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Abstract
HackPPL is a probabilistic programming language (PPL)
built within the Hack programming language. Its univer-
sal inference engine allows developers to perform inference
across a diverse set of models expressible in arbitrary Hack
code. Through language-level extensions and direct integra-
tion with developer tools, HackPPL aims to bridge the gap
between domain-specific and embedded PPLs. This paper
overviews the design and implementation choices for the
HackPPL toolchain and presents findings by applying it to a
representative problem faced by social media companies.
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1 Introduction
Probabilistic reasoning has become increasingly important
in industrial machine learning applications as practitioners
seek to obtain higher-fidelity insights from disparate sources
of information. Bayesian modeling provides a compelling
way to capture uncertainty in model parameters and incorpo-
rate expert domain knowledge, but has historically required
significant expertise from the practitioner [16]. Probabilistic
programming languages (PPLs) aim to reduce development
time of Bayesian modeling by providing a unified syntax
to express and compose generative models, and an in-built
inference enginer to test probabilistic hypotheses.

PPLs offer many tradeoffs between efficiency and expres-
sivity, with one key consideration being whether the system
introduces a new domain-specific language (DSL), or em-
beds itself within a host language. PPLs such as Stan [7],
BUGS [15], and JAGS [27] adopt the former approach, offer-
ing specialized syntax and optimization during compilation
of a probabilistic model. On the other hand, embedded PPLs
such as WebPPL [17], Edward [34], and Pyro [2] offer the
compatibility and familiarity of their general-purpose host
languages. Balancing performance and ergonomics of a DSL
against ease of usability and integration in an embedded
language remains an important consideration in PPL design.

We introduce HackPPL, a probabilistic programming lan-
guage that aims to bridge the gap between these paradigms
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with first-class integrations with language and developer
productivity tools. HackPPL is built within the Hack pro-
gramming language [33], a dominant web development lan-
guage across large technology firms with over 100 million
lines of production code [10]. Although Hack originated as
an optionally-typed dialect of PHP, the Hack development
team is discontinuing PHP support in order to open opportu-
nities for sweeping language advancements [32]. This period
of rapid evolution has presented a unique opportunity for us
to incorporate language-level benefits typically afforded to
DSL-style PPLs by collaborating with the Hack development
team. In particular, we have implemented building blocks of a
universal PPL within the language, such as multi-shot corou-
tines [20], as well as high-performance tensor computations
backed by PyTorch [8].
We have built HackPPL as a universal probabilistic lan-

guage [37] in order to target Hack’s diverse user base. It
is worth noting that, while HackPPL is able to efficiently
perform inference over a diverse set of models, ensuring ac-
ceptable performance across all expressible models remains
an active area of research. Nevertheless, our flexible mod-
eling language allows the use of Hack features generally,
including recursion and statefulness. It also enables devel-
opers to integrate models alongside existing systems, which
we believe will expose novel modeling opportunities within
the present codebase. To aid with this, we have provided
first-class integration with familiar developer productivity
tools such as the Nuclide IDE [3] for interactively tuning, de-
bugging, and visualizing models. We have leveraged the rich
capabilities of the Hack language to provide user-friendly
abstractions for building and analyzing HackPPL models:

1. Modeling. HackPPL offers an imperative approach to
probabilistic modeling. Models allow for deterministic
and stochastic computations, and support the rich set
of abstractions and language features offered by Hack.

2. Inference. The framework provides a set of generic
inference algorithms including Hamiltonian Monte
Carlo [24], Black Box Variational Inference [28], and
Sequential Monte Carlo [11].

3. Assessment. In addition to IDE-integrated visualiza-
tion, HackPPL provides out-of-the-box tools for model
diagnosis and evaluation, such as posterior predictive
checks [14] and a statistics module for data analysis.

This paper elaborates on the design, implementation, and
selected applications of HackPPL. Section 2 demonstrates
modeling and inference in HackPPL with an example. Sec-
tion 3 details language changes made to accommodate user-
friendly modeling. Sections 4, 5, and 6 overview the frame-
work and its integrations with existing systems. Section 7
showcases HackPPL in an industry application.

2 HackPPL Fundamentals
To provide a general overview of the modeling workflow, we
begin by discussing an example model in HackPPL.

