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AN OBJECT-ORIENTED PARALLEL PARTICLE-IN-CELL CODE FOR
BEAM DYNAMICS SIMULATION IN LINEAR ACCELERATORS*

J. Qiang', R. D. Ryne, S. Habib, LANL, Los Alamos, NM

Abstract

In this paper, we present an object-oriented three-
dimensional parallel particle-in-cell code for beam dynam-

ics simulation in linear accelerators. A two-dimensional .

paralle]l domain decomposition approach is employed
within a message passing programming paradigm along
with a dynamic load balancing. Implementing object-
oriented software design provides the code with better
maintainability, reusability, and extensibility compared
with conventional structure based code. This also helps
to encapsulate the details of communication syntax. Per-
formance tests on SGI/Cray T3E-900 and SGI Origin
2000 machines show good scalability of the object-oriented
code. Some important features of this code also include
employing symplectic integration with linear maps of ex-
ternal focusing elements and using z as the independent
variable, typical in accelerators. A successful application
was done to simulate beam transport through three super-
conducting sections in the APT linac design.

1 INTRODUCTION

With increasing interest in high intensity beams, it is get-
ting more important to accurately treat the space charge
effects in linear accelerator. The particle-in-cell simu-
lation method has been adopted to study high intensity
beams [1, 2, 3, 4]. At present, most of these codes run
only on serial computers. This restricts the number of nu-
merical particles which can be used in the simulation due to
the heavy computation time cost of particle-in-cell method.
This restriction also degrades the accuracy of particle-in-
cell simulation. Parallelism can significantly improve the
statistical accuracy of particle-in-cell simulation by using a
larger number of numerical particles and finer grid resolu-

tion. It also dramatically reduces the computation time. In

this paper, we present an object-oriented parallel particle-
in-cell code for beam dynamics simulation in linear ac-
celerators. This gives the program better maintainability,
reusability, extensibility, and high performance.

In this paper, the physical model is described in Sec-
tion 2. The parallel numerical algorithm is discussed in
Section 3. The object-oriented software design is given in
Section 4. Performance tests are given in Section 5. An
application is presented in Section 6. The conclusions are
drawn in Section 7.
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PHYSICAL MODEL

The physical system for beam dynamics studies consists
of the beam and the accelerating/transport system which in
turn contains a number of accelerating and focusing ele-
ments. The forces acting on particles are due to externally
applied fields and the inter-particle Coulomb field. The
dynamics of particles is governed by the Poisson-Vlasov
system of equations. In accelerator simulations, it is usual
practice to take z to be the independent variable rather than
the time ¢. The Vlasov equation is written as:
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and the Poisson equation is
V3¢ = —pfe )

where f is the particle distribution function in
(z,Pz,¥,py,t,pr) phase space, a prime denotes %,
z, Y, t are x, y position and time interval respectively,
pe and p, are x and y dimension canonical momentum,
pt = —H(x,y,2,pz,Py, Pz, t), where H is the Hamil-
tonian of system, ¢ is the space charge potential from
Coulomb interaction, p is the charge density from the
distribution function, and ¢ is the dielectric constant in
vacuum. We define a new quantity K according to

K($>Pz,y,Py;t,Pt;Z) = —D: (3)
The Vlasov equation can be rewritten as
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where {,] is the Poisson brackets. Given any two functions
f and g, the Poisson bracket of f and g is given by
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where q specifies z,y,t, and p specifies p,,py,p;. The
equations of motion for the particles using z as the inde-
pendent variable are [5]
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Figure 1: A schematic plot of two-dimensional decompo-
sition on y-z domain.

Numerical solution of the particle equations of motion is
carried out using a split-operator symplectic integration
method and Lie algebraic maps.

We calculate the charge density by depositing the par-
ticles onto grids using a cloud-in-cell (CIC) scheme. The
potential is expressed as

Ppar = z Gp—p' o~ r=r'Pp—p' q—g' 7= (9)

where G is the Green’s function on the grid, and p is the
charge density on the grid. Often, the beam size is much
smaller than the inside wall radius of the accelerator, in
which case we may treat the beam as an isolated system. In
such a case, the above convolution can be calculated using a
Fast Fourier Transform (FFT) technique given by Hockney
[6]. :

