
Nevertheless, Feb 29 and March 1 are easier target dates than
Feb 1, March 31 or Apr 1 or july 1. I suspect rare longer-period
jobs (monthly, quarterly, etc.) will show one of the highest ratios
of in-field downtime to pre-remediafion bugs, simply because
most organizations have had to focus testing effort around jan 1
and Feb 29. Often putting expensive test systems through the
many other conceivable failure dates simply could not be cost
justified.

At last, perhaps sometime in 2001 or 2002, most of the Y2K
bugs will have been found and fixed. At this point we can begin
thinking about the 2011 bugs, the 2038 bugs, and so forth. It
seems absurd to think that the versions of Microsoft Excel which
incorrectly represent dates past 2011 will still be in use twelve
years from now, but it seemed absurd to us two or three decades
ago that any of the mainframe systems of the time would see the
millennium.

Most absurd of all is to think that the new, modem, replace-
ment languages and operating systems of the present have similar
structural date bugs built into them. Yet quite a few flavors of C,
Unix, etc., have dates represented as the number of seconds since
an arbitrary date in the 1970's, stored in a four-byte integer. Most
of these overflow some time around 2038. I hope to five long
enough to laugh at the hapless multitudes trying to find and fix all
the toasters with faulty C code in them before 2038.

Last, and perhaps least befievable, will be the failure in the
second half of the 21st Century due to our Y2K bug fixes. Many
Y2K bug fixers, myself included, have been guilty of using a
fixed windowing or pivot date to solve century bugs. That is, we
kept the two digit year, but added code that said "yyyy~- 1900
+ y y + 100 x .yz<S0". This treats "50" as "1950" but"49"
as "2049". Various pivot dates have been used, and one can only
hope devoutly that halfa century is long enough that all of this
"fixed" legacy code will be on the junk heap before the window
expires. •

Clement Kent has been a happy user of APL since being exposed to it
in high school in 1969. He consults in the areas of software engineer-
ing and project management in the financial services sector, as well as
the application of software to computer integrated manufacturing for
semiconductor companies. For the last three years his primary involve-
ment with APL has been in leading T2K projeds. He is currently on
the Executive Committee of the Toronto APL Special Interest Group,
and organized the.Atovember 1998 symposium "Challenges in Medical
and Biotechno SoJ oare" which highlighted some commer al d e s
produds in this field. He may be reached at %lementkOacra.org':

Y2K and APL--
An Overview

--by Clement Kent
Godel Computer Solutions Ltd.

dementk@acm.org

I HAVE WORKED ON Y2K PROJECTS IN APL since July of 1997,
which makes me a sort-of-expert. My goal in this article is
to help those of you still in the throes of Y2K work, and to

give the rest of you--those who have completed your Y2Kwork--
a basis for evaluating your own projects. Of course, if you haven't
yet started your Y2K project~ you're doomed, and you may as well
stop reading and take up dental floss farming in Montana.

My Y2K experience has been with large applications on main-
frame APLs, although I have experimented with some vendors'
PC APLs to understand the issues there. Whether you have a
large or small application, on mainframe, mini, or PC, you still
need to understand some Y2K issues common to all these envi-
ronments.

Is Y2K a problem for APL?
In a word,yes. Why?

The real answer is, human nature. Although I have worked
on Y2K for a subjectively very, very long time now, and am quite
sensitized to its issues, when I make notes in my personal diary
I still write "meeting Jan 27 99" and the fike. Writing the '19' is
just too tedious.

You will read many articles that explain in excruciating detail
how expensive memory or disk was in the 60's or 70's or 80's
(note we don't say "nineteen eighties," do we?). But program-
mers, even quite good ones, continue to create code which leaves
out the century, even in the 90's.

In one customer's Y2K project we looked at a number of
large appfications, none more than ten years old. Memory or disk
wasn't a real issue for these programmers any more. Yet, almost
all of these apphcafions had some problems when placed on a
test machine which was advanced to 01/01/2000, and several of
the most critical ones flat-out died.

A second, darker side of human nature provides an equally
important reason for doing your APL Y2K project. This is the
human need for a scapegoat when things go wrong. In some
countries, especially the United States, lawyers and the media
facilitate this need and earn big bucks in the process. What they
cam, you or your customer pays for. So even if you have strong
reason to believe your application never ever, honest to Bob, used
any non-compliant code, you'd better prove it prior to the big '00'.

SE~rEMR~a 1998 - - VOLCrM~ 29, Nu~s~a x 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331494.331500&domain=pdf&date_stamp=1998-09-01

Legal issues
The previous paragraph segnes into this section: assume that if
anyone other than you uses your software, they'll try to sue you
for any bug (whether caused by Y2K or not) that happens be-
tween about September 1999 and April 2000. Even if their suit
is groundless, you need to be able to defend yourselfat minimum
cost. To do so, you need to understand how legal reasoning and
rules of evidence differ from what programmers use.

In addition, non-legal commercial issues demand that you do
the same prep work needed to Face down lawyers, so that com-
petitors, customers, regulators, and media (CCRM) folk have no
reason to condemn your software in advance. You can earn this
condemnation simply by doing nothing. The pervasiveness of
Y2K problems is such that doing nothing is taken, rightly or
wrongly, as a statement that either your software is toast, or
you're an idiot, or both.

