
Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey
PIERO FRATERNALI

Politecnico di Milano

The exponential growth and capillar diffusion of the Web are nurturing a novel
generation of applications, characterized by a direct business-to-customer
relationship. The development of such applications is a hybrid between traditional
IS development and Hypermedia authoring, and challenges the existing tools and
approaches for software production. This paper investigates the current situation of
Web development tools, both in the commercial and research fields, by identifying
and characterizing different categories of solutions, evaluating their adequacy to
the requirements of Web application development, enlightening open problems, and
exposing possible future trends.

Categories and Subject Descriptors: H.5.4 [Information Interfaces and
Presentation]: Hypertext/Hypermedia ; D.2.2 [Software Engineering]: Design
Tools and Techniques

General Terms: Design, Experimentation, Languages, Reliability

Additional Key Words and Phrases: Application, development, HTML, Intranet,
WWW

1. INTRODUCTION

Applications for the Internet in such
domains as electronic commerce, digital
libraries, and distance learning are
characterized by an unprecedented mix
of features that makes them radically
different from previous applications of
information technology [Myers et al.
1996]:

—Universal access by individuals with
limited or no skills in the use of com-
puter applications introduces the
need of new man-machine interfaces
capable of capturing the customer’s
attention and facilitating access to in-
formation.

—Global availability of heterogeneous
information sources requires the inte-
grated management of structured and
unstructured content, possibly stored
in different systems (databases, file
systems, multimedia storage devices)
and distributed over multiple sites.

In recent years the World Wide Web
has been elected as an ideal platform for
developing Internet applications,
thanks to its powerful communication
paradigm based on multimediality and
browsing, and to its open architectural
standards, which facilitate the integra-
tion of different types of content and
systems.

Author’s address: Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo
da Vinci 32, Milano, I-20133, Italy.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 2000 ACM 0360-0300/99/0900–0227 $5.00

ACM Computing Surveys, Vol. 31, No. 3, September 1999

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331499.331502&domain=pdf&date_stamp=1999-09-01

Modern Web applications are conve-
niently described as a hybrid between a
hypermedia [Nielsen 1995] and an in-
formation system. As in hypermedia,
i.e., applications commonly found in
CD-ROMS, kiosks, information points,
etc., information is accessed in an ex-
ploratory way rather than through
“canned” interfaces, and the way in
which it is navigated and presented is of
great importance. Similar to informa-
tion systems, the size and volatility of
data and the distribution of applications
requires consolidated architectural so-
lutions based on technologies such as
database management systems and cli-
ent-server computing.

Due to this hybrid nature, the devel-
opment of a Web application must cope

with a number of applicative require-
ments, such as:

—the necessity of handling both struc-
tured data (e.g., database records)
and nonstructured data (e.g., multi-
media items);

—the support of exploratory access
through navigational interfaces;

—a high level of graphical quality;

—the customization and possibly dy-
namic adaptation of content struc-
ture, navigation primitives, and pre-
sentation styles;

—the support of proactive behavior, i.e.,
for recommendation and filtering.

These requirements add up and typi-
cally compete with the technical and
managerial issues of every software-
and data-intensive application, which
obviously remain valid for large Web
applications also:

—security, scalability, and availability;

—interoperability with legacy systems
and data;

—ease of evolution and maintenance.

As has happened in the past with
other emerging technologies such as da-
tabases and object-oriented program-
ming languages, methodologies and
software tools may greatly help in mas-
tering the complexity of innovative ap-
plications by fostering a correct under-
standing and use of a new development
paradigm, providing productivity ad-
vantages, and thus reducing the risk
inherent in application development
and migration.

The goal of this survey is to address
the software engineering, architectural,
and applicative issues of Web develop-
ment (Section 2); classify and compare
current development tools in light of
such aspects (Sections 4 to 10); formu-
late evaluations and perspectives by ex-
amining the relationship between state-
of-the-practice solutions and relevant
research areas (Sections 11, 12, 13 and

CONTENTS

1. Introduction
2. Perspectives on Web Development

2.1 Process
2.2 Models, Languages, and Notation
2.3 Reuse
2.4 Architecture
2.5 Usability

3. Tools for Web Development
4. Visual Editors and Site Managers
5. Web-enabled Hypermedia Authoring Tools
6. Web-DBPL Integrators
7. Web Form Editors, Report Writers, and

Database Publishing Wizards
8. Multiparadigm Tools
9. Model-Driven Web Generators
10. Middleware, Search Engines, and Groupware

10.1 Middleware
10.2 Search Engines
10.3 Groupware

11. Evaluation
12. Research Perspectives
13. Research Projects in Data-Intensive Web

Development
13.1 Araneus
13.2 Autoweb
13.3 Strudel
13.4 Web Architect
13.5 W3I3

14. Background Research
14.1 Modeling Notation
14.2 Processes
14.3 Other Design Tools

15. Conclusions
APPENDIX
List of URLs of Reviewed Products (Alphabetic Order)

228 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

14); and to summarize current choices
for the developer on the basis of the
characteristics of the application (Sec-
tion 15).

2. PERSPECTIVES ON WEB
DEVELOPMENT

The development of a Web application is
a multifaceted activity, involving not
only technical questions, but also orga-
nizational, managerial, and even social
and artistic issues.

2.1 Process

Although there is still no consensus on
a general model of the lifecycle of a Web
application,1 a scheme of typical activi-
ties involved in constructing a Web ap-
plication can be obtained by interpolat-
ing the lifecycle models of traditional
information systems and the proposals
for structured hypermedia design [Gar-
zotto et al. 1995; Isakowitz et al. 1995;
Nanard and Nanard 1995; and Schwabe
and Rossi 1995]. Figure 1 illustrates the
lifecycle model used as a reference in
this paper.

—Requirements analysis: The mission of
the application is established by iden-
tifying prospective users and defining
the nature of the information base. In

addition to the customary require-
ment collection and feasibility assess-
ment tasks, Web applications de-
signed for universal access require
special care in the identification of
human-computer interaction require-
ments, in order to establish the inter-
action mode most suitable for each
expected category of users, and for
each type of output device that users
are expected to use to connect to the
application (ranging from hand-held
personal communicators to high defi-
nition screens).

—Conceptualization: The application is
represented through a set of abstract
models that convey the main compo-
nents of the envisioned solution. In
the Web context, conceptualization
has a different flavor with respect to
the same activity in information sys-
tem design, because the focus is on
capturing objects and relationships as
they will appear to users, rather than
as they will be represented within the
software system. Although the nota-
tion may be the same (e.g., the Entity
Relationship Model [Chen 1976]), the
schemas resulting from the conceptu-
alization of a Web application and a
database application usually differ.2

1Among the current proposals are those of Taka-
hashi and Liang [1997]; Atzeni et al. [1998]; and
Fraternali and Paolini [1998].

2A macroscopic difference is in the interpretation
of relationships, in which database modeling rep-
resents semantic associations to be persistently

Requirement
Analysis

Conceptualization

Design:
structure
navigation
presentation

Implementation

Prototyping
& Verification

Maintenance
& Evolution

Figure 1. The lifecycle of a Web application.

Development of Data-Intensive Web Applications • 229

ACM Computing Surveys, Vol. 31, No. 3, September 1999

—Prototyping and validation: Simpli-
fied versions of the applications are
deployed to users for early feedback.
The importance of prototyping is par-
ticularly emphasized in the Web con-
text, as it is in hypermedia, because
the intrinsic complexity of the inter-
faces requires a timely evaluation of
the joint effectiveness of structure,
navigation, and presentation [Nielsen
1996]. Typically, a prototype is built
prior to design and on a simplified
architecture, e.g., as a set of manually
implemented pages containing sam-
ples of the application content, which
emulate the desired appearance and
behavior.

—Design: Conceptual schemas are
transformed into a lower-level repre-
sentation, closer to the needs of im-
plementation, but still independent of
the actual content of the information
base. Typically, the structural view of
the application is mapped to the
schema of a storage repository, the
navigational view into a set of access
primitives over the content reposi-
tory, and the presentational view into
a set of content-independent visual
specifications (styles). The latter ac-
tivity, called visual design, is of great
importance in Web application devel-
opment and is emerging as an auton-
omous discipline [Sano 1996; Horton
et al. 1996].

—Implementation: The repository is
filled with new content prepared by
domain experts and/or with existing
data stored in legacy systems; the ac-
tual interfaces, pages inWeb terminol-
ogy, are constructed by embedding re-
pository content and navigational
commands into the appropriate pre-
sentation style. The mapping of de-
sign to implementation requires the
choice of the network language in
which the application is delivered
(e.g., HTML, Java, ActiveX, or a mix

thereof), and the decision on the time
of “binding” between content and ap-
plication pages, which can be offline
or online.

—Evolution and maintenance: After de-
livery, changes in the requirements or
bug fixes may require the revision of
structure, navigation, presentation,
or content. Changes are applied as
high as possible in the development
chain and propagated down to imple-
mentation.

The process model described caters to
a variety of actual processes, whose ap-
plicability depends on the specific devel-
opment context, including the available
tool support, financial and time con-
straints, application complexity, and
change frequency. Generally speaking,
with applications of limited size and
fairly stable requirements, requirement
analysis is directly followed by imple-
mentation, possibly after a number of
iterations through prototyping. Concep-
tualization and design assume more rel-
evance as the complexity and volatility
of the application increase.

2.2 Models, Languages, and Notation

A Web application is characterized by
three major design dimensions:

—Structure describes the organization
of the information managed by the
application, in terms of the pieces of
content that constitute its informa-
tion base and of their semantic rela-
tionships.

—Navigation concerns the facilities for
accessing information and for moving
across the application content.

—Presentation affects the way in which
application content and navigation
commands are presented to the user.

To support the representation of ap-
plication features during the develop-
ment lifecycle, languages with different
levels of formality and abstraction can
be used.

At the conceptual level, applications
recorded, whereas in Web modeling a navigation
possibility is generally implied.

230 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

are described by means of high-level
primitives which specify the structural,
navigational, and presentational views
in a way that abstracts from any archi-
tectural issue.

Structural modeling primitives de-
scribe the types of objects that consti-
tute the information base and their se-
mantic relationships, without
commitment to any specific mechanism
for storing, retrieving, and maintaining
the actual instances of such object
types. Examples of notation that can be
used to express structural features in-
clude the best-known conceptual data
models, like the entity-relationship
model [Chen 1976] and various object
models [Rumbaugh et al. 1991].

Navigation modeling primitives ex-
press the access paths to objects of the
information base and the available in-
ter- and intraobject navigation facili-
ties, again without committing to any
specific technique for implementing ac-
cess and navigation. The vast range of
notation and techniques proposed for
the more general problem of human-
computer interaction specification can
be employed for navigation modeling:
data models extended with built-in nav-
igation semantics [Garzotto et al. 1993;
Isakowitz et al. 1995; Fraternali and
Paolini 1998] or explicitly annotated
with behavioral specifications [Kesseler
1995; Schwabe and Rossi 1995]; first-
order logic [Garg 1988]; Petri nets
[Stotts and Furuta 1989]; finite state
machines [Zheng and Pong 1992]; and
formal grammars [Jacob 1982] are
among the viable options.

Presentation modeling aims at repre-
senting the visual elements of the appli-
cation interfaces in a way that abstracts
from the particular language and device
used in the delivery. Many different
techniques can be used, with a varying
degree of formality and rigor, ranging
from simple storyboard specification
[Madsen and Aiken 1993] to the use of
software tools [Myers 1995] and formal
methods. The independent specification
of presentation, separate from structure
and navigation, is particularly relevant

in the Web context because the final
rendering of interface depends on the
browser and display device, thus it may
be necessary to map the same abstract
presentation scheme to different de-
signs and implementations.

At the design level, structured or
semistructured data models are used to
represent the features of an application
in a way amenable to manipulation,
query, and verification. Typically, de-
sign representations are maintained as
relational or object-oriented schemas, to
exploit the capabilities of database
management systems, or as semistruc-
tured objects, to cope with information
having partial or missing schemas [Flo-
rescu et al. 1998].

At the lowest degree of abstraction,
applications are represented by means
of implementation-level languages, no-
tably network languages directly inter-
pretable by the user’s browsers. At this
stage, content, navigation, and presen-
tation are directly embedded in the
physical marked-up texts or programs
that make up the application.

2.3 Reuse

As in any other software process, reuse
is an important aspect, related to the
facility of building a novel application
from existing artifacts [Biggerstaff and
Perlis 1989]. Reuse may happen at all
levels of the development process: con-
ceptual schemas, design schemas, con-
tent, and physical application pages can
be reused across applications.

The most common form of reuse on
the Web, as in hypermedia, is content
reuse, possibly facilitated by the pres-
ence of a structured repository, which
enables the construction of different ap-
plications on top of the same informa-
tion base. Reuse also occurs at the im-
plementation level, where component-
based libraries of self-contained
elements (e.g., JavaBeans or ActiveX
components) can be plugged into applica-
tion pages to provide predefined function-
alities (e.g., an electronic payment faci-
lity). Generation-based reuse focuses

Development of Data-Intensive Web Applications • 231

ACM Computing Surveys, Vol. 31, No. 3, September 1999

instead on reusing transformation tech-
niques from design frameworks or par-
tially instantiated implementations to
full implementations (e.g., by generat-
ing application pages from page skele-
tons and database content).