3 PARALLEL PARTICLE-IN-CELL
ALGORITHM

A two-dimensional domain-decomposition approach is
employed in the paraliel particle simulation. A schematic
. plot of the two-dimensional decomposition on the y-z plane
is shown in Fig. 1. The solid grid lines define the computa-
tion domain grids. The dashed lines define the local com-
putational domain on each processor. Here, the boundary
grids are the outer most grids inside the physical boundary.
The guard grids are used as temporary storage of grid quan-
- tities from the neighboring processors. The physical com-
putational domain is defined as a 3-dimensional rectangular
box withrange Z,min < Z < Tiazs Ymin < Y < Ymaz, and
Zmin < 2 < Zmag. This domain is decomposed on the y—2
plane into a number of small rectangular blocks. These
blocks are mapped to a logical two-dimensional Cartesian
processor grid. Each processor contains one rectangular
block domain. The range of a block on a single processor
is defined as Tmin £ T < Tmazs Yiemin < ¥ < Yiemas:
and 2iemin < 2 < Ziemaz- Here, the subscript lemin and
lemaz specify local minimum and local maximum. The
mesh grid is defined to store the field related quantities
such as charge density and electric field. The number of
grid points along three dimensions on a single processor is

defined as:

NZiocal nt[(Tmaz — Tmin)/hz}+1  (10)
Nyloca.l = int[(ylcmaz - ymin)/hy] -

int{(Yiemin — Ymin) Ay} +2,1 (A1
Nzjpcat = int[(zlcma:c - Zmin)/hz] -

int{(zicmin — Zmin)/hz] + 2,1 (12)

where hz, hy, and hz are the mesh sizes along z, y and z
direction respectively. Here, the number 2 in Nyjocar and
Nzjocar are two guard grids on both sides of y and z di-
mensions outside the boundary grids if the number of pro-
cessors in that dimension is greater than 1. If the number
of processors in that dimension is 1 for one-dimensional
processor partition case, this number is set to 1. For the
processor containing the starting grid in the global mesh,
there is one more grid point along the y and z directions.
The particles with spatial positions within the local compu-
tational boundary are assigned to the processor containing
that part of physical domain.

The particles generated on each processor will advance
following the maps defined in Section 2. If a particle moves
outside the local computational domain, it will be sent to
the corresponding processor where it is located. A parti-
cle manager function is defined to handle the explicit com-
munication using MPI among two-dimensional processor
grids. The y and z positions of every particle on each pro-
cessor are checked. The particle is copied to one of its
four buffers and sent to one of its four neighboring pro-
cessors when its y or z position is outside the local com-
putational domain. After a processor receives the particles
from its neighboring processors, it will decide among those
particles whether some of them will be further sent out or
not. The outgoing particles are counted and copied into
four temporary arrays. The remaining particles are copied
into another temporary array. This process is repeaied until
there is no outgoing particle on all processors to be found.
Then, the particles in the temporary storage along with the
particles left in the original particle array are copied into a
new particle array.

After each particle moves to-its local computational do-
main, a linear CIC particle-deposition scheme is done for
all processors to get the charge density on the grid. For the
particles located between the boundary grid and computa-
tional domain boundary, these particles will also contribute
to the charge density on the boundary grids of neighbor-
ing processors. Hence, explicit communication is required
to send the charge density on the guard grids, which is
from the local particle deposition, to the boundary grids
of neighboring processors to sum up the total charge den-
sity on the boundary grids. With the charge density on the
grids, Hockney’s FFT algorithm is used to solve the Pois-
son’s equation with open boundary conditions. Due to this
algorithm, the original grid number is doubled in each di-
mension. The charge density on the original grids is kept
the same. The charge density on the other grids is set to 0.




The Green’s function is defined as
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with
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Here, Nz},..; NYjocarr N 2]pcq; are the local computation
grid number without including guard grids in all three di-
mensions. For the grid points outside the above boundary,
a symmetry is used to define the Green’s function on these
grids.

Gpar = GaNz—pt2,gr) P = NZjpeq +2, 2Nz (15)
GPerr = GP,2N‘.!I"’(1+2,7‘7 q = Nyl*oca,l + 27 2Ny (16)
Gpgr = GpgaNz—r+2, T=Nzjoq+2,2Nz (17)