2.1 Linear Regression Model
HackPPL models are classes that implement the PPLModel
interface and are demarcated from other Hack code by way
of the <<__PPL>> attribute. As shown in Listing 1, devel-
opers can compose generative models by defining random
variables with the sample operator. sample is used to both
draw a new value from a distribution, and to condition a ran-
dom variable on observations. This dual behavior for sample
allows users to postpone conditioning of observations until
inference. Each sample statement must also be associated
with a unique identifier for correctness of inference and for
examining the posterior after inference. Section 3 further de-
tails the implementation of the sample operator. In addition,
models utilize PyTorch tensors and operations for improved
performance, discussed in Section 4.

Listing 1. Linear regression model, y ∼ Normal(xw,τ−1/2)
<<__PPL>>
class LinearRegressionModel implements PPLModel<void> {
public function __construct(private Tensor $x) {}
public function run(): void {
$num_coeffs = $this->x->size()[1];
$w = sample(new Normal(
Tensor::zeros(vec[$num_coeffs]),
Tensor::ones(vec[$num_coeffs])), 'w');

$tau = sample(new Gamma(
Tensor::scalar(1.),
Tensor::scalar(1.)), 'tau')
->expand($this->x->size()[0]);

sample(new Normal($x->matmul($w), $tau, true), 'y');
}

}

2.2 Performing Inference
To support universal modeling, HackPPL adopts a trace-
based approach to inference [35]. Traces are proposals for
parameter values created from model program executions
and each trace is evaluated according to the log probability
of parameter values conditioned on observations. We do not
construct dependency graphs by design, which allows us to
support dynamic variables in probabilistic models.

Listing 2. Conditioning and running inference
$obs = dict['y' => $y];

$model = new LinearRegressionModel($x);

$hist = PPLInfer::hmc($model, $obs)->history()->run($num_iter);

$hist->getSample('w');

Inference in HackPPL is separated entirely from the mod-
eling layer and the user is free to choose an inference method
that is most appropriate for their model. Listing 2 presents
an example of how to run inference on our linear regression
model. We construct a dictionary containing observations $y
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keyed by the corresponding sample identifier, initiate Hamil-
tonian Monte Carlo inference using the PPLInfer class and
retrieve the posterior for the regression coefficients.

3 Language Features
3.1 Coroutines
Monte Carlo inference algorithms draw many samples to
approximate the posterior and with a trace-based approach,
this is achieved by exploring program execution traces. A
key improvement here comes from observing that it may be
unnecessary to re-execute the model in its entirety. For in-
stance, to generate many sample traces for the probabilistic
program in Listing 3, we may not need to revisit the first
sample site ‘flip’ in each trace. Instead, we can simply gen-
erate multiple results from the execution paths following
‘flip’ given a particular result for ‘flip’. This strategy of selec-
tively exploring model subcomputations can save valuable
execution time.

Listing 3.Model with stochastic control flow
$flip = sample(new Bernoulli(Tensor::scalar(0.7))), 'flip');
if ($flip->first() === 0) {
sample(new Categorical(Tensor::vector(vec[1, 2])), 'res');

} else {
sample(new Categorical(Tensor::vector(vec[1, 3])), 'res');

}

For this purpose, most universal PPLs utilize a language
feature that enables exploring subcomputations. Bingham
et al. [2] and Bauer and Pretnar [1] use algebraic effect han-
dlers, whereas Ścibior et al. [30] builds models using monads.
Wood et al. [37] and Goodman and Stuhlmüller [17] utilize
a continuation passing style transform. In HackPPL, models
are implemented as coroutines that are reified as multi-shot
continuations in inference code. This choice allows us to
accommodate more stateful control flow, such as loops and
exception handling, that Hack developers are familiar with.

Coroutines have two fundamental characteristics:

1. Values local to a coroutine persist between successive
calls.

2. The execution of a coroutine is suspended as control
leaves it (e.g., by invoking another coroutine), and
the execution continues where it left off when control
returns to it [23].

Our implementation of multi-shot coroutines allows mod-
els to be resumed multiple times with the same local state
restored upon each resumption. This enables the posterior
space to be explored efficiently by implementing the sample
operator, which defines random variables, as a coroutine.
When control transfers from the model to the sample corou-
tine, the model is suspended and may be resumed multiple
times from the sample point.