2.4 Architecture

Architecture is the subject of design and
implementation and reflects the spatial
arrangement of application data and
the spatio-temporal distribution of com-
putation.

The minimal spatial configuration of
a Web application is the so-called two-
tier architecture, shown in Figure 2,
which closely resembles the traditional
client-server paradigm. This is different
from client-server, wherein the two-tier
solution clients (i.e., browsers) are thin,
and are lightweight applications re-
sponsible only for rendering the presen-
tation. Application logic and data reside
on the server side.

A more advanced configuration, called
three- or multitier architecture (Figure
3), separates the application logic from
data, introducing an additional distinc-
tion of responsibilities at the back-end
side. The presence of one or more dis-
tinct application tiers enables the im-
plementation of advanced architectures
that integrate the traditional HTTP
protocol and client-server application
distribution protocols for better perfor-
mance, scalability, reliability, and secu-
rity.

An orthogonal architectural issue is
the time of binding between the content

of the information base and the applica-
tion pages delivered to the client, which
can be static when pages are computed
at application definition time and are
immutable during application usage; or
dynamic, when pages are created just-
in-time from fresh content. Dynamicity
has further nuances: it may involve only
content (navigation and presentation
are static), or scale to presentation and
navigation.

2.5 Usability

From the customer’s perspective, us-
ability is the most important quality of
a Web application. Although a thorough
discussion of the emerging Web usabil-
ity engineering field is outside the scope
of this paper (we refer the reader to
Nielsen [1996]), it is possible to identify
a set of general criteria to use in assess-
ing Web usability:

—Degree of visual quality indicates the
overall coherence of the presentation
and navigation metaphors and the in-
dividual quality of the graphic re-
sources.

—Degree of customization measures the
facility of tailoring the application in-
terface to individual users or user
groups. At one end of the spectrum,
applications may have a fixed inter-
face; at the other end, content, pre-
sentation, and navigation may be in-
dividually personalized.

—Degree of adaptivity is proportional to
the runtime flexibility of the inter-

Client Server

Application Logic

Database

Figure 2. Two-tier architecture.

232 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

face; at one end, the application may
be immutable; at the other, it may
track the user’s activity and change
accordingly [Fraternali and Paolini
1998].

—Degree of proactivity indicates the ca-
pability of an application to interact
with the user on its own initiative.
Applications can be passive, i.e., pro-
vide information only in response to a
user’s requests, or proactive, i.e., able
to send information to users upon the
occurrence of relevant events.

3. TOOLS FOR WEB DEVELOPMENT

In response to the complexity factors of
Web application development described
above, many software vendors are pro-
viding instruments for supporting the
construction of new applications or the
migration of existing ones.

Notwithstanding their common goal,
the available products greatly diverge
in many aspects, which reflects differ-
ent conceptions of the nature of a Web
application and of its development pro-
cess.

To help understand the state of the
practice, we have grouped existing tools
into six categories, which exhibit homo-
geneous features. This grouping is the
result of a broad review, which has con-
sidered over forty products, listed in
Appendix 1.

The individual categories are

(1) visual editors and site managers;

(2) Web-enabled hypermedia authoring
tools;

(3) Web-DBPL integrators;

(4) Web form editors, report writers,
and database publishing wizards;

(5) multiparadigm tools;

(6) model-driven application genera-
tors.

The order of presentation of the dif-
ferent categories reflects the increasing
level of support that tools in each cate-
gory offer to the structured development
of Web applications.

Category 1 contains productivity tools
that evolved directly from the HTML
editor, which do not really support the
development of large-scale Web-data-
base applications, but are nonetheless
interesting because they pioneered
many concepts (like presentation styles
and top-down site design) later inte-
grated into more complex environments.
The same limitation in the degree of
support to structured development of
large applications is shared by Category
2, which originates from a different ap-
plication domain, offline hypermedia
publishing, but recently added facilities
for Web and database integration; the
interest in these tools is motivated by
their nonconventional (with respect to
the standard software engineering prac-
tice) approach to application design and
specific focus on navigation and presen-
tation. Category 3 is the first one that
explicitly addresses the integration of
Web and databases to achieve a higher
level of scalability, and includes very
powerful, yet basic, products. These
products can be used to implement

Client Application Server

Application Logic

Database

Data Server

Figure 3. Three-tier architecture.

Development of Data-Intensive Web Applications • 233

ACM Computing Surveys, Vol. 31, No. 3, September 1999

applications on top of large databases,
although at the price of a substantial
programming effort. Category 4 takes
quite a different, but still database-cen-
tric, approach to Web development by
addressing the migration of client/
server, form-based applications. These
tools aim at augmenting the implemen-
tor’s productivity in such tasks as form
editing, report writing, and event-based
programming; they also offer a higher
level of support with respect to Cate-
gory 3, but still concentrate only on the
implementation phase. Category 5 con-
tains a number of tools whose common
feature is the integration of different
development approaches and technolo-
gies, drawn from the previous four tool
families. Finally, Category 6 includes
those products (actually two products)
that provide complete coverage of all
the development activities, from concep-
tualization to implementation, by lever-
aging state-of-the-art software engi-
neering techniques.

To complete the overview of Web ap-
plication development, in Section 10 we
include a mention to other classes of
products which are not directly con-
cerned with the specific focus of this
paper on the design and maintenance of
Web sites, but either cover fundamental
architectural issues like distribution,
reliability, performance, and security,
or provide specialized facilities to users
and site administrators, like advanced
search functions and collaborative work
support.

4. VISUAL EDITORS AND SITE
MANAGERS

This class includes authoring and site
management environments originally
conceived to alleviate the complexity of
writing HTML code and of maintaining
the pages of a Web site in the file sys-
tem. In a typical configuration these
products bundle a WYSIWYG editor,
which lets the user design sophisticated
HTML pages without programming,
and a visual site manager, which dis-
plays in a graphical way the content of a

Web site and supports functions like
page upload, deletion, and renaming,
and broken link detection and repair.
Among the many products in this cate-
gory are Adobe SiteMill and PageMill,
NetObject Inc.’s Fusion, SoftQuad’s
HotMetal, Claris Home Page, Macrome-
dia’s Backstage Designer, and Mi-
crosoft’s FrontPage.

From a lifecycle perspective, these
products address the implementation
and maintenance of Web sites; imple-
mentation is supported by content pro-
duction functions and maintenance by
site-level management facilities. The
most advanced products (e.g., NetOb-
ject’s Fusion and Microsoft FrontPage)
also offer a rather rudimentary ap-
proach to design, whereby it is possible
to separate the definition of the hierar-
chical structure of a site from the au-
thoring of content.

Automation concentrates on content
production by generating code from vi-
sual page designs. Support to code gen-
eration is particularly relevant in those
tools (like Macromedia’s DreamWeaver,
SofQuad’s HotMetal Pro 5.0, Allaire’s
HomeSite, and many more) that support
the latest extensions of HTML, like Cas-
cading Style Sheets (CSS) [World Wide
Web Consortium 1998a] for content-in-
dependent presentation specification,
and the Document Object Model (DOM)
[World Wide Web Consortium 1998b],
for the object-oriented representation of
page elements and their manipulation
via a scripting language.

Some tools are able to generate part
of the navigation logic by automatically
inserting navigation buttons into pages
based on their position in the layout of
the site (Figure 4). Development ab-
stractions are basically at the imple-
mentation level and oriented towards
structure and navigation (pages and
links); some tools also provide presenta-
tion abstractions in the form of page
templates or “themes,” i.e., groups of
graphic resources that can be applied to
multiple pages to obtain visual consis-
tency (Figure 5).

Reuse happens mostly at the imple-

234 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

mentation level: content objects (e.g.,
multimedia, graphics, but also object-
based components like JavaBeans and
ActiveX controls) can be reused across
applications.

The architecture originally supported
by these tools is file-based and two-tier,
and the binding between an application
and its content is static. Recently, the
most advanced tools have added func-
tionalities for the dynamic connection to
live database data, as discussed in Sec-
tion 8.

Since development is conducted
mostly by hand, the level of customiza-
tion and the resulting visual quality of
the final application is proportional to
the effort spent and can be arbitrarily
high; coherence of presentation and
navigation metaphors is facilitated by
visual templates and themes, although
in this case customization becomes more
expensive.

The features of these tools are shown
in Table I: in summary, they are an
excellent solution for small- to medium-

sized applications, where publishing
large information bases stored in a
DBMS is not the major issue. The lack
of a design-level schema of the applica-
tion, independent of content, requires
that the application features be defined
instance-by-instance, and is a major ob-
stacle to scale-up and integration of
large masses of data. These limitations,
however, are going to become less criti-
cal as these products become more inte-
grated with Web-database tools.

5. WEB-ENABLED HYPERMEDIA
AUTHORING TOOLS

Web-enabled hypermedia authoring
tools share the same focus on authoring
as visual HTML editors, but have a
different origin because they were ini-
tially conceived for the development of
offline hypermedia applications, and
have been extended to support the gen-
eration of applications for the Web in
recent times. The best known represen-
tatives of this class of products are

Figure 4. Hierarchical site layout in NetObject’s fusion.

Development of Data-Intensive Web Applications • 235

ACM Computing Surveys, Vol. 31, No. 3, September 1999

Asymetrix’s Toolbook II Assistant/In-
structor, Macromedia’s Director and Au-
thorware, Formula Graphics’ Multime-
dia 97, Aimtech Iconauthor, and Allen
Communication Quest. Most of these
products have both Web export facilities
and database connectivity, but these ex-
tensions are not always compatible, and
the developer must often choose be-
tween the two possibilities. These prod-
ucts are characterized by the following
features:

—The authoring metaphor used in the
definition of the application. Exam-
ples of such metaphors are: flowchart
(Quest, Authorware, IconAuthor),
book (Toolbook), and movie making
(Director).

—The way navigation is defined, which
may require programming in a script-
ing language, or may be supported by
visual programming and wizard tools
coherent with the product’s authoring

Figure 5. Graphic styles in NetObject’s fusion.

Table I. Synopsis of Visual Editors and Site Managers

Process: Lifecycle Coverage Design (limited to hierarchical layout definitions)
Implementation
Maintenance

Process: Automation HTML generation from WYSIWYG page editing
Generation of commands for hierarchy navigation

Abstractions Implementation-level: pages, links, presentation styles
Reuse Plug-in components; Reusable presentation styles
Architecture Two-tiers, based on file system

Static binding of content to pages
Usability High graphical control through manual authoring

High coherence through use of presentation styles
Low customization, no adaptivity, no proactivity

236 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

metaphor (e.g., in Director, objects’
synchronization is defined by editing
the score for the cast members of a
stage; see Figure 6).

—The type of database connectivity,
which may range from support of an
internal database, of an external da-
tabase via gateway software (typically
ODBC or JDBC), or of an external
database through DBMS API.

—The type of Web connectivity, which
may be achieved by means of a
plug-in application extending a Web
browser, or by exporting the hyperme-
dia application into a network lan-
guage. Web connectivity may affect
database connectivity, because in the
present version of most tools, Web
export can be done only for applica-
tions not connected to a database.

—The export language may be HTML,
Java, or a mix of both.

Basically, hypermedia tools are au-
thoring assistants; their focus is re-
stricted to the ad hoc implementation of
long-lived applications published once

and for all in CDROMS or information
kiosks. As a consequence, they still have
little provision for a structured develop-
ment lifecycle, and offer limited support
to application modeling, design, testing,
and maintenance.

To aid the implementation of large
applications, some tools separate au-
thoring in-the-large (i.e., the definition
of the overall application structure)
from authoring in-the-small (i.e., the de-
tailed definition of the multimedia con-
tent of individual information nodes)
[GMP95]. This distinction fosters an el-
ementary form of design which helps in
reconfiguring the application structure
and navigation, independent of content.
For example, tools like Quest, Author-
ware, and IconAuthor distinguish be-
tween a “design mode,” where informa-
tion nodes are placed on a flowchart,
and an “edit mode,” where each individ-
ual node can be edited. A parallel can be
established between authoring in-the-
large in hypermedia authoring tools and
the site layout view offered by some
visual HTML editors: in both cases, de-
sign is done at the instance level, without

Figure 6. The film-making authoring metaphor of Macromedia’s Director.

Development of Data-Intensive Web Applications • 237

ACM Computing Surveys, Vol. 31, No. 3, September 1999

the help of a content-independent appli-
cation schema, and navigation is (in part)
automatically generated from the ab-
stract structure of the application.

Reuse is pursued both at the design
level by means of reusable substruc-
tures and application-independent lay-
outs, and at the implementation level
by leveraging libraries of scripts or mul-
timedia components. Recent versions of
most tools also offer interoperability
with third-party components (for exam-
ple, inclusion of Java applets and Ac-
tiveX components).