As a result of the need to reassure the CCRM folk that you're
on the case, you'll find that most companies with a high public
profile are pos ring web pages with statements about Y2K compli-
ance. These statements are very necessary to prevent a stampede
to your compefitor's software, but they represent an assertion
that a lawyer can use against you if problems do arise in 2000
contrary to what you implied.., so be very sure that what you
state about compliance is true.

An interesting example of this from the non-APL world is
Microsoft. In June 1998 the Microsoft marketing department
billed Windows 98 (note: not Win 1998!) as the solution for all
the Y2K ills of your PC operating system. This pretty well
guaranteed that corporate MIS departments under the gun to
show Y2K compliance internally had to update all their 95 and
3.1 machines to 98, so it was a great marketing manoeuvre.

This article is typed on a new computer, with Y2K-compliant
BIOS, running Win98. The very first patch I had to download
from Microsoft was a Y2K patch for Win98!

The moral is obvious. You've got to prove your software is
Y2K compliant to the world soon, and you've got to be confident
you're right. Mistakes will be embarrassing and costly.

You have to prove i t works, a.k.a., "Testing"
Obviously, then, you've got to have something beyond a bald-
faced assertion your code is compliant. The best thing to do is
find out what's wrong with your code, fix it, and then test the
fixed code.

Of course, you may not think anything is wrong with your
code. Congratulations! You've saved yoursel.f25% of the work of
a Y2K project! All you have to do now is the remaining 75%, the
testing.

You have to convince a lanTer with,,your proof
So, you changed the system dock, loaded the ws, and it ran just
fine. You're done, right?

If you work for yourself and no one else uses the code, yep.
Otherwise, so sorry, nope!
Lawyers have a funny way of reducing your credibility on the

witness stand. Unless you have documents showing what you
tested, how, when, and what the results were, you will be exactly
the kind of"sacfificial victim" every lawyer dreams ofifyou are
unfortunate enough to end up in court.

Thus, when you test, you will want to do printouts, screen
captures, and probably annotate the results in some way. You
need to make sure all such documents (whether paper or elec-
tronic) are dated in some way, and if possible signed by the
person who did the tests. Finally, you'll need to ensure that the
documents are stored safely for a number of years (at this point,
at least three to four years) in such a way that you could retrieve
them and make sense of them if you needed to.

Ideally, if you have the time and money to do it, you should
have not just the results of the tests documented, but the tess
p~ns by which the tests were guided should be written down,
reviewed, signed off, and archived.

Last but not least, you will need some way of distinguishing
the code which has been tested and is known to be correct from
earlier versions. You need to record what you tested in some
detail. Imagine you are in the witness stand. A lawyer for the
prosecution says, "so, Ms. Jones, you say you tested version
1.2.3 of the software. How then do you explain its wiping my
client's hard drive?" You must be prepared to explain how to
show that the client was actually using version 1.0.0, not 1.2.3.

If you work for a large, publicly exposed company it may well
be necessary to consider embedding a version number as a
comment in each APL fimcfion, or using a similar scheme. It
would be very easy for a co-worker or customer to accidentally
mix versions together; how are you going to show that this did or
didn't happen? The phrases "code inventory," "code bill of
materials," "version control," etc., crop up often in the Y2K
literature.

Advantages and disadvantages
of an interpreted language

Given that perhaps 75% of project cost for Y2K is related to
testing and code inventory activities, how does APL's ease of use
and debugging help or hinder this process?

"Test then far"
I have seen small APL Y2K projects run as follows:
• put the code on a test machine
• run it in the year 2000
• look for things that break and fix them when they happen

8 ~PL Owt~

This approach is totally antithetical to how most large Y2K
projects are run. Most pointy-haired managers fimfiliar with C,
Cobol, and other compiled languages would be horrified if this
were proposed to them. The cost of debugging, fixing, and re-
building is so high in such languages that the strategy is impracti-
cal.

Is it practical in APL? Sometimes!
For smaller applications without too many interactions with
other systems, this "test, then fix" strategy can work very well. It
reveals many problems quite early on, rather than waiting for
them to be discovered at the last moment.

The risks inherent in this strategy are real, but can be
managed with some discipline and care:
• risk that fixes will not he made everywhere
• risk that everything won't be tested
• risk that traceability of testing and fixing will be lost

Due to the ease of real-time debug and fix in APL, many
programmers arc used to a rather casual approach to fixing:
change the line, -~DLC, keep going. This is fast and convenient,
hut yon must be very careful to ensure that all of the fixes are
carried back to the main working version of the application,
wherever that is.

Informality and ease of use is why many of us fell in love with
APL, but that is not necessarily compatible with achieving full
test coverage of all function points in an application. Testing is
best done from a test plan. This may be as simple as a numbered
list of things to exercise, or it may be as formal as an entire test
suite with drivers, test data, scripting too]s, and output logs. The
temptation in a small informal project is to dispense with all of
this and ' lus t do it!"