3.1.1 Using the Coroutine Framework
sample utilizes the general coroutine framework to schedule
multiple executions of subcomputations of a model. The
general coroutine framework allows users to reify coroutines
and treat them in their suspended state as continuations.

Listing 4. Example coroutine function myCoroutine()

class MyClass {
?MultishotContinuation<string> $suspended_coroutine;
public coroutine function myCoroutine(): string {
print "Started the coroutine";
$resumed_value = suspend suspendMultiple(
coroutine ($my_suspended_coroutine) ==> {
$this->suspended_coroutine = $my_suspended_coroutine;

});
print "Continued the coroutine";
return $resumed_value;

}
}

In Listing 4, we demonstrate how to define a coroutine. In
Hack, coroutine functions are marked with the coroutine
modifier. Coroutines may invoke other coroutines via the
suspend operator; however, non-coroutines may not directly
invoke a coroutine. In this example, the coroutine suspends
to suspendMultiple, a special coroutine library function to
reify the calling coroutine as a multi-shot continuation.

Listing 5. Coroutine invocation with multiple resumptions
class CoroutineCallback implements Continuation<string> {
public function resume(string $coroutine_return): void {
print $coroutine_return;

}
}
StartCoroutine::start(
coroutine () ==> suspend $my_class->myCoroutine(),
new CoroutineCallback());

// Later on...
$my_class->suspended_coroutine->resumeAsync("First");
$my_class->suspended_coroutine->resumeAsync("Second");

In Listing 5, myCoroutine() is invoked via another special
coroutine library function, StartCoroutine::start. Since
the coroutine is called from a noncoroutine context, it re-
quires a callback to be defined, whichwill be entered any time
the coroutine completes. When the coroutine in this example
is started, it will immediately print “Started the coroutine”,
and suspend to suspendMultiple. In Listing 4, the developer
stores the continuation as an instance variable so that corou-
tine may be resumed at a later time. Later, this continuation
is resumed via resumeAsync, at which point the coroutine
resumes, completes by returning the string provided to its
continuation, and its callback, CoroutineCallback, is called
with the return value. “First” and then “Second” will then be
printed from the callback.

3.1.2 Implementation
As in Kotlin [4] and C# [31], we have implemented corou-
tines as state machines via source code transformation at

22



MAPL ’19, June 22, 2019, Phoenix, AZ, USA Ai et al.

compile time. Coroutines are transformed into continuation
passing style where the function continuation is provided
as an additional argument. Each coroutine is compiled to an
anonymous class, which contains a method implementing
the state machine and fields representing its current state.
The suspend keywords within a coroutine body are trans-
formed and marked with a goto label. When a coroutine is
suspended, local state is stored in the state machine. When
a multi-shot coroutine is resumed, local state is copied and
restored, and then the coroutine jumps back to its previous
suspension point using the saved goto label.
As coroutines invoke their continuations rather than re-

turning, Hack’s lack of support of tail recursion can cause
executions of long running coroutines to stack overflow. To
handle this, we have implemented a coroutine manager in
Hack code. This framework is responsible for trampolining
the coroutine calls as anonymous function invocations, and
is able to avoid such stack overflow issues.

3.2 Syntax Changes
As mentioned previously, inference methods implement the
sample operator as a coroutine so that they can control
model execution. As a result, sample must be invoked with
the suspend keyword and functions invoking it must also be
marked with the coroutine modifier. Listing 6 desugars the
syntax in Listing 4, and shows the use of the InferenceState
object, which helps aggregate information such as the trace’s
log probability. With the syntax presented thus far, underly-
ing implementation details are actually exposed and results
in distracting boilerplate for the user. This unfortunately also
provides users direct access to the inference method objects,
potentially disrupting the inference state.