Regarding the development abstrac-
tions, hypermedia tools have a strong
plus in the built-in facilities for explic-
itly modeling navigation paths orthogo-
nal to application structure; for exam-
ple, guided tours can be defined as
sequential navigations based on asso-
ciative properties of objects that may
cut across the hierarchical structure of
the application. Other navigational aids
include application-wide search func-
tions, glossaries, and access indexes.

Like visual HTML editors, hyperme-
dia authoring tools

—do not provide a schema for distin-
guishing the type of objects constitut-
ing the application (beside the low-
level distinction between objects of
different media types). The main de-
velopment abstractions are generic
container objects (pages, icons,
stages) whose definition intermixes
structural, presentation, and behav-
ioral aspects (and navigational fea-
tures in those tools that do not sup-
port the seperate specification of
navigation);

—offer presentation abstractions in the
form of page styles, i.e., sets of
graphic resources applied uniformly
to the entire application or to part of
it.

The architecture of Hypermedia tools
shows a substantial immaturity, with
respect to competitor solutions; all tools
were originally conceived for offline,
file-based publication, and later up-

graded to external database connectiv-
ity and Web export. Most products offer
database connectivity via external li-
braries using ODBC, but lose this fea-
ture after Web export. Moreover, trans-
lation from native proprietary format
into a network language is still rudi-
mentary, and the most advanced fea-
tures (like those obtained by exploiting
the tool’s scripting language) do not
carry over to the Web version of an
application.

Conversely, usability is the major
strength of this category of products,
which focus on delivering very sophisti-
cated user interfaces exhibiting a de-
gree of control over graphic accuracy
and multimedia synchronization hardly
available through other means. The in-
herent navigational design paradigm,
coupled to very effective and well-estab-
lished aids like guided tours and user-
defined access indexes, which most tools
offer for free or with little programming
effort, contribute to the deployment of
applications that are very effective and
much closer to the kind of communica-
tion found in high quality, hand-devel-
oped Web sites.

Table II summarizes the Web-related
features of hypermedia authoring tools.

6. WEB-DBPL INTEGRATORS

The common denominator of products in
this category is the dynamic production
of Web pages from information stored in
a database by integrating databases
and Web technology at the language
level.

Different network languages (notably
HTML and Java) are merged with a
database programming language
(DBPL) to obtain an intermediate appli-
cation programming language capable
of making the best of both Web and
database technology. Web-DBPL inte-
gration is pursued in three distinct
ways:

—HTML extensions add new tags to
HTML to embed both generalized pro-
gramming constructs and database-
specific capabilities. The developer

238 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

writes page templates, which inter-
mix declarative HTML tags and exe-
cutable code. Products in this cate-
gory can be further distinguished
based on the language paradigm used
to extend HTML (imperative, object-
based, object-oriented). Page tem-
plates must be translated into pure
HTML; this task is normally executed
at runtime by an interpreter. The per-
formance of the different products
vary, based on the process in which
the interpreter is executed and on the
way the connection to the database is
managed. Examples of HTML exten-
sions include Allaire Inc.’s Cold Fu-
sion Web Database Construction Kit;
Microsoft’s Active Server Pages (ASP)
and Internet Database Connector
(IDC); Vignette Corporation’s Sto-
ryServer; HAHT Software’s HahtSite;
and Informix AppPages. In general,
HTML extensions have a broader ob-
jective than the mere addition of da-
tabase connectivity, and include prim-
itives for overcoming HTML’s well-
known limitations, like the absence of
control flow instructions, modulariza-
tion mechanisms, and stateful inter-
action.3

—DBPL extensions take the other way
around and add specialized functions
to an existing DBPL or to a general-
purpose programming language with
a database interface, to enable the
output of HTML code as a result of
program execution. Developers write
database applications that construct
HTML output from data retrieved
from the database. This approach re-
quires database programming skills,
but may yield better performance
when DBPL programs are executed
and optimized directly by the DBMS.
Examples of DBPL extensions include
Oracle’s PL/SQL Web Toolkit, Sy-
base’s PowerBuilder Web.PB class li-
brary, and Borland’s Web interface
for the Delphi Client Server Suite.

—Java extensions add database connec-
tivity to Java. The best-known effort
in this direction is the JDBC open
standard, which offers an ODBC-like
architecture for Java applications
that want to interact with a DBMS.
Unlike HTML extensions, connectivity
is added in the form of a library
masking, under a uniform callable in-
terface, the details of interacting with
different proprietary DBMSs and
SQL dialects.

Web-DBPL integrators are tools for the
programmer, who may use them to sim-
plify the task of gluing together Web

3Stateful interaction is the capability of retaining
the application status between two consecutive
client’s requests; this is not supported by HTPP/
1.0.

Table II. Synopsis of Web-Enabled Hypermedia Authoring Tools

Process: Lifecycle Coverage Design (support of authoring-in-the-large)
Implementation

Process: Automation HTML/Java generation from WYSIWYG authoring
Synchronization of multimedia objects
Generation of commands for navigation

Abstractions Implementation-level authoring metaphors: pages, stages,
flowcharts

Reuse Script libraries, application skeletons, plug-in components,
reusable presentation styles

Architecture Monolithic
Two-tiers through Web export
Three-tiered through libraries for database connectivity
Static binding of content to pages

Usability High graphical control through manual authoring
High coherence through use of presentation styles
Customization through user-defined access indexes
No adaptivity, no proactivity

Development of Data-Intensive Web Applications • 239

ACM Computing Surveys, Vol. 31, No. 3, September 1999

pages and database queries by hand,
they are different from visual HTML
editors and hypermedia authoring tools,
which offer small-scale application de-
velopment functions to nonprogram-
mers. Due to their focus on implementa-
tion languages, these products lack
high-level abstractions for describing
applications, and thus do not assist the
developer in identifying the structure,
navigation, and presentation of an ap-
plication, which is directly implemented
by manually writing the necessary
HMTL page templates or DBPL pro-
grams.

Reuse may be achieved either through
the native constructs of the program-
ming language, i.e., packages and mod-
ules, or through ad-hoc modularization
mechanisms such as inclusion between
HTML page templates.

The target architecture is database-
centered and three-tiered; the most so-
phisticated products also permit multi-
ple database tiers and distributed
queries.

Not having any specific support for
presentation and navigation modeling,
these products have no direct impact on
the usability and graphical quality of
the user interface, which must be de-
signed separately.

The major difference between Web-
DBPL integrators and visual HTML ed-
itors and hypermedia authoring tools is
that the former introduce a clear sepa-
ration between the final application
pages and the content repository, the
schema of which acts as an implicit
specification of the application struc-
ture.

This distinction has several conse-
quences on the application-development
process:

—it permits a more effective manipula-
tion of the information base because
changes to content can be made with-
out affecting navigation and presenta-
tion;

—it exposes the different object types
that constitute the application, al-

though these types are not elicited
from the structural, navigational, and
presentation requirements of the ap-
plication, but stem from the design of
the underlying database;

—thanks to explicit object typing, the
uniformity and coherence of the pre-
sentation are facilitated, because all
objects of the same type may be easily
visualized in the same way. As a
counterpart, customization at the in-
stance level must be explicitly pro-
grammed by identifying exceptional
cases and treating them in an ad hoc
manner.

Being database-driven, applications
built with Web-DBPL integrators may
leverage the reactive capabilities of the
underlying DBMS to achieve adaptivity
and proactivity, e.g., database triggers.
For example, an Oracle trigger could
react to user-generated events and pro-
duce HTML pages adapted to the spe-
cific situation.

In spite of the above positive side-
effects, Web-DBPL integrators cannot
be considered development tools in
themselves, but are comparable to tra-
ditional client/server 4GL because they
provide a high-level programming inter-
face masking lower-level architectural
details; as such they are often used to
build more sophisticated products, like
the ones reviewed next.

Table III summarizes the most impor-
tant features of Web-DBPL integrators.

7. WEB FORM EDITORS, REPORT
WRITERS, AND DATABASE
PUBLISHING WIZARDS

This category collects a large number of
products, all having the common char-
acteristic of leveraging traditional data-
base design concepts and development
tools, to rapidly deploy both new and
legacy data-intensive applications on
the Web. A first classification can be
obtained by considering the functions
offered by the tools, ordered by complex-
ity and sophistication:

240 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

—Database export: support is limited to
the publication of basic database ele-
ments, i.e., tables and views, and is
achieved by automatically mapping
database content into a network lan-
guage, notably HTML. The export can
be either static or dynamic, the latter
case requiring on-the-fly HTML gen-
eration, which is normally imple-
mented by means of a Web-DBPL in-
tegrator. A certain level of
personalization can be obtained by
applying sets of preferences to drive
the output of Web pages. A typical
example is the export of tables and
queries in Microsoft’s Access97.

—Report writing: more complex read-
only applications can be obtained by
defining custom reports, which can be
exported to the Web either statically
or dynamically. Dynamic publication
requires a report interpreter working
side by side with the Web server. Ex-
amples include Crystal Report Print
Engine, Oracle’s Reports for the Web,
and Microsoft’s Access97 report ex-
port facility.

—Form-based application development:
assistance extends to the construction
of interactive, form-based applica-
tions for accessing and updating data,
and more generally for implementing
business functions.

Form-based application development
is where the highest number of products

concentrate, and developers are faced
by an impressive spectrum of alterna-
tives. Among the reviewed products, we
cite Microsoft’s Visual InterDev, Visual
Basic 5, and Access97, Oracle Developer
2000, Inprise IntraBuilder, Sybase’s
PowerBuilder, Apple’s WebObjects, Net-
Dynamic’s Visual Studio, Asymetrix Su-
perCede Database Edition, and Allaire’s
Cold Fusion Application Wizards. The
most relevant dimensions characteriz-
ing the different products are as follows:

—The application delivery format can
be pure HTML, a combination of
HTML and Java, HTML plus propri-
etary component technology and
scripting languages (e.g., client-side
ActiveX objects, VBScript or Java-
Script tags), or a totally proprietary
format (e.g., ActiveX documents, Sy-
base’s PowerBuilder PBD files). The
delivery format affects the client’s
performance and the application’s
portability, with minimal overhead
and maximum portability in the pure
HTML case, and maximum overhead
and minimal portability when the ap-
plication is deployed in a totally pro-
prietary format interpreted by a
browser’s plug-in application.

—The application development langua-
ge(s), which may be different from the
delivery language(s), to preserve
existing software investments and
programming skills and/or increase

Table III. Synopsis of Web-DBPL Integrators

Process: Lifecycle Coverage Structural design (design of underlying database)
Implementation
Content maintenance

Process: Automation Web-database communication
Query shipment and result processing
Page formatting from query results

Abstractions Design-level: database structures (tables, classes)
Implementation-level: pages, interface objects

Reuse Reusable modules: page templates, procedures, classes
Architecture Three/multitier

Dynamic binding of content to pages
Usability No specific support for control of graphical quality

Coherence facilitated by page templates (HTML extensions)
Low customization, adaptivity and proactivity manually
implementable through database triggers

Development of Data-Intensive Web Applications • 241

ACM Computing Surveys, Vol. 31, No. 3, September 1999

performance and portability. Overall,
the spectrum of bindings between de-
velopment and delivery languages is
extremely varied, ranging from prod-
ucts offering a single development
language and multiple output formats
(e.g., Oracle’s Developer 2000 maps
PL/SQL to HTML, Java, and Visual
Basic) to products translating differ-
ent input languages into the same
output format (e.g., Microsoft’s Visual
InterDev maps design-time ActiveX
controls scripted in VBScript or
JavaScript into pure HTML).

—The implementation paradigm, which
can be 3GL programming, Rapid Ap-
plication Development (RAD), wizard-
based, or a mix thereof. Almost all
tools offer RAD functionalities, letting
programmers define an application by
dragging and dropping components
onto a form, and by visually customiz-
ing their properties. Behavior cus-
tomization, as necessary for the defi-
nition of complex forms, can be added
by writing code in the tool’s develop-
ment language. A few products (e.g.,
Visual InterDev, IntraBuilder, Net-
Dynamics, Cold Fusion) also include a
simplified development path for non-
programmers, based on “wizards” en-
abling the automatic generation of
code from sets of preferences selected
through a visual interface (Figure 7).
Wizards are applied to obtain both
components and complete applica-
tions; in the latter case they deliver
“canned” database applications, in
which the data structure and the in-
terface logic are predefined (e.g., mas-
ter-detail data entry and visualiza-
tion, drill-down reports, and so on).

—The execution architecture: the way
in which an application can be parti-
tioned among the different tiers of the
Web architecture is even more varied
than the choice of development and
delivery languages, because object
distribution (as supported by lan-
guages like Java and architectures
like Corba and DCOM) permits the

same functionality, e.g., a database
driver, to be located either in the cli-
ent or in the application server.