If the testers are disciplined, understand the application and
APL very well, and don't have too complex a system to deal with,
the inherent swiftness of the test, debug, fix cycle in APL can
compress the time to getting a fully working Y2K compliant
application.

If the code is entirely for in-house use, is not business critical,
and is well understood, this strategy may be justified.

Needle in a hays~ck:
fbdng non-compliant APL code in large systems

If"test, then fix" works so well for small APL systems, why does
it fail for large ones? For, fail it does.

Here again the answer is, surprisingly, that APL is inter-
preted. This means that each working copy of a function is also
a done of the code. Many of us who've worked on large systems
have been frustrated by the re-occurrence of a bug fixed weeks or
months ago in some other copy of the function we didn't know
about and didn't fix.

As the number of programmers and testers involved in an
APL Y2K project rises significantly past two or three, the risk of

not communicating the need for fixes rises geometrically. The
work must be segmented, but the fixes cannot always be isolated.

One of the mantras of MIS managers for the last decade has
been "code reuse." Most large APL systems have at least some
facilities for encouraging reuse, such as central libraries of
utilities, centralized function paging files, or similar code control
systems. Nonetheless, the fict remains that there is always the
possibility of caching old copies of function in workspaces or
files outside of code control systems or public utility libraries.

When one of these multiply-cached utility functions has a
non-compliance problem, a potentially large task arises: find all
the copies of it and change them all. This task crosses sub-
project boundaries and needs to be communicated to many
programmers. It is common to find that as the utility was copied,
it evolved from its original form, so that <daynum> in ws "123
datefns" is now subtly different from <daynum> in "3456789
bondcalcs".

This problem of dealing with family trees of cloned function
copies is best approached through use of tools (discussed in a
later section). It is above all a management problem that deserves
careful thought from the beginning of a large Y2K project, and
constant reexamination.

A simple example makes this clearer. Suppose we have a
function <daynum> which has as argument (year, month,day)
triplets, and returns an integer Julian date. We'H assume that the
version of <daynum> currently in the utility libraries handles Feb
29, 2000 correctly, but that an older version didn't. Further-
more, the older version assumed that any year less than 100
should be "windowed" to be in the 20 ~hCentury, while the new
version applies the rule that if the year is two digits and less than
90, it's in the 21 .L Century (a 1990-2089 window).

Your job, as Y2K project leader, is to search out all of the old
<daynum> clones, including the ones that were renamed
<datenum> or <fuobar> for perverse reasons, and replace them
with the new version. This has been well explained to your
programmers and they are fairly careful about doing this.

One day, one of them comes in and says "our portfolio
system has two-digit years going hack to 1955. I want to replace
the <daynum> 1990-2089 window with a 1950-2049 window
in this system." What do you do?

If you say yes, you'll get the portfolio system compliant
quicker and with less fuss, at the cost of perpetuating func-
tionally different clones of <daynum>.

If you say no, you'll either have to convert all the dates in the
portfolio system to four-digit years, or condone the use of
some utility other than <daynum> for calculating Julian
dates.

In the best of all possible worlds, you will have time and
budget to say "dammit, let's convert all the years to four digits."
If you lack time or money, you'll have a tough ca]] to make.

SEPTEMBER 1998 - - VOLUME 29, Nuunmt I 9

The worst case of all is the most frequent one in the APL
world. The programmer isn't used to coming to you for trivial
little problems like that, so they automatically chose a solution
they liked. If this involved keeping <daynum> but changing the
window, what happens ff the ~'bondcalcs" system and the
portfolio system call each other? Will 50-year bonds maturing in
2005 have an issue date in one system of 1975 and in the other,
a date of 20752 What will happen to Disney Corp 100-year
bonds?

This potential for chaos caused by loose code version control
in APL, and by the otherwise admirable tendency of APL
programmers to "just do it" is a bigger risk for large systems with
shared code or data, than for small, independent systems.

How to manage an APL Y2K project
Many tasks in an APL Y2K project are the same as for other
languages. This doesn't mean they're not important; only that
you now have a plethora of places to read about them. This is the
longest part of this article, but probably the most important. I can
see the programmers' eyes glazing over already Management
tasks include:

• Have a strong management structure
• Make sure you have full support from the CEO
• Engage in Triage
• Build test facilities and test plans
• Get and use fault-detection tools
• Estimate effort from the code base
• Plan for Code Release and Control

Let's look at these in turn.

Nave a strong management structure
Y2K projects have a large scope (all the code you use) and a fixed
deadline (August 1999 or earlier--rll explain that date later).
Large software projects notoriously fail to meet deadlines. Why
should Y2K be different?

The best solution to this problem is, quite simply, excellent
project management. Without this, unless your project is very
small, you wiU have nasty surprises. See you in court!

In many large organizations, departments and different
divisions don't always work well together. Unfortunately a Y2K
software project often crosses several departmental boundaries.
Strong management is needed when department heads find
reasons for denying you critical resources or facilities. If you
can't get them to cooperate, see you in court!