Listing 6. Lowered model with stochastic control flow
coroutine function model(InferenceState $state): int {
$flip = suspend $state->sample(new Bernoulli(
Tensor::scalar(0.7))), 'flip');

if ($flip->first() === 0) {
return suspend $state->sample(new Categorical(
Tensor::vector(vec[1,2])), 'res'));

} else {
return suspend $state->sample(new Categorical(
Tensor::vector(vec[1,3])), 'res'));

}
}

To address this, we introduce a new syntax that sepa-
rates such implementation details from model writing syn-
tax. The <<__PPL>> attribute, seen previously in Listing 3,
treats the sample keyword as if it were a reserved function
in the language. This allows it to be specialized for each
inference method as a coroutine. Thus, while each inference
method implementation may still use the special coroutine
library functions to reify multi-shot model continuations,
users writing models do not need to understand this in order
to write their models. We are then able to completely hide

the InferenceState from the model, and users may invoke
inference methods like sample as if they were ordinary Hack
functions, as shown in Listing 3.

4 Data and Model Representation
In this section, we discuss how random variables and ob-
servations are represented. In particular, we emphasize our
ubiquitous library abstraction of tensors, which helps to
ensure performant inference for large or complex models.

4.1 Continuous Values
We have imported PyTorch’s tensor framework [26] as an
extension for the Hack virtual machine. Tensors are the
data structures underlying distributions, realized samples,
and observations in HackPPL, and provide a convenient
abstraction for parallelizing computations within a model.
Besides providing tensor algebra functionality, they also na-
tively support reverse-mode automatic differentiation [18],
which is used in inference algorithms where repeated gra-
dient evaluations of the program trace are needed to guide
parameters towards a target distribution. Listings 1 and 3
demonstrates construction of scalar and vector tensors, and
higher-rank tensors are also supported. As tensors are used
widely throughout model writing, we have ongoing efforts
to integrate their syntax more seamlessly into Hack.

4.2 Discrete Values
While PyTorch tensors enable performant computations over
continuous values, they do not provide convenient support
for discrete values. As sampling and conditioning on discrete
random variables is crucial in a universal PPL, we introduce
for them an abstraction called DTensor. A DTensor can be
thought of as a sequence of categorical labels, which can be
represented by either a string or integer. Its primary feature
is to enable conversion to and from a one-hot encoded tensor,
which is a useful numerical representation for discrete values
[19]. Listing 7 shows usage of DTensors where construction
requires users to supply category labels and an optional
mapping between the encoding indices and the category.

Listing 7. DTensor construction with a vocabulary mapping. The
one-hot-encoded tensor will be of the form [[1,0,0], [0,0,1], [0,1,0]].

$labels = vec[1, 3, 2];
$vocab = vec['a', 'c', 'b'];
$dtensor = new DTensor($labels, $vocab);
$one_hot_tensor = $dtensor->toOneHotEncodedTensor();

4.3 Distributions
HackPPL provides a large repository of performant, tensor-
backed distributions, and makes it easy for developers to im-
plement new ones. A Distribution implements sample()
and score() methods as follows:
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• sample(n): Retrieve n i.i.d. samples from the distribu-
tion. Note that this method is distinct from the special
sample operator discussed in Section 3.2.

• score(x): Compute the log probability at x.
To take advantage of the performance gains when using
tensor operations, we also support what we refer to as batch
sampling and batch scoring in our distribution library, shown
in Listing 8. Each distribution object is associated with the
tensor shape of its parameters, a batch shape, and the shape
of its support, an event shape. In Listing 8, we construct a
Dirichlet distribution with a batch shape of 2 where each
distribution in the batch will have a sampling event shape of
4. These two types of shape information are important for
allowing users to take advantage of the performance gains
that arise from tensorizing their models.

Listing 8. Batch sampling and scoring from a Dirichlet distribution.
$alphas = Tensor::matrix(vec[
vec[0.25, 0.25, 0.25, 0.25],
vec[0.3, 0.6, 0.2, 0.1]]);

$dirich = new Dirichlet($alphas);
$val = $dirich->sample(5); // $val has shape 5 × 2 × 4
$score = $dirich->score($val);

5 Inference Engine
An inference engine’s objective is to obtain posterior esti-
mates for model parameters. We have two primary design
goals for HackPPL’s inference engine. First, we aim to ab-
stract away the details of inference so that it may be reasoned
about independently of a model. Second, we aim to make our
inference engine generic to support a wide class of models
and user-provided constraints. This section demonstrates
usage of the inference engine, and then discusses implemen-
tation highlights of our inference algorithms.