From a software engineering point of
view, products in this class are to Web
development what Integrated Develop-
ment Environments (IDEs) and Rapid
Application Development tools were to
traditional application programming:
instruments for boosting individual and
team productivity in the implementa-
tion phase. The best tools also help pro-
cess management, testing, and mainte-
nance by leveraging standard software
engineering techniques like source and
version control, configuration manage-
ment, and visual debugging.

With one exception, reviewed later,
form-based application generators do
not provide upper-CASE capabilities:
they do not encompass conceptual mod-
eling, nor support the model-driven de-
sign and implementation of applica-
tions. Typically, data structures,
business logic, and interfaces are speci-
fied and designed separately and then
implemented with the tool of choice.

Component-based reuse is also intrin-
sic to most products, which leverage the
various object-level interoperability
standards emerging on the Web. Com-
ponents can be either client-side, in
which case they encapsulate typical in-
terface controls (e.g., menus, edit fields,
grids, etc.) or server-side, in which case
they typically wrap database access and
data formatting primitives.

The development abstractions are in-
terface-oriented, and drawn from the
traditional client/server, database-cen-
tric world: query and data entry forms,
input/output controls, record lists, and
reports. The structure of the application
is dictated by the forms that compose it,
and is generally isomorphic to (a subset
of) the database schema, especially
when forms are automatically derived
from database tables and views through
database wizards. More complex patterns
can be obtained by exploiting canonical
structures like table lookups and master-
details, or by hand-programming non-

242 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

standard combinations of objects. The
navigation semantics is deeply embedded
within the application, and hyperlinks
are emulated by means of form-to-form
connections. In some cases, navigation is
automatically inferred by the tool from
database structure, as in automatically
generated master-details and drill-down
applications, where database foreign key
constraints are translated into HTML hy-
perlinks. Presentation is addressed as an
independent issue only in those products
that provide a notion of “presentation
style” (e.g., models in Access97, themes in
InterDev, master pages in IntraBuilder)
which can be uniformly applied to all
application pages to obtain a consistent
look.

On the architectural side, all products
target multitier architectures; the most
recent generation (e.g., NetDynamics
Visual Studio) is tightly integrated with
specialized middleware products, called

application servers, which we review in
Section 10.

Unlike Web-DBPL integrators, which
are neutral products that can be used to
shape any kind of application, form-
based generators and database publish-
ing wizards deliver complete software
solutions, including user interface logic.
Thus their underlying interaction model
influences the user perception of appli-
cation quality. The evaluation must con-
sider the application context in which a
tool is used, and consequently the kind
of users addressed. In an intrabusiness,
or business-to-business contexts, these
products are essentially vehicles for
Web-enabling traditional client-server
applications. In this setting, interface
quality is proportional to the similarity
between the look and feel of original
client-server applications and their Web
counterparts, because the peculiarities
of Web interactions (free browsing,

Figure 7. Datarange wizard in Microsoft’s Visual Interdev.

Development of Data-Intensive Web Applications • 243

ACM Computing Surveys, Vol. 31, No. 3, September 1999

associative links, multimediality and
user-level customization) are less im-
portant than adherence to interface
standards well-established among us-
ers. Conversely, if these products are
targeted to user-oriented applications
for the Internet, they must be compared
to Web and hypermedia authoring tools,
in which case their form-to-form naviga-
tion pattern and the limited graphic
control imposed by wizards are a source
of rigidity.

Table IV overviews the main features
of Web form editors, report writers, and
database publishing wizards.

8. MULTIPARADIGM TOOLS

The ongoing trend in the evolution of
Web development tools is an increasing
convergence between visual editing and
site management products, Web-HTML
integrators, and client-server products
(reviewed in Sections 4, 6, and 7, re-
spectively).

Multiparadigm tools integrate solu-
tions from the aforementioned catego-
ries into a unified development frame-
work. The most typical configuration is
one in which visual HTML editing and
site administration are extended with
external components, which provide da-
tabase connectivity, or with enhanced
HTML generation capabilities able to
produce scripts for pulling content from
databases, or with full-fledged database
publication wizards.

Examples of such convergent tools are
FrontPage98, which includes database
objects for connecting to external data
sources; Elemental’s Drumbeat, which

combines sophisticated visual editing
and assets management with database
wizards comparable to those of special-
ized Web-database connectivity prod-
ucts; Lotus Domino and Domino De-
signer, which offer an integrated
environment for Web-enabling Notes
client-server applications and for devel-
oping Web sites that take advantage of
Domino Server capabilities; and NetOb-
ject’s Fusion (version 3.0), which fea-
tures the Fusion2Fusion extension for
connecting NetObject’s visual page edi-
tor and Allaire’s HTML-SQL integrator.

Multiparadigm tools do not introduce
novel approaches into Web develop-
ment, but combine already established
features to broaden their spectrum with
respect to single-paradigm products.
Thus they offer advantages (summa-
rized in Table V) that are the sum of the
strengths of their components (imple-
mentation productivity, top-down de-
sign, three-tier architecture, high
graphic control), but do not overcome
the major limitations of the products
reviewed so far, i.e., lack of a high-level,
content-independent representation of
the site in terms of structure, naviga-
tion, and presentation.

9. MODEL-DRIVEN WEB GENERATORS

Model-driven Web generators are at the
top of the proposed categories, because
they provide the highest level of auto-
mation and lifecycle coverage, by apply-
ing conceptual modeling and code gen-
eration techniques to the development
of Web applications.

Table IV. Synopsis of Web Form Editors, Report Writers, and Database Publishing Wizards

Process: Lifecycle Coverage Implementation
Testing
Maintenance

Process: Automation Source code generation from RAD and wizard tools
Abstractions Implementation-level: forms, reports, controls
Reuse Plug-in components: client-side and server-side
Architecture Multitier, integration with application servers

Dynamic binding of content to pages
Usability Canned interfaces based on query/result display loop

Low customization, no adaptivity, no proactivity

244 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

This category comprises a few com-
mercial tools, which exhibit different
conceptual models and code generation
techniques. We review Hyperwave
Server 4.0, and Oracle’s Web Develop-
ment Suite.

Hyperwave [Hyperwave Information
Management 1998] is an advanced doc-
ument management environment which
permits remote users to browse, anno-
tate, and maintain documents distrib-
uted over the Web. Hyperwave has a
very basic, yet powerful, high-level
model of a Web application, which is
thought of as a set of document collec-
tions organized hierarchically. Collec-
tions may contain subcollections and
documents, and have different behav-
iors based upon their type. Documents
in a collection can be linked and anno-
tated with a number of metadata. Links
are managed by the Hyperwave server,
so that any hypertextual structure can
be superimposed over a set of otherwise
independent documents.

From the description of collections,
links, and metadata, Hyperwave gener-
ates a Web interface that enables both
user-oriented and administrative func-
tions like collection and link browsing,
searching and notification, remote docu-
ment management, fine-grain version
and access control, collaborative work,
and personal annotations. The gener-
ated interface has a default presenta-
tion, which can be personalized using a
proprietary template language.

Although document-oriented, the Hy-
perware server relies on database tech-
nology and on a multitier architecture
to store metadata and manage links
spanning multiple servers.

A more database-centric approach is
taken by the Oracle Web Development
Suite, which comprises Designer 2000
[Gwyer 1996; Barnes and Gwyer 1996],
a CASE tool for generating Web applica-
tions from augmented entity-relation-
ship diagrams.

Designer 2000 is an environment for
business process and application model-
ing, integrated with software generators
originally designed to target traditional
client-server environments, namely Or-
acle Developer 2000 [Hoven 1997], and
Visual Basic. The Web generator en-
ables previous applications developed
with Designer 2000 and deployed on
LANs to be ported to the Web, as well as
the delivery of novel applications di-
rectly on the Internet or on intranets.
The Web generator takes its inputs
from the Designer 2000 design reposi-
tory and delivers PL/SQL code that runs
within the Oracle Web Server to pro-
duce the desired HTML pages of the
application. More specifically, three in-
puts drive the generation process:

—A Web-enhanced database design: da-
tabase design diagrams specify the
structure of the database in terms of
tables, views, foreign key relation-
ships, and integrity constraints.

Table V. Synopsis of Multiparadigm Tools

Process: Lifecycle Coverage Design (limited to hierarchical layout definitions)
Implementation and maintenance

Process: Automation HTML generation from WYSIWYG page editing
Generation of commands for hierarchy navigation
Web-database communication
Source code generation from RAD and wizard tools

Abstractions Implementation-level: pages, links, presentation styles,
interface objects, tables, queries

Reuse Plug-in components, reusable presentation styles
Architecture Three and multitier

Static and dynamic binding of content to pages
Usability High graphical control through manual authoring

Coherence through use of templates and presentation styles
Low customization, adaptivity and proactivity manually
implementable through database triggers

Development of Data-Intensive Web Applications • 245

ACM Computing Surveys, Vol. 31, No. 3, September 1999

These constitute the schema of the
future Web application. A few visual
features can be specified in the sche-
ma: for example, column definitions
can be supplemented with caption
text and display format (e.g., a pop-up
list). Moreover, some integrity con-
straints (e.g., valid ranges) can be at-
tached to columns and tables, and the
Web generator can be instructed to
produce code for checking them on the
server via PL/SQL or on the client via
JavaScript.

—The definition of applications and
modules: modules correspond to basic
application units; each module con-
sists of a sequence of tables, linked by
foreign key relationships (Figure 8).
The order of tables in a module deter-
mines the sequence of HTML pages
that will be produced for that module.
Navigation is established by drawing
links between modules: the designer
may define which modules can be

reached by a given module and intro-
duce fictitious modules acting as hier-
archical indexes over other modules.

—User preferences are parameters that
can be set to govern the presentation
of the generated application; they can
be defined either globally, at the mod-
ule, or at the component level. Exam-
ples of preferences are colors, headers
and footers, background images, and
help text.

From these inputs, the WEB genera-
tor produces fixed-format Web pages;
one set of related pages is generated for
each module, and links between differ-
ent modules are turned into hyperlinks
between the HTML startup pages of
modules.

Model-driven generators apply the
fundamental principles of software en-
gineering to Web development; apart
from all other product categories, applica-
tions are first modeled at the conceptual

Figure 8. Module definition in Oracle Designer 2000.

246 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

level and then implemented through
code generation. This approach and its
benefits are comparable to the ones de-
livered by CASE tools for object-ori-
ented application development, and
range from reduced development effort,
reverse engineering, and multilevel re-
use.

However, Hyperwave and Designer
2000 diverge in the underlying concep-
tual model, and both exhibit limits in
the description of Web applications.

Hyperwave adopts a simplified hyper-
media model, which is well suited to
represent navigation, but lacks a proper
structural model; as a consequence, the
information base is reduced to a set of
flat documents annotated with meta-
data.

Conversely, Designer 2000 draws the
development abstractions from the da-
tabase world, and adapts such concepts
as entities and relationships to Web
modeling by adding to them some navi-
gation and presentation flavor. This at-

tempt to twist a database conceptual
model and apply it to a Web application is
responsible for some limitations in the
usability of the resulting applications,
where the absence of proper modeling
abstractions for navigation and presenta-
tion limits the exploitation of the commu-
nication capabilities of the Web.

The limitations of commercial Web gen-
erators are addressed by a few research
prototypes, namely Araneus [Atzeni et al.
1997]; Autoweb [Fraternali and Paolini
1998]; Strudel [Fernandez et al. 1998];
WebArchitect [Takahashi and Liang
1997]; W3I3 [Ceri et al. 1998]; HSDL
[Kesseler 1995]; RMC [Diaz et al. 1995];
and OOHDM [Schwabe and Rossi 1995],
which are discussed in Section 12.

10. MIDDLEWARE, SEARCH ENGINES,
AND GROUPWARE

Besides support for conceptualization,
design, and implementation, Web devel-
opment requires tackling other issues

Table VI. Synopsis of Model-Driven Generators (Oracle Designer 2000 and Hyperwave)

Designer 2000 Hyperwave

Process: Lifecycle Coverage Conceptualization (E/R) Conceptualization (collection
and link definition)

Design (relational model)
Implementation Implementation
Reverse engineering

Process: Automation Relational schema generation
from ER

Relational metaschema
generation

Generation of HTML from
design models and
presentation preferences

Navigation generation

Presentation generation
Abstractions Conceptual-level: entity,

relationships, attributes
Conceptual-level: collections,
views, abstract links,
documents, virtual collections

Design-level: modules, tables,
columns, constraints
Implementation-level: pages,
links

Implementation-level: pages,
HTML links

Reuse Module reuse; Preferences
reuse

Multiple views over the same
document base

Architecture Multitier, dynamic binding Multitier, dynamic binding
Usability Low graphical control of

generated pages
Low graphical control of
generated pages

High coherence through use of
presentation preferences

High coherence through use of
presentation preferences

Low customization, no
adaptivity, no proactivity

Programmable customization,
no adaptivity, proactivity
through notification

Development of Data-Intensive Web Applications • 247

ACM Computing Surveys, Vol. 31, No. 3, September 1999

which, although outside the focus of this
paper, are critical for the delivery of
effective applications in performance,
availability, scalability, security, infor-
mation retrieval, and support for collab-
orative administration and usage.