Strong management is needed to limit scope. Because you
must look at aU the software, in most big companies, you'll see an
awfid lot of crap code. The temptation is great to "fix" it while
you've got it opened up for Y2K. Managers must say "No!"
often. If you don't, you can explain why you didn't finish to the
lawyers in court!

Many companies no longer have a strong middle management
layer due to downsizing and reorganizations. Many managers in
software companies were promoted from the ranks and are
stronger at coding than at Gantt charts and task estimates. Your
company may well need to consider hiring extra project manage-
ment stafffor YSK. The cost of this can be as great as or greater
than the cost of coders and testers, because the PM's are in
greater demand. Can't spend the money? See you in court!

Make sure y o u have ful l s u p p o r t f r o m the CEO
So, you discovered that you need to spend megabucks that
weren't budgeted for PM's and test facilities, the project is
already behind, and the head of Customer Support has flatly
refused to lend you a dozen customer support reps for product
testing. What can you do?

A) Quitting is one answer. It is one frequently employed by
those higher up the ladder in t_he Y2K project., especially by
those intelligent enough to see the chopping block being
prepared for them in the Boardroom. This is not a joke! On
the hairiest Y2K project I worked on, the Program Manager
(boss of the Project Managers, the Big Cheese) left to take on
a lovely new job before the first application got to the test-
bed. Turns out he'd been looking for a new job since learn-
ing that he'd he "Lord of the Y's," as PM's sometimes refer
to each other on these projects. The interregnum while we
waited for a new Big Cheese set us back considerably.

B) Perhaps the only other good answer to the "what can you
do?" question is "go to the top." The CEO of the company
must be totally supportive of Y2K project needs. If they are
not, see (A), above. The hairy project was saved, in large
part due to a high level of upper management commiUnent,
both in dollar terms and in willingness to bang heads, re-
pfiofifize other projects, and in general,/tad.

Engage in triage
If you are reading this in Quote Quad in 1999, and your Y2K
project hasn't nearly finished, .you are nearly finished! Even the
smallest projects have unavoidable time lags in them; when these
are additive, as some are, schedules slip rapidly. It is very unlike-
ly that any large Y2K project starting in 1999 will finish in time.

A good finish date to have set for yourself would have been
Dec. 31, 1998. As you're already past this date, the latest you can
consider is August 1999. This date is chosen for several reasons:

Some COBOL and related legacy apps will begin failing in
September 1999. Your code needs to be done, and visibly
done, to the world at large before then. If not, the CCRM
gang will assume you're in big trouble. They'U be right.

• You will have unanticipated sfippages. You need to allow
several calendar months of contingency to deal with these.

10

You will have to spend time in Q3 and Q4 1999 installing
other companies' newly Y2K compliant software versions
and retesting your own code after their changes are in place.

In many companies there simply won't be enough people,
dollars, or time to fix and test all software before August 1999.
The answer in this case is to engage in triage:

• The A L/st: Applications that are business critical. Do
everything humanly possible to fix or replace these.

The B L/st: Applications that are important, but not time-
or business-critical. Do what you can to fix these, but make
contingency plans to fix them on or after 01/01/2000 when
and as they break. A List jobs pre-empt those on the B list.

The CList: You can't afford to fix these. Make plans to get
rid of them before the new century arrives. Note that this
often takes work that must be budgeted for. Be prepared to
find in 5-10% of the cases that the cost of removing a C-
List app is higher than the cost of fix.ing it, in which case
your B List just got bigger.

You, the Y2K project manager, have a big task doing triage.
You must persuade upper management to kiss the systems on the
C list goodbye. You must dissuade deparmaents from embarking
on upgrade or enhancement projects for applications on the B
list. You must ensure the A fist is small enough to really get done
by August 1999. Good luck! See you in the CEO's office

Build tes t facilities, tost plans, and tost data
Whole books could, and have, been written on this. Here's an
abstract of the problems:

Test facilities
Setting the system clock forward is easy enough for PC applica-
tions, and can be excruciatingly difficult in some mainframe and
mini O/S's. If you work on big machines, be prepared to spend
an unconscionable amount of time fighting the O/S, disk and
tape management utilities, and third-party software when your
test machine is moved forward and backwards in time. This adds
big costs, and big inherent time lags, to testing schedules.

One customer's IBM mainframe APL system was operated
for them by a service bureau. Before a test machine could be set
up, the service bureau required several months of preparation to
isolate the test machines from the other production environ-
ments. IBM had warned of catastrophic results if the O/S saw
files with future modification dates, so test data sets had to he
carefully segregated behind operational and technological fire-
walls. Although the customer's Operations Department did an
exceUentjob of planning and preparing for this, it took over six
months to get the testbed environment fully operational.

Once operational, schedullng flexibility for testing was
limited by the need to fully restore the system from tapes every
time the clock needed to be moved hack at the end of a test cycle.
This meant that the best that could he achieved was about six to
eight hours downtime between cycles. This prevented testing on
more than one critical date transition on any given calendar day,
in most cases.

We felt a little had about this "batch mode" environment until
we heard about another division of the customer's company
which had much more modem, cutting edge hardware and
software (not APL). That division was rarely able to reset their
test machine to the beginning of a cycle in less than several days
effort, proving that our experience was not unique.