5.1 Running Inference
Users configure and run inference by interacting with a sin-
gle helper class, PPLInfer. This class provides a centralized
way for users to specify inference configurations for their
model and describe inference-related constraints. It also of-
fers an interface for constructing inference pipelines, which
are procedures tailored to computing specific values of inter-
est from the inference run. In Listing 2, we demonstrate an
example inference pipelinewherewe useHamiltonianMonte
Carlo inference with a probabilistic model and specify config-
uration options such as the burn-in phase. Inference results
are accumulated in a “history” object, which consolidates
interpretable information about each inference iteration.

Listing 9. Custom inference pipeline. This returns the expected
value for a particular random variable.
$results = PPLInfer::hmc($model)
->map($samples ==> $samples['w'])->reduce(($d, $val) ==> {
$weight = $d['weight'] + 1.;
$mean = ($d['mean'] * $d['weight'] + $val) / $weight;

return dict['mean' => $mean, 'weight' => $weight];
})->run($iterations);

The builder pattern of PPLInfer supports custom pipelines
for computing inference results. This allows for the optimiza-
tion of inference based on the latent variables of interest.
Listing 9 shows a pipeline to only track the expected value
of random variable ‘w’. Here, we obtain the random variable
after every iteration in the map() step, and combine its value
with the results of other iterations in the reduce() step.

5.2 Sampling-based Inference
HackPPL provides a library of sampling-based inference
methods, including Importance Sampling,Metropolis-Hastin-
gs, Sequential Monte Carlo [11], and Hamiltonian Monte
Carlo [24] methods. For these, coroutines constitute the
building blocks of their trace-based implementations [35]. In
subsequent sections, we discuss their implementation high-
lights.

5.2.1 Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte
Carlo (MCMC) method that is known to avoid inefficient
random walk behavior. It instead performs efficient explo-
ration of the parameter space using the gradient estimates of
log posterior density. HMC can generate distant proposals
by updating sample points through Hamiltonian dynam-
ics simulations, which helps to maintain a high acceptance
probability [24]. Hamiltonian functions are defined using
the target distribution and an auxiliary momentum variable.
The dynamics are simulated in a discretized manner using a
leapfrog integrator. The leapfrog integrator introduces step
size and number of steps as hyperparameters, and they can
be automatically tuned using the No-U-Turn Sampler. [21]
HackPPL uses PyTorch’s reverse-mode automatic differ-

entiation to compute gradient estimates of the posterior. We
also introduce a Transform trait to facilitate transformation of
a continuous distribution’s support between constrained and
unconstrained spaces. This is essential for allowing HMC to
operate on distributions with bounded supports. For example,
inHackPPL the stick-breaking transform [5] is inherently as-
sociated with our Dirichlet distribution and manages implicit
conversions between real and simplex spaces.

5.2.2 Auto-marginalization of Discrete Variables
Compared to other sampling-based algorithms, HMC con-
verges faster on large models and, as such, is one of the main
inference algorithms in HackPPL. However, HMC can only
be used when the target distribution is differentiable with
respects to its parameters which excludes discrete variables.
Traditionally, marginalizing out discrete samples from the
model has been recommended as a workaround [7].HackPPL
automates this process with automatic marginalization in or-
der to support discrete parameter sampling with HMC. Our
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implementation of auto-marginalization relies on multi-shot
coroutines. Whenever a discrete variable is encountered in a
program’s execution, the program is suspended and resumed
multiple times with all possible values in the support of that
distribution. Listing 10, which implements a simple finite
mixture model, illustrates the usage.

Listing 10. Finite mixture model in HackPPL

$mu = sample(new Normal($mu_p, $sigma_p), 'mu');

$c = sample(new Categorical($p), 'c');

foreach ($data as $i => $y) { // Observe on data bound to y$i

sample(new Normal($mu->getTensorAt($c[$i]), $sigma), "y$i");

}

Here, when we sample the discrete variable c , we run the
rest of the program a number of times equal to the num-
ber of categories in the support of a Categorical distribu-
tion. Throughout the execution, we keep track of the sample
points and the likelihood computation. When all execution
paths are traversed, we marginalize the discrete variable c
out from the log probability function using Equation 1.

P (y |p, µ,σ ) =
C∑
c=1

pcNormal(y |µc ,σ ) (1)

This approach hides the statistical details of marginal-
ization from users, and also allows for the estimation of a
discrete variable’s posterior distribution.