These needs are served by ad hoc
tools or by specialized functions inte-
grated into Web design products. In the
sequel, we briefly review the most im-
portant features of three categories of
products: application servers, search en-
gines, and groupware and collaborative
design tools.

10.1 Middleware

Industrial strength data-intensive ap-
plications require not only proper de-
sign tools but also a solid architecture,
good performance, availability, scalabil-
ity, and security. These goals have
prompted the extension of the original
two-tier HTPP architecture to more so-
phisticated configurations, encompass-
ing three, and even multiple, tiers. The
key to multitiered applications is the
capability to separate data, interfaces,
and application logic, and to distribute
each aspect to distinct network nodes.
Such distribution leverages Internet-en-
abled application protocols (like Corba
Internet InterOrb Protocol (Corba IIOP
[Object Management Group 1996]) and
Microsoft’s Distributed Common Object
Model, DCOM [Microsoft Corp. 1996])
and the native remote procedure call
capabilities of network languages (nota-
bly, Java’s Remote Method Invocation,
RMI [Sun Microsystems 1995]).

The in-depth presentation of the al-
ternative architectural and technologi-
cal options for multitiered applications
is outside the scope of this paper, and is
thoroughly addresses by many authors
(see, for example, the special issue of
IEEE Internet Computing on Internet
Architectures [Benda 1998] for a recent
review of the state of the art, and Byte’s
special report on networked components
[Montgomery et al. 1997] for a compari-
son of Corba and Microsoft architec-
tures).

However, in the tool market, several
vendors are also addressing multitiered
architectures by offering specific prod-
ucts, called application servers, which
are middleware facilities either inte-
grated into HTTP servers, or working
side by side to them. Examples of appli-
cation servers are NetDynamics, Lotus
Domino Server, Oracle 8i Java Server,
Sybase’s Jaguar CTS, and Inprise’s
VisiBroker for Java.

Application servers do not directly im-
pact the client-side design process, but
offer several extensions to the standard
functions of HTTP engines, which can
be used to support server-side develop-
ment:

—Efficient execution of server-side pro-
grams that implement the business
logic of the Web application. Products
differ in the development languages
supported, which commonly include
C11, Java, and scripting languages
like Perl, Visual Basic, and JavaS-
cript. Efficiency is improved by re-
placing the Common Gateway Inter-
face (CGI) between the Web server
and the application programs by
means of optimized protocols and ar-
chitectures like FastCGI (http://www.
fastcgi.com) and Java Servlets [Chang
1998].

—High-performance client-server com-
munication. Such capability may be
based on a comprehensive architec-
ture for application distribution, on
programming language features, or
on proprietary remote procedure calls.
Rather than using HTTP, enabled cli-
ents may bypass the Web server and
directly connect to the application
server using either open protocols like
Corba/IIOP and Java RMI, or propri-
etary protocols, like Microsoft’s
DCOM, Domino’s Notes Remote Pro-
cedure Calls (NRPC), and Sybase’s
Jaguar CTS remote procedure calls.

—Optimized and extensible connection
to multiple external data sources.
This function includes pooling connec-
tions to a database across multiple

248 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

clients, caching result sets, and possi-
bly extending the application server
with plug-in gateways to heteroge-
neous data sources like Enterprise
Resource Planning (ERP) and legacy
systems (examples of built-in gateway
components and programmable tool-
kits are NetDynamics 4.0 Platform
Adapter Components (PACs) and
Domino Enterprise Connection Ser-
vices (DECS)).

—Flexible and dynamic load-balancing
of client requests by means of auto-
matic replication of server functions.
High-volume incoming traffic may be
dynamically routed to multiple in-
stances of server-side functions, im-
plemented either as separate threads
of the application server or as exter-
nal processes, possibly residing on re-
mote hosts. Dynamic redirection also
enables transparent failure-handling:
a user’s request for an unavailable
service can be routed to a replica of
the same function, either dynamically
spawned or statically instantiated at
system configuration time.

—Implementation of a secure infra-
structure for both data and messages.
Security may be granted by a variety
of means: user logging and authenti-
cation over both HTPP and non-HTTP
connections (e.g., by supporting the
X.509 open standard certificate for-
mat, or authentication via third-party
directories), message and content en-
cryption (e.g., by supporting the IETF
Secure MIME standard and RSA/RC2
cryptography), and password quality
testing.

—Transactionality, i.e., the capability of
performing atomic and recoverable
transactions over a single or multiple
tiers. This feature, traditionally of-
fered by distributed database servers
and TP monitors, requires the appli-
cation server to implement write-
ahead logging and two-phase commit
protocols.

10.2 Search Engines

The proper design of structure and nav-
igation normally results in Web sites
with a self-evident organization, conse-
quently reducing the need for full-text
searches over the information base
[Halasz 1988]. However, Web applica-
tions offered to the general public must
also consider the needs of casual read-
ers and readers with highly specific in-
terests, for which a content search is
the most effective interaction paradigm.

Designing the search functions for a
data-intensive Web site is an orthogonal
issue with respect to the design of struc-
ture, navigation, and presentation, and
is supported either by ad hoc functions
integrated into Web development tools,
or by specialized products called search
engines.

Examples of Web development tools
that bundle integrated search functions
are Hyperwave (which also comes with
a separate commercial search engine),
and Lotus Domino Designer. Among the
numerous stand-alone search engines,
we mention Verity Search97, Harvest,
OpenText’s LiveLink Search and Spi-
der, Altavista Search, QuarterDeck’s
WebCompass, and Excite for Web Serv-
ers.

Search engines basically consist of
two main components: a user interface
and query processor, whereby users can
pose queries and obtain a ranked list of
pages whose content satisfies the query;
and an indexing component (also called
spider or crawler) which creates and
maintains indexes over the data
sources.

The available commercial products
differ in a variety of dimensions: the
kind of queries they support (keyword-
based, Boolean, natural language,
fuzzy); the customizability of the dis-
play of results; the flexibility of the in-
dex creation and maintenance process
(e.g., the possibility of scheduling the
updates of indexes differently for differ-
ent data sources or to analyze different
file formats); and the adherence to the
so-called robot-exclusion standard, by

Development of Data-Intensive Web Applications • 249

ACM Computing Surveys, Vol. 31, No. 3, September 1999

which webmasters can deny access to
crawlers at their sites.

For a broad review of commercial
search engines and a comparison of
their features, the reader may refer to
Lange [1997].

10.3 Groupware

Collaboration requirements affect Web
development in several ways, going
from the concurrent construction of a
Web site by geographically distributed
development teams, to the provision of
limited content editing and interaction
functions directly to end-users, to real-
time interaction integrated into a Web
site.

In the commercial market several
tools offer groupware capabilities, in-
cluding

—concurrent access control via content
locking and checkin/checkout proce-
dures;

—distributed file systems for concur-
rent content upload;

—offline collaboration tools like calen-
dars, schedules, notification lists, and
discussion groups;

—real-time collaboration facilities like
virtual rooms, white boards, chats,
and video conferencing.

—full-fledged workflow support, includ-
ing offline and online collaboration
facilities and workflow modeling and
implementation.

Examples of design tools supporting
collaborative development are Hyper-
wave, TeamSite, and Lotus Domino De-
signer. Products for the definition of
virtual workteams are reviewed in
Wong [1998], and a comprehensive sur-
vey of Web-enabled workflow systems is
contained in Miller et al. [1997].

11. EVALUATION

Table VII summarizes the features of
the categories of Web development tools
described in Sections 4 to 9, in light of

the perspectives of Web development
discussed in Section 2. To complete this
picture, developers must also consider
middleware products, which address the
enhancement of performance and secu-
rity and offer a platform for implement-
ing advanced business logic, search en-
gines, and groupware tools, which add
specialized functions orthogonal to the
design process.

The state of the practice summarized
in Table VII can be better understood if
compared with the current situations of
mature software technologies, like ob-
ject-oriented systems and databases
(see Figure 9).

In these contexts, development tools
cover the entire spectrum of the applica-
tion lifecycle, and approach develop-
ment from the right angle: they exploit
well-established abstractions suited to
the specific context (as the conceptual
and logical models for database design
and the object-oriented notation for OO
systems) and follow well-proven devel-
opment guidelines, like those described
in Ceri et al. [1993] for database design,
and in Rumbaugh et al. [1991] for ob-
ject-oriented design. Pictorially, mature
tools and approaches are represented as
“light cones” that enlighten the various
phases of the development cycle without
crossing the borders of their target ap-
plication field.

The situation of Web development is
different and typical of a not yet mature
technology (it could be easily compared
to the OO tool market in the eighties):
most products limit their focus to imple-
mentation, with some provision for de-
sign (as represented by the shorter
“light cone” in Figure 9); a few tools are
trying to cover the lifecycle in a broader
way, but do so by approaching develop-
ment from an unnatural angle, typically
using models, abstractions, and pro-
cesses drawn from other contexts. The
“slanted” approach of these tools and
approaches are represented by the light
cone covering all phases of development,

250 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

but with an inclination due to its origin
from the database area.4

12. RESEARCH PERSPECTIVES

Web application development has re-
cently gained much attention not only
in the commercial field but also in the
research community, where several
projects address the extension of the
capabilities of site design tools in vari-
ous directions, and propose innovative
design processes and methodologies.

In this Section we briefly review a
number of projects that have proposed

solutions for overcoming some of the
limitations currently experienced by
state-of-the-practice commercial tools:
Araneus [Atzeni et al. 1997; Atzeni et
al. 1998 ; Atzeni et al. 1998]; Autoweb
[Fraternali and Paolini 1998]; Strudel
[Fernandez et al. 1998]; Web Architect
[Takahashi and Liang 1997]; and W3I3
[Ceri et al. 1998].

The common denominator in such ef-
forts is the goal of supporting the activ-
ities of data-intensive Web design from
conceptualization to maintenance by
properly distinguishing between the dif-
ferent dimensions of Web design, orga-
nizing the development activities into a
structured process, and providing tools
for partially automating repetitive de-
velopment tasks.

However, besides such commonalities,

4A similar phenomenon took place in the early
days of object-orientation, when many proposals
were put forth to adapt structured analysis/struc-
tured design concepts to object-oriented imple-
mentation.

Table VII. Synopsis of the Different Categories of Web Development Tools

Visual
Editors

Hypermedia
Tools

Web-DBPL
Integrators Form Editors

Multi-
paradigm

Tools

Model-driven
Generators

Lifecycle
coverage

Implement.,
hierarchical
site design,
link
maintenance

Implement.,
design
(authoring
in-the-
large)

Implement. Implement.,
maintenance
(debugging)

Implement.,
hierarchical
site design,
link
maintenance,
debugging

Conceptual.
design,
implement.,
maintenance,
reverse
eng.

Automation Generation
of HTML

Generation
of HTML/
Java

Database
connection,
query
shipment,
result
formatting

Generation
of HTML/
Java

Generation
of HTML,
database
connection

Generation
of design
schemas,
navigation
commands,
interfaces

Abstractions Page, link,
presentation
style

Authoring
metaphors

Table, page
elements

Form,
report,
client-side
and server-
side control

Page, link,
presentation
style, form,
table

Entity,
relationship,
module,
table,
column,
collection,
link

Reuse Components,
presentation
styles

Libraries,
skeletons,
components,
styles

Page
templates,
DBPL
units

Client-side
and server-
side
components

Components,
presentation
styles,
templates

Modules,
preferences,
collections,
links

Default
architecture

2-tiers,
static

2-tiers,
static

3-tiers,
dynamic

3-tiers,
dynamic

3-tiers,
dynamic

3-tiers,
dynamic

Support to
usability

Good
graphic
control and
coherence
(manual)

Very good
graphic,
navigation,
synchroniza-
tion control
(manual)

Interface
neutral,
proactivity
through
triggers

Canned
interfaces

Good
graphic
control and
coherence
(manual
and with
templates)

Predefined
interfaces,
low graphic
control

Development of Data-Intensive Web Applications • 251

ACM Computing Surveys, Vol. 31, No. 3, September 1999

each project has its own special focus,
and addresses only some of the issues
left open among the currently available
commercial tools.

In Table VIII we summarize the fea-
tures of the various projects using the
same categories as commercial tools
(see Table VII), and in Table IX we
underline the special focus and strong
points of each project.

For completeness, we conclude with
background research on Web develop-
ment, which has taken advantage of
contributions from several fields, in
which hypermedia and databases are
prominent.

13. RESEARCH PROJECTS IN DATA-
INTENSIVE WEB DEVELOPMENT

13.1 Araneus

Araneus5 [Atzeni et al. 1997 ; Atzeni et
al. 1998 ; Atzeni et al. 1998] is a project
at Univ. di Roma Tre, which focuses on
the definition and prototype implemen-
tation of an environment for managing
unstructured and structured Web con-
tent in an integrated way (called a Web
Base Management System, WBMS).
The WBMS should allow designers to

effectively deploy large Web sites, inte-
grate structured and semistructured
data, reorganize legacy Web sites, and
Web-enable existing database applica-
tions.