Those of you with networks of PC's are probably grinning in
a self-satisfied way at this point. While individual PC's can be
reset fairly easily, networks of them are a different matter. This
is due largely to application software checks on different boxes
that look for synchronization across the net. This is most
apparent in near-real time applications such as trading systems.
Thought must be given in these cases to creating an easily
managed test network which can be quickly rcsynchronized to
any specified testing date and time.

Test plans
The larger the system and the more critical it is, the more
important it is to have a written, well organized test plan. It is
very difficult to write a good test plan unless you understand the
application reasonably well. Therefore, test plan writing will
often bottleneck on scarce resources: the application experts.

If your company already routinely writes and executes test
plans, estimating this task for Y2K will be relatively easy. How-
ever, many departments with APL systems have been able to
muddle through in the past without disciplined testing proce-
dures (the 'if it breaks, we'll fix it' school). In one organization we
had to bootstrap testing skills from a small core of early introduc-
ers to a much larger group of application experts. This was time
consuming at first and often surprisingly painful for the experts,
most of whom derived their job satisfaction from writing code,
not from test plans. It was not unusual to find that the first plan
written by an individual took four weeks or more, while subse-
quent plans took progressively less time.

In addition to the time it took an expert to write a test plan
draft, we had to plan for and allocate time from several other
staffers to participate in test plan reviews. Many experts felt this
was an unmitigated bit of bureaucracy, until they found funda-
mental flaws or lacks of coverage being pointed out by their peers
in the review meetings.

A second, very valuable role of review meetings, was to limit
the scope ofplans. Some experts, once they get the bit in their
teeth, will write overly extensive plans. Project management and
their peers must pare these back to just the minimum tests
needed.

Szr'r,~RER 1998 - - VOLC~E 29, NLr~BER 1 11

In one Y2K project, the PM decided to defer reviews to a
later point in the project. This project ran into serious difficulties
during the actual test cydes. Review and revision of test plans as
early in the project as possible is extremely important.

l e s t da t a
It is easy to overlook just how costly and difficult it can be to
generate good test data. The usual assumption made is "well,
we'll just take a copy of the production system's data and move
all the dates forward to jan 12000, then test." This rarely is the
whole story.

First, it's quite likely that your test machines will be smaller
and less powerful than your production machines. You'll have to
prune your database rationally to fit it onto the testbeds.

Second, most large systems consist of many interacting
subsystems. These rely on chunks of data from each other for
their normal functioning. For example, there might be a master
table of insurance policy types and identifiers. Many subsidiary
systems will refer to the master table. If data needed in the policy
renewal subsystem is not available because it was pruned out of
the master table, spurious errors will be seen.

In addition to data integrity, date consistency is often an
issue. Business applications often "know" which days are busi-
ness days and which are not; they behave differently on holidays
and weekends. Simply grabbing data for the month of December,
1998 and changing the year to 1999 won't work because the
weekdays are different. In addition, January 1, 2000 is a Satur-
day. Testing business applications only on January 1 won't work
because they will only exercise weekend and holiday behaviour.
Tests will need to include data for January 3, and in some juris-
dictions this too will be a holiday, so January 4 data becomes a
requirement. Similar problems arise around the leap date.

New test data will need to be created in some cases. Under-
standing the business rules used by the application to validate
such data is important. For example, in one bond pricing system,
prices were not updated unless they had changed, so test data
had to incorporate price changes. However, some bonds were
priced in dollars and cents, while others were priced in doRars
and eighths--the test data had to follow this pattern. Last but not
least, applications often apply "sanity checks" to input data.
These will only be triggered if prices move too much in either
direction. An initial test data set was completely rejected, leading
to a massive exception report file and a disk full, because the
programmer had not understood the sanity checks within the
application and had simply added $10 m all prices.

We often focus first on production data: the actual working
data of the applications under test. But configuration data also
needs to be ported to the testbeds, and frequently will need to be
revised there. Tables of account names, access privileges, mail
account ID's, etc., will not transfer without change.

For instance, one customer's security policies required that
account passwords on testbeds and development systems be
different from those on the production systems. A legacy system

which had been built in place on the production system had never
been ported to another machine. We found out the hard way that
passwords were in some cases hard-coded into locked functions.
In some cases no unlocked reference copy of such functions could
be found. This is much like the case of the COBOL system where
only object code and executables exist, the source having been
lost! In this instance testing had to wait for the availability of a few
trusted senior staff who had permission to unlock functions,
remove sensitive data, and pass the unlocked, desensitized ver-
sions on to testhed building staff. Delays resulted.

In another instance an error-condition reporting utility was
shared by almost all major applications. It had privileged access
to the company e-mail system so that problem reports could be
sent in real-time to support staff. Naturally, such a sensitive
system was locked up and closely guarded. This had been antici-
pated and unlocked, desensitized versions were already availahle
when we went to build the testbed. What we had not anticipated
was that destination e-mail addresses would be hard-coded into
some calling routines; again delays resulted as this was remedied.
The risk in such situations is delivering spurious error reports
from the testbeds to the production support staff.

