function of
GPS receivers, but it is an interesting quirk to compensate for on
those large networks which use the GPS signal as a universal
clock to synchronize remote net members.

That takes care of August and September, 1999. October
through December will most likely be enlivened by a tittle-
discussed, by likely quite prevalent, sort of bug: the Y2K rollout
bug. Already certain automated teller machines in my home town
were unexpectedly down due to difficulties encountered during
the rollout of the new, Y2K-resistant banking transaction soft-
ware. The interruption of service was short, but indicative of
things to come. Of course, the organizations roMng out Y2K
releases now (1998 and early 1999) are the well prepared ones.
The ones whose rollout is deferred until Q4 1999 will be
disproportionately those for whom the Y2K project was a death
march project. Even if all Y2K bugs have been eliminated from
such software, the odds that rollout of large systems by a
harassed death-march project crew will be flawless approach
z e r o .

December's bills will of course have the "Pay by Jan 05 O0 to
avoid interest penalties" somewhere on the form. I am looking
forward to the first Christmastime reports of bills threatening 1%
per month interest penalties if the accounts are not settled by Jan
1900.

January will of course be the time of peak interest and aware-
ness. It is fikely, however, that many bugs will crop up after
January 1 00, usually because the software isn't exercised until
later (the weekly, monthly, quarterly, semiannual, or annual
jobs).

To add to the gradually decreasing background noise of per-
iodic jobs failing, we may expect another small peak on or
around Feb 29 00. (See the article on "Tope Gregory on Mars" on
page 16). In my APL experience, the ratio ofcentury bugs found
in Y2K remediation to leap year bugs found, over a large code
base, was about 10 to 1. I suspect that the field failure rate will
run more like 8 to 1, since people and their testing efforts tend to
be a bit more focused on the century problem. The potential for
serious failures is ofcourse as large, per bug, from leap day bugs
as from century bugs: even a single failure in a single routine can

bring down a large system. There
are several documented examples
already of the impact of the much
more stupid mistake of not rec-
ognizing ordinary leap years.
Ulrich and Hayes (The Year

2000 Software Cr/s/s) cite the
, example of a state lottery system

which could not process any
tickets on Feb 29, 1996, and lost all of the revenue for the day.
Yourdon (Time Bomb 2000) gives the more catastrophic exam-
ple of the New Zealand aluminum smelting facility which lost
microcomputer control of its crucible headng systems at mid-
night of Feb 29, with resulting permanent damage in the millions
of dollars. The frantic night shift only began to realize what might
have gone wrong when they got a h00 a.m. distress call from a
smelter in Australia (one time zone away) whose similar system
had just gone down.

6 ~rL Q,~ote

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331494.331498&domain=pdf&date_stamp=1998-09-01

Nevertheless, Feb 29 and March 1 are easier target dates than
Feb 1, March 31 or Apr 1 or july 1. I suspect rare longer-period
jobs (monthly, quarterly, etc.) will show one of the highest ratios
of in-field downtime to pre-remediafion bugs, simply because
most organizations have had to focus testing effort around jan 1
and Feb 29. Often putting expensive test systems through the
many other conceivable failure dates simply could not be cost
justified.

At last, perhaps sometime in 2001 or 2002, most of the Y2K
bugs will have been found and fixed. At this point we can begin
thinking about the 2011 bugs, the 2038 bugs, and so forth. It
seems absurd to think that the versions of Microsoft Excel which
incorrectly represent dates past 2011 will still be in use twelve
years from now, but it seemed absurd to us two or three decades
ago that any of the mainframe systems of the time would see the
millennium.

Most absurd of all is to think that the new, modem, replace-
ment languages and operating systems of the present have similar
structural date bugs built into them. Yet quite a few flavors of C,
Unix, etc., have dates represented as the number of seconds since
an arbitrary date in the 1970's, stored in a four-byte integer. Most
of these overflow some time around 2038. I hope to five long
enough to laugh at the hapless multitudes trying to find and fix all
the toasters with faulty C code in them before 2038.

Last, and perhaps least befievable, will be the failure in the
second half of the 21st Century due to our Y2K bug fixes. Many
Y2K bug fixers, myself included, have been guilty of using a
fixed windowing or pivot date to solve century bugs. That is, we
kept the two digit year, but added code that said "yyyy~- 1900
+ y y + 100 x .yz<S0". This treats "50" as "1950" but"49"
as "2049". Various pivot dates have been used, and one can only
hope devoutly that halfa century is long enough that all of this
"fixed" legacy code will be on the junk heap before the window
expires. •

Clement Kent has been a happy user of APL since being exposed to it
in high school in 1969. He consults in the areas of software engineer-
ing and project management in the financial services sector, as well as
the application of software to computer integrated manufacturing for
semiconductor companies. For the last three years his primary involve-
ment with APL has been in leading T2K projeds. He is currently on
the Executive Committee of the Toronto APL Special Interest Group,
and organized the.Atovember 1998 symposium "Challenges in Medical
and Biotechno SoJ oare" which highlighted some commer al d e s
produds in this field. He may be reached at %lementkOacra.org':

Y2K and APL--
An Overview

--by Clement Kent
Godel Computer Solutions Ltd.

dementk@acm.org

I HAVE WORKED ON Y2K PROJECTS IN APL since July of 1997,
which makes me a sort-of-expert. My goal in this article is
to help those of you still in the throes of Y2K work, and to

give the rest of you--those who have completed your Y2Kwork--
a basis for evaluating your own projects. Of course, if you haven't
yet started your Y2K project~ you're doomed, and you may as well
stop reading and take up dental floss farming in Montana.

My Y2K experience has been with large applications on main-
frame APLs, although I have experimented with some vendors'
PC APLs to understand the issues there. Whether you have a
large or small application, on mainframe, mini, or PC, you still
need to understand some Y2K issues common to all these envi-
ronments.

Is Y2K a problem for APL?
In a word,yes. Why?

The real answer is, human nature. Although I have worked
on Y2K for a subjectively very, very long time now, and am quite
sensitized to its issues, when I make notes in my personal diary
I still write "meeting Jan 27 99" and the fike. Writing the '19' is
just too tedious.

You will read many articles that explain in excruciating detail
how expensive memory or disk was in the 60's or 70's or 80's
(note we don't say "nineteen eighties," do we?). But program-
mers, even quite good ones, continue to create code which leaves
out the century, even in the 90's.

In one customer's Y2K project we looked at a number of
large appfications, none more than ten years old. Memory or disk
wasn't a real issue for these programmers any more. Yet, almost
all of these apphcafions had some problems when placed on a
test machine which was advanced to 01/01/2000, and several of
the most critical ones flat-out died.

A second, darker side of human nature provides an equally
important reason for doing your APL Y2K project. This is the
human need for a scapegoat when things go wrong. In some
countries, especially the United States, lawyers and the media
facilitate this need and earn big bucks in the process. What they
cam, you or your customer pays for. So even if you have strong
reason to believe your application never ever, honest to Bob, used
any non-compliant code, you'd better prove it prior to the big '00'.

SE~rEMR~a 1998 - - VOLCrM~ 29, Nu~s~a x 7