On the modeling side, Araneus
stresses the distinction among data
structure, navigation, and presentation.
In structure modeling, a further distinc-
tion is made between database and hy-
pertext structure: the former is speci-
fied using the entity-relationship model,
the latter using a notation that inte-
grates structure and navigation specifi-
cation called the Navigation Conceptual
Model (NCM).

Conceptual modeling is followed by
logical design, using the relational
model for the structural part, and the
Araneus Data Model (ADM) for naviga-
tion and page composition. ADM offers
the notion of page scheme, a language-
independent page description notation
based on such elements as attributes,
lists, link anchors, and forms. The use
of ADM introduces page composition as
an independent modeling task: the spec-
ification of data and page structure is
orthogonal, and therefore different page
schemes can be built for the same data.

Presentation is specified orthogonally
to data definition and page composition,
using an HTML template approach.

5The project Web site is http://www.dia.uniroma3.it/
Araneus.

Figure 9. A pictorial view of the state-of-the-practice of Web development tools.

252 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

The development process follows two
tracks: database and hypertext. Data-
base design and implementation are
conducted in the usual way using the
entity-relationship model and mapping
it into relational structures. After that,
the entity-relationship schema is trans-
formed into a NCM schema; this shift
requires several design activities. The
next step, hypertext logical design,
maps the NCM schema into several
page schemes written in ADM. Finally,
implementation requires writing page
schemes as templates in the Penelope
language [Atzeni et al. 1997], which
specifies how physical pages are con-
structed from logical page schemes and

content stored in a database, in a way
similar to commercial template-based
HTML-SQL integrators.

Araneus includes several tools to sup-
port automation of the aforementioned
design tasks. A specific point in the
Araneus project is the integration into
the WBMS of languages and tools for
querying and restructuring HTML data,
so that the designer can deploy a new
site, Web-enable a database application,
and “reverse-engineer” a legacy HTML
site, all within one system.

From an architectural viewpoint, Ara-
neus offers both static and dynamic
page generation.

The system does not currently support

Table VIII. Synopsis of Reviewed Research Projects in Data-Intensive Web Development

Araneus Autoweb Strudel Web
Architect W3I3

Lifecycle Coverage
Conceptualization Y Y N Y Y
Logical design Y Y Y N Y
Prototyping N Y N N Y
Implementation Y Y Y Y Y
Maintenance Y Y Y Y Y
Restructuring Y N Y N N
Rev. engineering Y Y Y N Y

Process Automation
Generation of supporting database N Y N N Y
Generation of mapping to legacy
databases

Y N N N Y

Generation of navigation structures Y Y N Y Y
Generation of HTML pages from
templates

Y N Y N N

Generation of HTML pages from
abstract specs

N Y N N Y

Modelling Abstractions
Structure model Y Y Y Y Y
Derivation model N N Y N Y
Navigation model Y Y N Y Y
Page composition model Y N N N Y
Presentation model Y Y Y N Y

Reuse & Components
Plug-in components N N N N N
Reusable presentation styles N Y N N Y
Application skeletons N Y N N Y

Default Architecture
Two tiers static N N Y Y N
Three tiers static Y Y N N Y
Three tiers dynamic Y Y N N Y
Automatic caching N Y N N Y

Support to Usability
Navigation uniformity N Y N Y Y
Presentation uniformity Y Y Y N Y
Usability guidelines N Y N N Y

Development of Data-Intensive Web Applications • 253

ACM Computing Surveys, Vol. 31, No. 3, September 1999

user profiling and personalization. Fi-
nally, no support is offered for event-
based reactive processing, except for re-
computation of materialized pages
following database and schema updates.

13.2 Autoweb

Autoweb6Fraternali and Paolini [1998]
is a project developed at Politecnico di
Milano with the goal of applying a mod-
el-driven development process to the
construction and maintenance of data-
intensive Web sites.

Autoweb consists of three ingredients:

—A Web modeling notation called
HDM-lite, which evolved from previ-
ous hypermedia and database concep-
tual models, specifically tailored to
the Web.

—Two transformation techniques that
address the mapping of conceptual
schemas into relational database
structures and the production of ap-
plication pages (in HTML and Java)
from data and metadata stored in the
database.

—A set of design-time and runtime
CASE tools that completely automate
the design, implementation, and
maintenance of a Web application.

The Autoweb conceptual model, called
HDM-lite, includes primitives for the
independent specification of structure,
navigation, and presentation. Apart
from other projects, presentation is
specified at an abstract level totally in-
dependent of the implementation lan-
guage, and is automatically mapped to
HTML (a protoype implementation of
the mapping to Java has also been de-
veloped). This makes presentation
styles reusable across applications, as
well as across different object types
within the same site.

HDM-lite presently supports neither
the orthogonal composition of the page,
whose content is inferred from the
structure schema, nor a language for
data derivation. An original feature of
Autoweb is the storage into a relational
DBMS not only of application data, but
also of metadata about navigation and
presentation schemas, which greatly en-
hances the possibility of quickly adapt-
ing the output pages to the user’s needs,
even at runtime.

The main focus of Autoweb is the
6The project Web site is http://www.ing.unico.it/
autoweb.

Table IX. Advanced Features of Reviewed Projects in Data-Intensive Web Development

Araneus Querying and restructuring of HTML-based sites
Full design methodology
Orthogonal structure, navigation, composition and presentation modeling
Tool support

Autoweb Full design methodology
Orthogonal structure, navigation, and presentation modeling
Relational representation of both data and metadata
Full CASE support
Tool-supported usability guidelines

Strudel Querying and restructuring of semistructured data
Declarative site definition

WebArchitect Full design methodology
Scenario-based modeling
Role-based specification of content
Tool support

W3I3 Full design methodology
Orthogonal structure, derivation, navigation, composition and presentation
modeling
User modeling and profiling
Adaptive behavior through Web business rules

254 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

automation of the development process.
An Autoweb application is constructed
starting from an HDM-lite schema, with
a tool called Visual HDM Diagram Edi-
tor; presentation specification is as-
sisted by the Visual Style Sheet Editor
tool, which permits the designer to de-
fine presentation styles applicable to
conceptual objects in a WYSIWYG man-
ner. The conceptual model is automati-
cally translated into the schema of a
relational database for storing applica-
tion data, and into a metaschema data-
base containing a relational representa-
tion of the site’s structure, navigation,
and presentation. The site is populated
by either using an automatically con-
structed data entry application, pro-
duced by the Autoweb Data Entry Gen-
erator, or by manually defining a
mapping between the automatically
generated relational schema and the
schema of the pre-existing database. As
a last step, application pages are dy-
namically constructed from database
content and metadata by the Autoweb
Page Generator in such a way that all
the prescriptions of the conceptual
model are enforced.

During the development process, re-
use happens at two levels: partially in-
stantiated application skeletons and ab-
stract presentation specifications.

Autoweb has a three-tier architecture,
featuring both static and dynamic page
generation. Dynamic generation is opti-
mized by a flexible caching system that
caches and refreshes pages of selected
types based on user’s requests.

A unique feature of Autoweb is the
provision for interface design guidelines
within the design tools: uniformity of
navigation and presentation is enforced
by the design and page generation tools
at the level of both individual object
types and of the entire application.

13.3 Strudel

Strudel7 is a project of AT&T Labs [Fer-
nandez et al. 1998], which aims at ex-

perimenting with novel ways of develop-
ing Web sites based upon declarative
specification of the site’s structure and
content.

Strudel’s core idea is to describe both
the schema and content of a site by
means of a set of queries over a data
model for semistructured information.

Content is represented using the Uni-
form Graph Model, a graph-based data
model capable of describing objects with
partial or missing schema. As a starting
point of the construction of a site, exter-
nal data sources, e.g., HTML files or
relational databases, are translated by
means of wrappers into the Strudel in-
ternal format. In this way it is possible
to either restructure an existing HTML
site or Web-enable a legacy data reposi-
tory.

Then design of a Web site requires
writing one or more queries over the
internal representation of data, using
the Strudel query language (StruQL).
Such queries permit the designer to se-
lect the data to be included in the site,
along with links and collection of objects
for navigation. In this way Strudel sep-
arates description of content from defi-
nition of the structure and the naviga-
tion of the site. Presentation is added as
a separate dimension by means of
HTML templates; these mix HTML pre-
sentation tags and special-purpose tags,
which are bound at HTML generation
time to objects resulting from site defi-
nition queries. The templates determine
rendering of the site definition queries
in HTML.

Specification of navigation is inter-
twined with structure and presentation
because navigable links and index col-
lections are specified together with the
queries that define the site, and also
because the structure of HTML pages
and their links depend on templates
that describe the presentation.

Presently, Strudel has a two-tier
static architecture, in which queries are
evaluated and transformed into HTML
pages in advance. However, it could be
possible to evalute queries and render
their results dynamically.

7The project Web site is http://www.research.att.
com/sw/tools/strudel.

Development of Data-Intensive Web Applications • 255

ACM Computing Surveys, Vol. 31, No. 3, September 1999

The declarative definition of structure
and content by means of queries opens
the way to personalization: different
sites or different versions of the same
site can be built on top of the same
content simply by changing the StruQL
site definition queries.

13.4 Web Architect

WebArchitect [Takahashi and Liang
1997] is a project aimed at developing
methods and tools for the construction
of Web-based information systems
(WBIS). The authors propose a struc-
tured design process that goes through
analysis, design, construction, and
maintenance of a Web site.

Analysis includes both static and dy-
namic modeling. The former is con-
ducted with the entity relationship
model, the latter requires the identifica-
tion of scenarios in the tradition of ob-
ject-oriented modeling [Jacobson 1994].
During ER modeling, entities are classi-
fied according to the different roles they
play in the definition of the site (agent,
product, or event). Design is conducted
in parallel with scenario analysis and
aims at pinning down the structure and
navigation schema of the Web site. De-
sign results are represented using a
variant of the Relation Management
Data Model by Isakowitz Diaz et al.
[1995], which incorporates the roles of
the entities forming the Web site.WBIS
implementation and maintenance are
supported by WebArchitect and Pilot-
Boat. The former tool supports defini-
tion of the structure and navigation of
the site, as well as maintenance of
metadata on the site’s resources; the
latter is a client application permitting
the user to browse an application based
on metalinks, implementing the naviga-
tion semantics specified in WebArchi-
tect. Metalinks are navigable connec-
tions stored outside the application
objects, which are managed by extended
HTTP engines supporting the special-
purpose methods LINK and UNLINK.

13.5 W3I3

W3I3 (WWW Intelligent Information In-
frastructure)8 Ceri et al. [1998] is a
project of the W3I3 Consortium, a part-
nership of four European industries and
one academic institution, funded by the
European Community. W3I3’s goal is to
advance Web modeling and develop-
ment tools for data-intensive Web appli-
cations, with a special focus on user
profiling, personalization, and reactive
behavior.

W3I3 modeling points out the five
perspectives of structure, derivation,
navigation, page composition, and pre-
sentation, and includes models and lan-
guages for specifying a site under these
perspectives (see http://webml.org).

The development process stresses the
automatic generation of application
pages from the conceptual model stored
in a relational database, and content
stored in external structured or semi-
structured data repositories.

The architecture is multitier: applica-
tion content can be distributed across
different data repositories integrated
into a global view of the site obtained by
mapping the conceptual schema into a
relational representation.

A special feature of W3I3 is the inte-
gration of user modeling and business
rules: users are explicitly modeled
through demographic and psycographic
variables, and business rules are used
to map users or user groups to personal
views of the site computed dynamically.

Presently, W3I3 is in the implementa-
tion phase; a prototype version of both
the design tools and the runtime envi-
ronment supporting site personalization
and the Web business rules has been
constructed.

14. BACKGROUND RESEARCH

Web design tools and approaches owe
much to the debate on hypermedia mod-
eling and design, semistructured data
modeling, and hypermedia development

8The project Web site is http://www.txt.iy/w3i3.

256 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

tools proposed prior to the advent of the
Web. In the following sections, we re-
view some of the most important contri-
butions.

14.1 Modeling Notation

Historically, most of the modeling nota-
tion adopted by current Web develop-
ment methodologies stems from the evo-
lution and hybridization of previous
conceptual models for database and hy-
permedia design.

The common ancestors of many subse-
quent proposals are the entity relation-
ship model [Chen 1976], in the database
field, and the Dexter model [Halasz and
Schwarz 1994] in the hypermedia area.

The Dexter model originates from
the effort to provide a uniform terminol-
ogy for representing the different hyper-
text structuring primitives offered by
hypertext construction systems; the
core of the model is the ordered repre-
sentation of a hypertextual application
at three levels: storage, within-compo-
nent, and runtime levels. The storage
level describes the network of nodes and
links of the hypertext, without details
on the inner structure and node con-
tent, which is the focus of the within-
component layer. The runtime level
deals with the dynamics and presenta-
tion of the hypertext.