In yet another instance, a utility system used for managing
user access to production systems had been built many years
before. It had been created in part by staffknowledgeable about
the internals of the APL interpreter, and made significant use of
privileged 1-beam functions. Most of the code was locked to hide
such mysteries from mortal AFL programmers, with the result
that a junior, well-meaning staff member misunderstood the
system setup and accidentally trashed large parts of the entire
testbed user access files--a mistake that cost over a week to
remedy.

These funny litde pratfalls do not make the PM any happier
when they happen.

Get and u s e ~ u / t - d e t e t C l o n tools
The Y2K literature is full of advertisements from tool vendors.
Many of these tools will slice, dice, and cook your code for you.
I do not believe the APL marketplace is big enough to justify the
large upfront investment to build tools that can actually change
code or data in APL. APL is too rich in idioms and dialects for
this to be very effective.

However, there are tools on the market which are essentially
database search engines, in which all of the code on your APL
system is the database, and the patterns searched for are code
fragments or utility functions known to be associated with date
logic. For help in locating and evaluating such tools, talk to your
APL vendor.

Such "fault-detection tools" have three essential components:

• a set of code patterns to search for

• a search engine

• a reporting system to record matches to the patterns

1 2 avL Q,,ote ~ a

Ask the tool vendor whether the set of search patterns can be
easily customized at your site. Use of the tool is best thought of as
a recursive process: use it once, along with your experts' knowl-
edge of your systems, to locate any commonly used utilities and
code patterns that correlate well with date logic or data. Then,
add the names of these utilities, or a description of the code
patterns, to the set of patterns searched for and run the tool again.

Some patterns are largely independent of APL dialect and
should always be searched for:

'19'
19+
1900+
D~S
100±
100T
IooI

Note that the last four patterns wil] be found many, many
times in quite innocent code. It seems better to allow the many
false positives caused by such patterns than to risk missing date
code by excluding any of them.

It is arguable that any identifiers containing the strings 'year',
'date', 'dt', 'ymd', 'month', 'ruth', 'day', and 'dno' should be
reported by the tool. Again, many false positives will result.

The search engine should incorporate knowledge of the
syntax of your APL dialect. It is important to be able to specify
whether a given pattern is matched only when it is a valid APL
syntactic token, or whether it can be matched anywhere--for
instance inside of quoted strings, comments, or as a substring of
other identifiers.

It seems obvious, but you should ask: can the search engine
find all the code on your system? Is it fast enough? Smart
enough? APL functions may be present as fimctions, as vectors,
as character matrices, or inside ofdialcct-specific constructs such
as packages, namespaces, nested arrays, etc. On a large APL
system, can the tool search the whole system in a convenient
length of time? One tool I encountered took from late Friday
night to late Sunday afternoon to scan a full production system.
Had it been 25-30% slower it might not have been usable.

Thinking ahead to the end of your project, will the tool allow
you to somehow designate some functions as "Okay--don't
search me"? As your project progresses, you'd like to mark
functions known to be compliant, perhaps with a special
comment, or perhaps by entering them in a database. Of course,
other functions with the same name but different contents must
still be searched. Can the tool make this distinction?

The reports generated by the tool are essential to your
project. At a minimum they should unambiguously identify the
functions with pattern matches by name and location. It is useful
ffinformation about which pattern(s) were matched is reported.
Some indication of ffi,mction size, such as number of lines or
number of bytes, can be useffitl for estimating work to be done.

This reported information will ideally be available to you in
machine-readable format. APL character sets are notoriously
unreadable from within Excel or Oracle, so find out whether the
data will be APL-legible.

Estimmto eeHor¢ from the code b~'e
One large challenge for the project management staffand applica-
tion experts is estimating the amount of effort required for Y2K
work. The problem is that most of the staff have never done this,
aren't familiar with what it entails, and so have no basis for com-
parison to past projects.

For large systems, some effort figures can be derived from
counts of the code base. This rather mechanical method isn't
great, but it's a lot better than nothing.

The first step is to run a fault-detection tool and look at the
number of functions it finds with pattern matches, and their
numbers of lines of code. An initial crude estimate can be made
for the "code assess and fix" phase, during which suspect
functions are analysed and ff required, changed, by assuming
that average APL contractors will be able to handle about fifty
functions per month during the first four to eight weeks of work,
and about 100-150 fimctions per month thereafter. Full-time
staff working in an application with which they are already
familiar will move to the higher figures more quickly, but non-
project lost time--reading e-mail, attending meetings, vacation
and sick time and training courses and time cross-assigned to
other projects--often reduces the effectiveness of the full time
employee below that of the contractor, simply because they
cannot focus exclusively on the Y2K task the way the contractor
should (hint: don't hire contractors for less than full time, lest
they end up like employees).

Writing test plans and building test data is harder to estimate.
I've already mentioned that when an employee first starts writing
test plans, allow a month per plan for learning curve time. After
that, the time to complete a plan is largely dependent on applica-
tion size, complexity, and use of date logic. These three factors
should be estimated for each application, and an estimate derived
from a set of weights (a.k.a 'fudge factors'). Closely monitor
actual effort versus estimated during the early phases of the
project and you can adjust the weights as you gain experience.