Communication is required to double the original dis-
tributed 3-dimensional grid explicitly. This can be avoided
by including this process into the 3-dimensional FFT. In
the 3-dimensional parallel FFT, we have taken advantage of
the undistributed dimension along the = dimension, where
a local serial FFT can be done in that dimension for all
processors. A local temporary two-dimensional array with
size (2Nz, Nyiocar) is defined to contain part of the charge
density at fixed z. The charge density on the original grid
is copied into (Nz, Nyiocar) part of the temporary array.
The rest of the temporary array is filled with 0. In the
case of the FFT of the Green’s function, symmetry can be
used to obtained the values of Green’s function in the re-
gion (Nz + 2, Nyiocar)- After the local two-dimensional
FFT along z is done, it is copied back to a slice of a new
3-dimensional array with size (2Nz, NYiocats N Ziocat ). A
loop through Nzj,.q; gives the FFT along z for the three
dimensional array. Then, a transpose is used to switch the
z and y indices. Now, the 3-dimensional matrix has size
(Ny,Nzj,.01s N2iocat). Here, Nz, is the new local
number of grids in z dimension along y dimension proces-
sor. A similar process is done to obtain the FFT along the
y direction for double-size grids (2Ny, N}, .01» N 210cat)-
Another transpose is used to switch y and 2 indices and a
local FFT along z with a double-size grid is done on all
processors to finish the 3-dimensional FFT for double-size
grid in all three dimensions. During the inverse parallel
FFT, a reverse process is employed to obtain the potential
on the original grids. In the transpose of indices, global
all-to-all communication is used.

Dynamic load balance is employed with adjustable fre-
quency to keep the number of particles on each processor
about equal. A density function is defined to find the local
computation domain boundary so that the number of par-
ticles on each processor is roughly balanced. This number
depends on the local integration of charge density distri-
bution function on each processor. To determine the lo-
cal boundary, first, the three-dimensional charge density

is summed up along z direction on each processor to re-
duce to a two-dimensional density function. This func-
tion is distributed locally among all processors. Then, the
two-dimensional density function is surnmed up along the
y direction to get the local one-dimensional charge den-
sity function along 2. This density function is broadcasted
to the processors along y direction. The local charge den-
sity function is gathered along z and broadcasted to proces-
sors along the 2 direction to get a global z direction charge
density distribution function on each processor. Using this
global z direction density distribution, the local computa-
tional boundary in the z dimension can be determined as-
suming that each processor contains about about 1/nproc;
fraction of total number of particles. Here, nproc, is the
number of processors along the z direction in the two-
dimensional Cartesian processor grid. A similar process is
used to determine the local computation boundary in the
y direction. Strictly speaking, the above algorithm will
work correctly for a two-dimensional density distribution
function which can be separated as a product of two one-
dimensional function along each direction. However, from
our experience, this algorithm works reasonablely well in
beam dynamics simulation in the linear accelerator.

4 OBJECT-ORIENTED SOFTWARE
DESIGN

The above parallel particle-in-cell algorithm is imple-
mented in an object-oriented framework for the accelerator
simulation. Object-oriented software design is a method
of design encompassing the process of object-oriented de-
composition {7]. After analysis of the (complex) physical
system, the system is first decomposed into simpler physi-
cal modules. Next, objects are identified inside each mod-
ule. Then, classes are abstracted from these objects. Each
class has interfaces to communicate with the outside envi-
ronment. Relationships are then built up among different
classes and objects. These classes and objects are imple-
mented in a concrete language representation. The imple-
mented classes and objects are tested separately and then
put into the physical module. Each module is tested sep-
arately before it is assembled into the whole program. Fi-
nally, the whole program is tested to meet the requirements
of problem. '

An application of the object-oriented design methodol-
ogy outlined above to beam dynamics studies in acceler-
ators results in the decomposition of the physical system
into five modules. The first module handles the particle
information consisting of the Beam, BeamBC, and the Dis-
tribution classes. The second module handles information
regarding quantities defined on the field grid containing
Field and FieldBC classes. The third module handles the
external focusing and accelerating elements containing the
BeamLineElem base class and its derived classes, the drift
tube class, the quadrupole classes,-and the rf gap class. The
fourth module handles the computational domain geometry
containing the Geometry class. The last module provides




Figure 2: Class diagram of accelerator beam dynamics sys-
tem.
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Figure 3: The maximum number of particles and minimum
number of particles on one processor without and with dy-
namic load balance.

auxiliary and low level classes to handle explicit communi-
cation and input-output containing the Pgrid2d, Communi-
cation, Utility, InOut and Timer classes. The class diagram
of the object-oriented model for a beam dynamics system is
presented in Fig. 2. Here, run-time polymorphism is used
to implement different external beam line elements. A sin-
gle operation using the function of the beam-line-element
base class can automatically select appropriate function
from different concrete beam-line-element class object to
execute. The inheritance relation defines a ’is’ kind rela-
tionship among classes. The aggregation defines a relation
that a class has an object of another class in its data mem-

ber. The use defines a relation that a class uses an object .

of another class in its member function. The above object-
oriented design is implemented using both Fortran 90 and
the POOMA C++ framework [8). In this paper, we only
show the simulation results using the FOO/MPI code.