The modeling concepts available at
the storage level are very basic: compo-
nents describe pieces of information
that constitute the hypertext, and can
be either atomic or composite. Links are
a special kind of component used to
represent navigable paths. Although not
conceived for hypertext design, the Dex-
ter model advocates many concepts,
such as the distinctions among the
structure, navigation, and presentation
of a hypertext, whose influence has
been long-lasting.

Several subsequent contributions
arose from criticism of the Dexter
model, and added more complex forms
of hypertext organization and more
powerful navigation primitives [Gar-
zotto et al. 1993]; time and multimedia

synchronization features [Hardman et
al. 1994]; and formal semantics of navi-
gation and a structured design process
[Isakowitz et al. 1995]. Among these
evolutions, HDM [Garzotto et al. 1993]
and RMM [Isakowitz et al. 1995] have
been particularly influential in the de-
sign of hypermedia applications.

HDM and its variants [Schwabe et al.
1992; Garzotto et al. 1993; Garzotto et
al. 1991; Garzotto et al. 1993] shifted
the focus from hypertext data models as
a means to capture the structuring
primitives of hypertext systems, to hy-
pertext models as a means for capturing
the semantics of a hypermedia applica-
tion domain. HDM integrates features
of the entity relationship model and the
Dexter model, to obtain a notation for
expressing the main abstractions of a
hypermedia application, their internal
structure and navigation, and applica-
tion-wide navigation requirements. Web
structure is expressed by means of enti-
ties, substructured into a tree of compo-
nents. Navigation can be internal to
entities (along part-of links), cross-en-
tity (along generalized links), or non-
contextual (using access indexes, called
collections [Garzotto et al. 1994]).

RMM (Relationship Management
Methodology) [Isakowitz et al. 1995]
evolves HDM by embedding its hyper-
media design concepts into a structured
methodology, splitting the development
process into seven distinct steps and
giving guidelines for the tasks. RMM’s
data model (called RMDM) structures
domain entities into slices, and orga-
nizes navigation within and across enti-
ties using associative relationships and
structural links.

Most of the recent proposals for Web
modeling are built on top of the entity
relationship model and hypermedia de-
sign models (notably HDM and RMM),
adapted to the specificity of the Web
context: Araneus and WebArchitect
draw from RMM and the entity-rela-
tionship model, Autoweb and W3I3 have
proposed a Web-specific evolution of
concepts first proposed by HDM.

Finally, another source of inspiration

Development of Data-Intensive Web Applications • 257

ACM Computing Surveys, Vol. 31, No. 3, September 1999

to Web modeling comes from research
on the representation and querying of
semistructured data, i.e., data with par-
tial or missing schema. The proposed
data models, thoroughly reviewed in
Florescu et al. [1998], express Web con-
tent by means of relations, labeled
graphs, hypertrees, and logic. Araneus
and Strudel are examples of Web con-
tent management systems based on
semistructured data models and query
languages.

14.2 Processes

Web development processes evolved in
parallel with Web design notation, and
have the same hybrid origin from the
information system and hypermedia
fields.

In hypermedia, the evolution from the
creative definition of content to the con-
tent-independent organization of the
structure of a hypermedia application is
attributed to the work on HDM [Gar-
zotto et al. 1993], which stresses the
difference between authoring in the
large, i.e., designing general structure
and navigation, and authoring in the
small, i.e., deciding the layout and syn-
chronization aspects of specific compo-
nent types.

HDM, however, did not prescribe a
formal development lifecycle, which was
first advocated by RMM [Isakowitz et
al. 1995], where the following seven ac-
tivities, i.e., entity relationship design,
slice design, navigation design, conver-
sion protocol design, interface design,
behavior design, and implementation
and testing are proposed. The first three
activities provide a conceptualization of
the hypermedia application domain in
terms of entities, substructured into
slices, and navigable relationships. Con-
version protocol design is a technical
activity that defines the transforma-
tions to be used for mapping the concep-
tual schema into implementation struc-
tures. In addition to defining the
development lifecycle, RMM also gives
guidelines for slice and navigation de-

sign, the two tasks most particular to
hypermedia design.

OOHDM [Schwabe and Rossi 1995]
takes inspiration from object-oriented
modeling and simplifies the RMM life-
cycle to only four steps: domain analy-
sis, navigation design, abstract interface
design, and implementation. In domain
design, classical object-oriented tech-
niques are used, instead of the entity
relationship model. Navigation design
adds specific classes (e.g., node, link,
index) to represent different forms of
navigation. The same is done for pre-
sentation, which is described by means
of classes (e.g., button, text field) added
during interface design. Implementa-
tion then fleshes out the classes identi-
fied during design with code in the im-
plementation language of choice.

In the Web context, most methodolog-
ical proposals concentrate on visual de-
sign and usability criteria [Sano 1996],
much as the hypermedia field authoring
guidelines were the first concern of de-
velopment. The requirement of applica-
tion scale-up drives the most recent con-
tributions, like Araneus, Autoweb, Web
Architect, and W3I3, which organize the
development process into activities
drawn both from the above mentioned
hypermedia methodologies and from
traditional object-oriented and database
design methods.

14.3 Other Design Tools

Besides the projects described in Sec-
tion 13, other research efforts have con-
tributed to the development of proto-
types of hypermedia and Web design
tools.

RMC [Diaz et al. 1995] gives CASE
support to the design and implementa-
tion phases of the RMM methodology. It
consists of a diagram editor, which as-
sists the input of RMDM schemas, and
a code generator, which outputs HTML
pages from data stored in an internal
repository. Pages are produced offline in
a precompiled fashion. RMC is not
based on a database architecture, and
thus does not provide facilities for scal-

258 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

ing-up and updating the information
base.

HSDL [Kesseler 1995] has an archi-
tecture similar to RMC, but starts from
a HDM-like design model, augmented to
support a fine-grain personalization of
navigation and presentation semantics.
HSDL objects are annotated by means
of programs in a scripting language,
called expanders, which drive the pro-
duction of HTML pages. Expanders can
be attached both to schema elements
and to instances, to provide uniformity
and exceptional handling at the same
time. Expander programming, although
powerful, is a low-level task that resem-
bles the programming of page templates
in Web-DBPL integrators. The differ-
ence is that HSDL, like RMC, does not
rely on database technology to store the
application content, but has an internal
repository.

15. CONCLUSIONS

Although the present situation in the
market of Web development tools is
characterized by a substantial overlap
between the different classes of prod-
ucts (despite some difference in the
level of maturity), an attempt can be
made to identify a plausible choice,
based on the application requirements.
Table X summarizes the adequacy of
each product category to a specific kind
of application:

—Small-scale business-to-user applica-
tions: this category includes such ap-
plications as companies’ points of
presence, training and education, in-
focenters, etc. Last-generation visual
editors and site managers (Category

1) seem to be the appropriate solu-
tion, because they ensure the high
level of visual accuracy and customi-
zation necessary for application tar-
geted to the general public, coupled
with productivity tools, substantially
reducing the development effort. This
role could be undermined in the near
future by hypermedia authoring tools
(Category 2), which share the same
focus on presentation quality and are
even more effective in the design of
navigational and multimedia inter-
faces. The current limit to the appli-
cability of both these classes of solu-
tions is the size and volatility of the
information base; if this has to be
kept in a database, then presently
these tools do not provide the ade-
quate means to integrate databases
and the Web for design, implementa-
tion, and maintenance. In this case,
multiparadigm tools (Category 5) may
be a better choice.

—Intrabusiness, or business-to-business
applications: this category comprises
all legacy information systems and
EDI applications, and is characterized
by a different kind of user, already
trained to the transactional and form-
based interaction paradigm. In the
present situation, Web form editors
and database publishing wizard (Cat-
egory 4) and model-driven generators
(Category 6) offer a powerful opportu-
nity for migrating existing applica-
tions to Intranets. This technical ad-
vantage largely balances the limited
exploitation of the communication ca-
pabilities of the Web. However, novel
intra- and interbusiness applications

Table X. A Match Between Categories of Web Development Tools and Types of Applications

Visual
editors

Hypermedia
tools

Web-
DBPL

integrators

Form
editors

Multi-
paradigm

tools

Model-
driven

generators

Small-scale business to
customer

X X X

Business to business X X X X
Large-scale business to
customer

X X

Development of Data-Intensive Web Applications • 259

ACM Computing Surveys, Vol. 31, No. 3, September 1999

are emerging (for example, hypermedia
for technical documentation and com-
puter-based training), which demand
the integration of large masses of data,
hypertextual multimedia interfaces,
and deployment on the Web. The grad-
ual introduction of these applications
may promote the evolution of the inter-
action paradigm for conventional infor-
mation systems as well.

—Large-scale business-to-user applica-
tions: this is the most challenging
area, comprising such applications as
electronic commerce, virtual libraries,
and all sorts of Internet services.
Presently, it seems that no specific
product or class of products is fully
addressing the analysis, design, im-
plementation, and evolution of these
kinds of applications, which require
the same communication paradigm
and interface quality as small-scale
user-oriented applications, and the
same performance and scalability as
client-server database applications.
In this scenario, neutral implementa-
tion-oriented products like Web-
DBPL integrators (Category 3) and
flexible, multiparadigm tools (Catego-
ry 5) seem the most adequate choice,
although development and mainte-
nance with these tools still require a
substantial coding effort. We are con-
vinced that the best of these tools can
be obtained by using them in conjunc-
tion with a model-driven development
approach, based on design notations
and processes like the ones described
in the previous section; after the sup-
porting database has been designed,
visual page designers and Web-DBPL
integrators can be used to generate
the application’s physical pages.

As several research projects demon-
strate, large-scale Web applications
have more dimensions than the mere
structure of the underlying database,
prompting a refocusing of the existing
conceptual models and software devel-
opment processes to achieve the level of
maturity of a consolidated software
field.

APPENDIX

LIST OF URLS OF REVIEWED PRODUCTS
(ALPHABETIC ORDER)

1. Access97, Microsoft, http://www.
microsoft.com/access/
2. Altavista Search, Digital, http://www.
altavista.software.digital.com/search/in-
dex.htm
3. ASP, Microsoft, http://www.microsoft.
com/iis/LearnAboutIIS/ActiveServer/de-
fault.asp
4. Authorware, Macromedia, http://www.
macromedia.com/software/authorware
5. Backstage Designer, Macromedia,
http://www.macromedia.com/software/
backstage
6. Cold Fusion, Allaire Inc., http://www.
allaire.com/products/ColdFusion/31
7. Crystal Report Print Engine, Seagate,
http://www.crystalinc.com/crystalreports
8. Delphi Client/Server Suite, Inprise,
http://www.inprise.com/delphi
9. Data Director 1.0, Informix, http://www.
informix.com/products/tools/datadir
10. Designer 2000, Oracle, http://www.
oracle.com/products/tools/des2k/collateral/
wwwgen.pdf
11. Developer 2000, Oracle, http://www.
oracle.com/products/tools/dev2k/index.html
12. Director, Macromedia, http://www.
macromedia.com/director
13. Domino Designer R5, Lotus, http://
www.lotus.com/home.nsf/tabs/r5preview4
14. Drumbeat 2.0, Elemental Software,
http://www.drumbeat.com
15. Excite for Web Servers, Excite, http://
www.excite.com/navigate/home.html
16. Formula Graphics97, Formula Graph-
ics, http://www.formulagraphics.com
17. FrontPage98, Microsoft, http://www.
microsoft.com/frontpage
18. Fusion, NetObjects Inc., http://www.
netobjects.com/html/nof.html
19. HahtSite, HAHT Software, http://www.
haht.com
20. Harvest, Harvest, http://harvest.
transarc.com
21. Home Page, Claris, http://www.
claris.com/products/claris/clarispage/clar-
ispage.html
22. HotMetal Pro, SoftQuad, http://www.
softquad.com/products/hotmetal
23. Iconauthor, Aimtech, http://www.
aimtech.com/iconauthor

260 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

24. IDC, Microsoft, http://www.microsoft.
com/msoffice/developer/access/articles/itk/
Idcfaq.htm
25. IntraBuilder, Borland, http://www.
borland.com/intrabuilder
26. Jaguar, Sybase, http://www.sybase.
com/products/jaguar
27. LiveLink Search and Spider, Open-
Text, http://www.opentext.com/livelink
28. NetDynamics 4.0, NetDynamics, www.
netdynamics.com/product/overview/nd400
overview.html
29. Oracle 8i, Oracle, http://www.oracle.
com/products/oracle8i
30. Perspecta, Perspecta, http://www.per-
specta.com
31. Page Mill/Site Mill, Adobe, http://www.
adobe.com
32. PL/SQL Web Development Toolkit,
Oracle, http://www.oracle.com
33. PowerBuilder, Sybase, http://www.sy-
base.com/products/powerbuilder
34. Quest, Allen Communication, http://
www.allencomm.com/p&s/software/quest
35. StoryServer, Vignette, http://www.vi-
gnette.com/PressKit/ProductOverview.pdf
36. SuperCede, Asymetrix, http://www.su-
percede.com/products/supercede/dbdetails.
html
37. Teamsite, Interwoven, http://www.in-
terwoven.com
38. Toolbook II Instr., Asymetrix, http://
www.asymetrix.com/products/toolbook2/
instructor
39. Toolbook Assistant, Asymetrix, http://
www.asymetrix.com/products/toolbook2/
assistant
40. Verity Search 97, Verity, http://www.
verity.com
41. VisiBroker for Java, Inprise, http://
www.inprise.com/visibroker
42. Visual Basic 5.0, Microsoft, http://www.
microsoft.com/vbasic
43. Visual InterDev, Microsoft, http://www.
microsoft.com/vinterdev
44. Visual JS, Netscape, http://developer.
netscape.com/library/documentation/visu-
aljs/vjs.html
45. WebCompass, Quarterdeck, http://
arachnid.qdeck.com/qdeck/products/wc20
46. Web Data Blade, Illustra/Informix,
http://www.informix.com
47. WebObjects, Apple, http://software.
apple.com/webobjects

REFERENCES

ATZENI, P., MECCA, G., AND MERIALDO,
P. 1998. Design and maintenance of data
intensive Web sites. In Proceedings of the
Sixth International Conference on Extending
Database Technology (Valencia, Spain, Mar.),
H. -J. Schek, F. Saltor, I. Ramos, and G.
Alonso, Eds. 436–450.