A sanity check is that test plan and data generation should not
take less time than the code assess and fix, nor more than twice
as much time.

Actual testing, if the test plans, data builds, and code fixes
have been carefully done, can be rather slow, but low effort.
Expect two to four passes through each test plan before it all
works. Often elapsed time for these two to four cycles is a bigger
schedule factor than the effort expended. For instance, if a bug
is found on a Jan. 4 2000 testing date, but there is only one Jan
4 2000 date available every two calendar weeks on the testbed,
successful completion of the test will take four to eight weeks of
elapsed time.

S~'I'~MREB 1998 - - VOLUZ~E ~9, NUMBER I 1 3

An important tactic is never to start formal testing on an
application in the testbed until an application expert has 'hand
tested' the application installation. In my experience many more
configuration bugs are found on the testbed than Y2K bugs;
these should be cleared out before formal testing starts, or you
will lose test cycles.

Plan for code release and control
When beginning a Y2K project we tend to focus on the immedi-
ate job at hand: finding the code that's wrong and fixing it. We
tend to forget one potentially large and ugly problem that arrives
near the end of the project, which is releasing the fixed code.

Because the scope of the Y2K project is so large, there can be
many interdependencies which have to be resolved or taken into
account in the release schedule for fixed applications. Operations
personnel tend to be rightfixlly suspicious of statements such as
"we plan m release new versions of fifty major applications next
Sunday." What will you do if they insist that no more than one
major application be released per weekend/holiday? Do you have
time to complete all releases before the year 2000?

If application A has changed date formats internally, will apps
B, D, and F which use it have to be released simultaneously? If
utility <daynum> has been changed to window two-digit years,
and is paged from a central function file, do you know all the
applications which use it and whether they need to be upgraded
at the same time or not?

If your application produces data used by third parties or
customers, and date formats have been changed, have you pro-
vided them with test data sets in the new format? Have you nego-
tiated a mutual upgrade date, or will you have to operate the old
and new versions in parallel for a time while they upgrade their
systems?

Finally, have you taken into account any paral]e] development
going on simultaneous with Y2K work? Are all bug fixes and
other upgrades up to date in the Y2K compliant version so there
will be no regression of functionality?

An example of the kind of bind PM's can get into was felt at
a customer who did a significant amount of business in Europe.
As a result, all financial systems had to be upgraded to deal with
the Euro currency prior to Jan. 1, 1999. This was the top
company priority, and the Euro conversion project outranked
Y2K. The Y2K last release date had been set during 1997 as
Dec. 1, 1998, assuming a one month freeze prior to Euro
conversion was desirable. In the event, the Euro staffcantiously
negotiated a longer freeze period prior to the Euro Big Bang. An
unexpectedly large number of Y2K release dates had to be
moved to the beginning of November, putting a real squeeze on
project staffat a difficult time.

Who can find and fix and test Y2K bugs
in APL code?

While most APL applications can't be shipped out to Y2K
conversion factories, due to the small market size for APL and
the many dialects, the APL Y2K project is not doomed to use
only full time, salaried staff. In the early phases of the project,
quite a bit of flexibility can be gained by using contractors for
code assessment and fixing.

Although contractors will cost real, tangible dollars, during
the first half of the project they can really accelerate progress.
This is because, in conjunction with a good fault-detection tool,
a very large percentage of Y2K bugs can be found by any reason-
ably-competent APL programmer. Actual experience from the
past two years suggests that, with good management, contractors
are able to find and fix 99% of Y2K bugs in applications with
which they are not initially familiar.

The primary requirements for assessing and fixing Y2K bugs
are (a) high l e v e l of APL competence, and (b) high tolerance for
drudge work. Unfortunately, (a) and (b) don't always go to-
gether. This puts a premium on careful interviewing, reference
checking, and monitoring of contractors throughout the project.

In o n e large Y2K project, I diverted a few contractors to build
a "compliance database." This took the output of the fault-
detection tools as its raw data, and was then updated by each
contractor for each function that they had examined. This
proved extremely useful. I was able to monitor each contractor's
performance over time (the 'Big Brother' function) and report to
the customer's VP in charge on a frequent basis on progress per
dollar billed. Once contractor staffwere through their learning
curves, I was able to predict quite accurately when the assess and
fix effort would start winding down.

Thus, I would have no hesitation in suggesting the large-scale
use of competent APL contractors on Y2K projects, so long as
good management oversight and guidance is provided to the
contracting staff.

Testing is an entirely different kettle of fish. It requires a
much more detailed knowledge of how an application works. A
randomly chosen, APL-competent contractor will require two to
four months to become familiar with a large business application
to the point where a test plan can be written. If sufficient full time
staff with expertise are available to write test plans, this wiU
almost always be more cost effective than using contractors.

Unfortunately, in many organizations the extra load ofa Y2K
project cannot be resourced from full-time staff, who may be
allocated to business-critical support and development. In this
case, strategy is important.

In the large project referred to above where contractors were
used in the assess and fix phase, each contractor was assigned to
fix several different applications (sequentially). Several contrac-
tors were working in parallel at the same time on certain large
applications. This "wide but not deep" approach was used

14 O, o,e

because it was felt essential to get certain apps fixed early, as they
were used by many other apps later in the project.