5 PERFORMANCE TESTS

The performance of the object-oriented code was tested
on both the SGI/Cray T3E-900 and the SGI Origin 2000.
Fig. 3 shows the largest number of particles on one pro-
cessor and the least number of particles on one processor
with and without dynamic load balance as a function of
time steps on 16 processors. The total numerical particle
number is 2 million with 64 x 64 x 64 grids. We see here
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Figure 4: The time cost as function of number of proces-
sors on T3E using one-dimensional and two-dimensional
parallel partition.
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Figure 5: The time cost as function of number of processors
on Cray T3E and SGI Origin.

that with the dynamic load balance the difference between
the maximum number of particles and the minimum num-
ber of particles has been drastically reduced. This suggests
that the dynamic load balance algorithm in our paper works
well. In Fig. 4, we also give a comparison of time cost on
the Cray T3E as a function of number of processors us-
ing one-dimensional and two-dimensional parallel proces-
sor partitions. In this simulation, we have used 2.6 million
particles and 64 x 64 x 64 grids. The two-dimensional
partition shows better scalability and is faster than the one-
dimensional partition. This is because the two-dimensional
processor partition has a more favorable surface-to-volume
ratio. Communication cost is proportional to the surface
area of the subdomain, whereas computation is propor-
tional to its volume. Fig. 5 shows the time costs as a func-
tion of processor number on the SGI/Cray T3E-900 and
on the SGI Origin 2000 for the same problem in Fig. 4.
God scalability of our object-oriented parallel particle-in-
cell code has been achieved. The initial less time cost on
the SGI Origin using 4 processors may be due to the larger
cache size of this machine.

6 APPLICATION

As an application, we simulated the beam transport through
three superconducting sections in a design of the APT
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Figure 6: The external focusing and accelerating field in
the superconducting linac.
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Figure 7: The transverse rms size and maximum ampli-
tudes of beam as a function of its kinetic energy.

linac [9]. The major physical parameters in the design are
listed in Table 1.

211.4 - 1.03 GeV

Energy gain
Beam current 01A
Accelerator length 513.58 m
Quadrupole gradient  5.6-5.1, 5.5-6.05, 5.0-7.25 T/m
Accelerating gradient  4.3-4.54, 4.3-5.01, 5.25 MV/m
Synchronous phase ~ -301to -35, -30 to -42, -30 degree

The external focusing and accelerating fields for the first
two cyromodules are given in Fig. 6. A quadrupole-doublet

FODO focusing lattice is used to provide transverse strong

focusing and to reduce the focusing period comparing with
singlet lattice. The external longitudinal 1f field is from a
MAFIA calculation of the 5 cell superconducting cavity.
For the above physical parameters and external field, we
have performed the simulation using 20 million numerical
particles on 128 x 128 x 128 grids. The initial distribution
used here is a Gaussian distribution. Fig.7 gives the trans-
verse beam rms size and maximum amplitudes as function
of kinetic energy of beam. Initial increase of the transverse
rms size of the beam is due to the decrease of transverse fo-
cusing in the transition section in order to achieve a smooth
transition from the normal conducting linac focusing lattice
(singlet) to the superconducting focusing lattice (doublet).
A jump around 480 Mev is due to the jump of external fo-

cusing between the second section and the third section.
The maximum transverse amplitudes set the lower bound
of the minimum aperture that can be achieved in the de-
sign.

7 CONCLUSIONS

In the above sections, we presented an object-oriented
three-dimensional parallel particle-in-cell program for
beam dynamics simulation inside linear accelerators. This
program employs -domain decomposition method with
MPI. A dynamic load balance scheme is implemented in
the code. It also has better maintainability, reusability, and
extensibility compared with conventional structure based
code. Performance tests on the SGI/Cray T3E-900 and the
SGI Origin 2000 show good scalability of the code. Using
a symplectic integrator, we can also take advantage of the
linear maps of external beam line elements obtained from
modern Lie algebraic techniques. This code was success-
fully applied to the simulation of beam transport through
three superconducting sections in the APT linac design.
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