MECCA, G., ATZENI, P., MASCI, A., SINDONI, G., AND

MERIALDO, P. 1998. The Araneus Web-
based management system. SIGMOD Rec.
27, 2, 544–546.

ATZENI, P., MECCA, G., AND MERIALDO,
P. 1997. To weave the Web. In Proceed-
ings of the 23rd International Conference on
Very Large Databases (VLDB ’97, Athens,
Greece, Aug.), M. Jarke, M. J. Carey, K. R.
Dittrich, F. H. Lochovsky, P. Loucopoulos,
and M. A. Jeusfeld, Eds. VLDB Endow-
ment, Berkeley, CA, 206–215.

BACHIOCHI, D., BERSTENE, M., CHOUINARD, E., CON-
LAN, N., DANCHAK, M., FUREY, T., NELIGON, C.,
AND WAY, D. 1997. Usability studies and
designing navigational aids for the World
Wide Web. Comput. Netw. ISDN Syst. 29,
8-13, 1489–1496.

BARNES, H. AND GWYER, M. 1996. Designer/2000
Web enabling your applications, Oracle white
paper. Tech. Rep.. Oracle Corp., Redwood
City, CA.

BATINI, C., CERI, S., AND NAVATHE, S.
B. 1992. Conceptual Database Design: An
Entity-Relationship Approach. Benjamin/
Cummings series in computer science. Ben-
jamin-Cummings Publ. Co., Inc., Redwood
City, CA.

BENDA, M., Ed. 1998. Internet Architec-
ture. IEEE Internet Comput. 2.

BIGGERSTAFF, T. J. AND PERLIS, A. J., Eds.
1989. Software Reusability: Vol. 1, Concepts
and Models. ACM Press, New York, NY.

CERI, S., FRATERNALI, P., PARABOSCHI, S., AND

POZZI, G. 1998. Consolidated specification
of WWW intelligent information infrastruc-
ture (W3I3). Tech. Rep. Dip. di Elettronica
e Informazione, Politecnico di Milano, Milan,
Italy.

CHANG, P. I. 1998. Inside the Java Web server:
An overview of Java Web server 1.0, Java
servlets, and the JavaServer architec-
ture. http://java.sun.com/features/1997/aug/
jws1.html.

CHEN, P. P. 1976. The entity-relationship mod-
el: Toward a unified view of data. ACM
Trans. Database Syst. 1, 1, 9–36.

DIAZ, A., ISAKOWITZ, T., MAIORANA, V., AND GIL-
ABERT, G. 1995. RMC: A tool to design
WWW applications. In Proceedings of the
Fourth International Conference on World
Wide Web (Boston, MA), 11–14.

FERNÁNDEZ, M., FLORESCU, D., KANG, J., LEVY, A.,
AND SUCIU, D. 1998. Catching the boat with

Development of Data-Intensive Web Applications • 261

ACM Computing Surveys, Vol. 31, No. 3, September 1999

Strudel: Experiences with a Web-site manage-
ment system. SIGMOD Rec. 27, 2, 414–425.

FLORESCU, D., LEVY, A., AND MENDELZON,
A. 1998. Database techniques for the
World-Wide Web: A survey. SIGMOD Rec.
27, 3, 59–74.

FRATERNALI, P. AND PAOLINI, P. 1998. A concep-
tual model and a tool environment for devel-
oping more scalable and dynamic Web appli-
cations. In Proceedings of the Sixth
International Conference on Extending Data-
base Technology (Valencia, Spain, Mar.),
H.-J. Schek, F. Saltor, I. Ramos, and G.
Alonso, Eds. 421–435.

GARG, P. K. 1988. Abstraction mechanisms in
hypertext. Commun. ACM 31, 7 (July 1988),
862–870.

GARZOTTO, F., MAINETTI, L., AND PAOLINI,
P. 1995. Hypermedia design, analysis, and
evaluation issues. Commun. ACM 38, 8
(Aug. 1995), 74–86.

GARZOTTO, F., MAINETTI, L., AND PAOLINI,
P. 1994. Adding multimedia collections to
the Dexter model. In Proceedings of the 1994
ACM Conference on Hypermedia Technology
(ECHT’94, Edinburgh, Scotland, Sept. 18–23),
I. Ritchie and N. Guimarães, Eds. ACM
Press, New York, NY, 70–80.

GARZOTTO, F., PAOLINI, P., AND SCHWABE,
D. 1993. HDM—a model-based approach to
hypertext application design. ACM Trans.
Inf. Syst. 11, 1 (Jan. 1993), 1–26.

GARZOTTO, F. AND MAINETTI, L. 1993. HDM2:
Extending the E-R approach to hypermedia
application design. In Proceedings of the
12th International Conference on Entity Rela-
tionship Approach (ER’93, Dallas, TX), R. El-
masri, V. Kouramajian, and B. Thalheim,
Eds. 178–189.

GARZOTTO, F., PAOLINI, P., AND SCHWABE,
D. 1991. HDM—a model for the design of
hypertext applications. In Proceedings of the
3rd Annual ACM Conference on Hypertext
(San Antonio, TX, Dec. 15–18), J. J. Leggett,
Ed. ACM Press, New York, NY, 313–328.

GWYER, M. 1996. Oracle Designer/2000 Web-
Server generator (vers. 1.3.2). Oracle Corp.,
Redwood City, CA.

HALASZ, F. AND SCHWARTZ, M. 1994. The Dexter
hypertext reference model. Commun. ACM
37, 2 (Feb. 1994), 30–39.

HALASZ, F. G. 1988. Reflections on NoteCards:
Seven issues for the next generation of hyper-
media systems. Commun. ACM 31, 7 (July
1988), 836–852.

HARDMAN, L., BULTERMAN, D. C. A., AND VAN ROS-
SUM, G. 1994. The Amsterdam hypermedia
model: Adding time and context to the Dexter
model. Commun. ACM 37, 2 (Feb. 1994), 50–
62.

HORTON, W., TAYLOR, L., IGNACIO, A., AND HOFT, N.
L. 1996. The Web Page Design Cookbook:
All the Ingredients You Need to Create 5-Star

Web Pages. John Wiley and Sons, Inc., New
York, NY.

HOVEN, I. V. 1997. Deploying Developer/2000
applications on the Web, Oracle white paper.
Oracle Corp., Redwood City, CA.

HYPERWAVE INFORMATION MANAGEMENT,
1998. Hyperwave User’s Guide, Version
4.0. Hyperwave Information Management.

ISAKOWITZ, T., STOHR, E. A., AND BALASUBRAMA-
NIAN, P. 1995. RMM: a methodology for
structured hypermedia design. Commun.
ACM 38, 8 (Aug. 1995), 34–44.

JACOB, R. J. K. 1983. Using formal specifications
in the design of a human-computer interface.
Commun. ACM 26, 4 (Apr. 1983), 259–
264. http://www.eecs.tufts.edu/˜jacob/papers/
cacm.txt; http://www.eecs.tufts.edu/˜jacob/papers/
cacm.ps.

JACOBSON, I. 1992. Object-Oriented Software
Engineering. ACM Press, New York, NY.

KESSELER, M. 1995. A schema-based approach
to HTML authoring. In Proceedings of the
Fourth International Conference on The World
Wide Web (Boston, MA),

LANGE, A. 1997. Sorting through search engines.
Web Tech. M. 2, 6 (June). http://www.web-
review.com/97/06/13/webtech/index.html.

MADSEN, K. H. AND AIKEN, P. H. 1993.
Experiences using cooperative interactive sto-
ryboard prototyping. Commun. ACM 36, 6
(June 1993), 57–64.

MICROSOFT CORPORATION 1996. The distributed
common object model. Microsoft Corp., Red-
mond, WA. http:/msdn.microsoft.com/work-
shop/components/contents.htm.

MILLER, J., SHETH, A., KOCHUT, K., AND
PALANISWAMI, D. 1997. The future of web-
based workflows. In Proceedings of the Inter-
national Workshop on Research Directions in
Process Technology (Nancy, France).

MONTGOMERY, J. 1997. Distributing compo-
nents. BYTE 22, 4, 93–98.

MYERS, B. A. 1995. User interface software
tools. ACM Trans. Comput. Hum. Interact.
2, 1 (Mar. 1995), 64–103.

MYERS, B., HOLLAN, J., CRUZ, I., BRYSON, S., BUL-
TERMAN, D., CATARCI, T., CITRIN, W., GLINERT,
E., GRUDIN, J., AND IOANNIDIS, Y. 1996.
Strategic directions in human-computer inter-
action. ACM Comput. Surv. 28, 4, 794–809.

NANARD, J. AND NANARD, M. 1995. Hypertext
design environments and the hypertext de-
sign process. Commun. ACM 38, 8 (Aug.
1995), 49–56.

NIELSEN, J. 1990. Hypertext and Hypermedia.
Academic Press Prof., Inc., San Diego, CA.

NIELSEN, J. 1996. Computer Science and Engi-
neering Handbook. CRC Press, Inc., Boca
Raton, FL.

OBJECT MANAGEMENT GROUP 1998. The common
object request broker: Architecture and specifica-
tion. Ver. 2.0. Tech. Rep. Object Management
Group, Framingham, MA. http://www.omg.org/
corba/corbiiop.htm.

262 • P. Fraternali

ACM Computing Surveys, Vol. 31, No. 3, September 1999

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY,
F., LORENSEN, B., AND LORENSON, W. 1991.
Object Oriented Modeling and Design. Pren-
tice-Hall, Englewood Cliffs, NJ.

SANO, D. 1996. Designing Large-Scale Web
Sites: A Visual Design Methodology. John
Wiley and Sons, Inc., New York, NY.

SCHWABE, D. AND ROSSI, G. 1995. The object-
oriented hypermedia design model. Com-
mun. ACM 38, 8 (Aug. 1995), 45–46.

SCHWABE, D., CALOINI, A., GARZOTTO, F., AND PA-
OLINI, P. 1992. Hypertext development us-
ing a model-based approach. Softw. Pract.
Exper. 22, 11 (Nov. 1992), 937–962.

STOTTS, P. D. AND FURUTA, R. 1989. Petri-net-
based hypertext: Document structure with
browsing semantics. ACM Trans. Inf. Syst.
7, 1 (Jan. 1989), 3–29.

SUN MICROSYSTEMS, 1995. Remote method in-
vocation specification. Tech. Rep. Sun Mi-
crosystems, Inc., Mountain View, CA. http://
java.sun.com/products/jdk/rmi/index.html.

TAKAHASHI, K. AND LIANG, E. 1997. Analysis
and design of Web-based informations sys-
tems. In Proceedings of the Sixth Interna-
tional Conference on the World Wide Web
(Santa Clara CA, Apr.),

WONG, W. 1998. Team-building on the fly.
BYTE 23, 2 (Feb.). http://www.byte.com/art/
9802/sec10/art1.htm.

WORLD WIDE WEB CONSORTIUM, 1998. Cascading
style sheets: Level 2 specification. Tech.
Rep. World Wide Web Consortium. http://
w3c.org/TR/REC-CSS2

WORLD WIDE WEB CONSORTIUM, 1998. The docu-
ment object model (DOM): Level 1 specification.
Tech. Rep. World Wide Web Consortium.
http://www.w3.org/TR/REC-DOM-Level-1/.

ZHENG, Y. AND PONG, M.-C. 1992. Using state-
charts to model hypertext. In Proceedings of
the ACM Conference on Hypertext (ECHT ’92,
Milan, Italy, Nov. 30–Dec. 4), D. Lucarella, J.
Nanard, M. Nanard, and P. Paolini, Eds.
ACM Press, New York, NY, 242–250.

Received: March 1998; revised: August 1998; accepted: December 1998

Development of Data-Intensive Web Applications • 263

ACM Computing Surveys, Vol. 31, No. 3, September 1999