This goal was achieved, but as a consequence of being
reassigned every month or two to a new application, contractors
were not able to gain an in-depth understanding of any one
system. Had we instead assigned fewer programmers to each
application, but kept each one working on that application
afterwards to assist in test plan and test data building, we would
have built expertise much faster, at the expense of finishing the
fix phase for some early systems more slowly.

Our plan was to have only fuR-time experts prepare test plans
and data. However, due to turnover, sickness, and higher
priority projects, we did not receive the allocated effort from full
timers. This forced us rather late in the game pLan to switch back
to using contractors, without having built their expertise in
advance.

In summary, then, if you are quite sure that enough fidl time
staff will be available to write test plans and build test data,
restrict use of contractors to the code fix process, and let them go
wide, not deep. But, if you have any doubts about the number or
availability of fur time experts, choose some contractors (your
best ones) , and re-focus them to go deeply into a few applica-
tions, from beginning (fix) to end (test).

What to do when management suggests
converting to C + +

A large 1999 APL Y2K project has a high a priori probability of
becoming a death march project. Under such conditions, pointy-
haired managers do their best to annoy and irritate staff with
stupid suggestions. This is known as "out of the box thinking"
in the trade.

The most likely jack-out-of-the-box suggestion from your
local manager will he that you avoid the terrible costs and
boredom of doing Y2K work on your old APL systems by
converting them all to C++ (Java, Oracle, OLAP, Perl, insert
your buzzword here...).

Remember, physical violence, while momentarily satisfying,
is not an appropriate response to such well meaning suggestions:
"must...control...fist...of...death" should be your mantra at
such times.

The appropriate response, which has the added virtue of
being the correct one as well, is that large application replace-
ment projects are too risky in 1999, and that they should save the
budget for such a cosdy exercise for the year 2000. Point out that
the lower debug costs of APL make it uniquely suited to lowly
maintenance projects like Y2K, unlike such godlike and hard to
debug languages as C++, where everything has to be done right
from the start or you are doomed.

Your manager is likely to walk away reasonably satisfied with
this answer. Don't worry, he or she will have been downsized or
have quit by the year 2000 anyways.

SSPTEMeEa x998 - - VOLtrUE 29, NtruaElt 1

My favourite Y2K bugs in APL

This section is for late at night, when the deadlines are ~oraing. . ..
My very favourite Y2K bugs are actually a dass of bugs. They

have to do with stashing dates in file names.
Now everyone knows that it's a bad idea to use two-digit

years in dates. But, various O/S's put inane restrictions on file
name lengths (eight in DOS/Win 3.1, eleven in older mainframe
APLs, etc.). What is the poor programmer to do but to chop the
century off, so that today's data can be stored in '1234567
JN980611' or 'JN980611.FOO'. Of course, there are ways of
compressing the full year, month, and day into six characters,
but who wants to enter a "DIR" command and see a bunch of file
names like ~JNBTZgLK.FOO'?

In my very favourite APL Y2K bugs, the system works just
fine with such flies during the year 2000 when creating them (but
look out for that nm~- v J R N E , , -*-q 00-l-q00 [3 ~f-12~ and even
when reading data from them, etc.

The thing that's so delicious about these bugs is that they
wait to hit you until an unpredictable time after the new century
hits. Then, after some interval, the daily (hourly, weekly, month-
ly, quarterly) housekeeping task wakes up. "Hmm," it says,
"which files are older than my five-day (week, month, etc.)
retention period? I'll delete them." As this is a very obscure and
unimportant task everyone forgot to check its code, so it's not
windowing its dates. "Oh look!" it says. "There are a hunch of
files from 1900! I'H delete them first."

Now the funny thing is that I'm not making this up. In several
separate projects, in code written by completely different pro-
grammers, assessed and reviewed by competent, serious contrac-
tors and expert full time staff, these bugs sailed through all the
inspections to the testhed stage. There, they brought very impor-
tant applications to their knees, by deleting the current day's
input data instead of or in addition to last week's, or by erasing
all history logs, etc.

I'm not sure what it is about these obscure, poor cousin
housekeeping tasks, but psychologically they are invisible t o

most programmers, sort of the way the serving staffis invisible to
an aristocrat. They will, however, repay your closest attention.

After these 'kill the application dead' bugs, my last example
seems very modest. However, I will note it as an example of why
I don't think APL will be susceptible to automated Y2K code
correction any time soon. This line was observed by an alert
contractor, not flagged by any fault-detection system:

y~'1 l , '9',y

Why, why would anyone do this? Why, because .y is a
matrix, of course •

Clement Kent is President of Godel Computer Solutions Lt~ a software
firm. His work is split between the commercial APL community, where
he leads teams working on the Tear 2000 problem, and the CIM
(Computer Integrated Manufacturing) world where he ia a consulting
architect for computer s3stema that hebp run computer chip factories. He
has worked with A l L since before he had a drivers license and hopes to do
so well into the 21st century. He may be reached at "clementh@acm.org':

15