5.2.3 Resumable Inference
For sampling-based methods, monitoring convergence and
diagnosing problems is an essential part of inference. To
help with convergence monitoring, we provide standard
convergence diagnostics statistics and visualization support
in the library, discussed further in Section 6. For cases where
convergence is not achieved, we provide functionality for
the sampling-based algorithms to be paused and resumed.
In essence, our inference runs keep track of their states and
this state is restored when the run is resumed. Listing 11
shows how inference can be paused and resumed.

Listing 11. Resuming sampling-based inference in HackPPL.
$infer = PPLInfer::hmc($model);
$history = $infer->run($num_iter_first);
$history = $infer->history($history)->run($num_iter_second);

This functionality is especially important when perform-
ing sampling on production models. We also use resumable
inference for tuning of the temperature of inference chains
during warm-up phase. This functionality is a key compo-
nent of ongoing work on evolutionary MCMC methods [12].

5.3 Approximate Inference
For models where sampling-based methods are slow to con-
verge or are too computationally intensive, HackPPL sup-
ports scalable inference in the form of Black Box Variational
Inference [28, 36]. We estimate the posterior p(x |y) with

a mean-field approximation q(x) as shown in Equation 2
where, the variational guide distributions q(.) are parameter-
ized by λ. We then use first-order optimization algorithms
to find the guide distribution parameters λ that maximize
the Evidence Lower Bound. Each λi can be optimized in-
dependently according to Equation 2, making this form of
variational inference an attractive, parallelizable approach
when working with large models or datasets.

q(x) =
m∏
i=1

qi (xi |λi ) (2)

In HackPPL, users are required to explicitly provide guide
distributions for each sample site when constructing their
model. In Listing 12, we construct a simple model, which only
samples from a Normal distribution, and we demonstrate
how variational guide distributions are specified.

Listing 12. sample statement with a variational guide.
sample(new Normal($mu_p, $sigma_p),
'x',
$args ==> new Normal($args['mu'], $args['sigma']->exp()),
dict['mu' => $mu_guide, 'sigma' => $sigma_guide]);

6 Assessment
Building a probabilistic model typically requires multiple
iterations where one repeatedly assesses model fit to identify
areas of improvement. This section overviewsHackPPL’s set
of model assessment tools, which can be used independently
of the modeling and inference modules.

6.1 Posterior Predictive Distributions
Posterior predictive distributions define the distribution of a
randomvariable conditioned on observed values bymarginal-
izing over the posterior distribution is given in Equation 3
where new data points ynew are generated and re-weighted
using the posterior distribution, P(θ |y).

P(ynew |y) =

∫
P(ynew |θ )P(θ |y)dy (3)

HackPPL provides a convenient syntax for obtaining the
posterior predictive distribution of random variables. Here,
our goal is to reuse the original model but this time run the
model in simulation mode (as opposed to inference mode).
In essence, our implementation of posterior predictive treats
conditioning in the model (i.e. sample statements where
observations have been bound) as random variable draws,
where we generate and determine the likelihood of new data
using the posterior distribution. Listing 13 shows how to
obtain the posterior predictive distribution using the original
model along with the rich inference history object.

Listing 13. Obtaining the posterior predictive distribution
PosteriorPredictive::predict($finite_mixture_model, $history);
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The posterior predictive distribution can then be used in
making predictions for future observations.

6.2 Model Criticism
Posterior predictive distributions are also commonly com-
pared against the observed data points through formal statis-
tical checks, known as ‘posterior predictive checks’ [14, 29].
These checks are fundamental within Bayesian model assess-
ment. HackPPL’s model criticism library provides functions
for performing posterior predictive checks for user-defined
test statistics using the posterior predictive distribution as
obtained in Listing 13. One can then obtain the distribution
of test statistics and compute Bayesian p-values for model
assessment.HackPPL also provides out-of-sample prediction
statistics [13] and where there is ground truth data, accuracy
scores that take into account the full posterior.

6.3 HackPPL Playground
To enable rapid experimentation and improvement of proba-
bilistic models, it is important to have the ability to quickly
visualize the current state of inference (e.g. convergence)
and the results of inference. To provide a low-friction exe-
cution and visualization environment, we have created the
HackPPL Playground, an extension to Nuclide that is built as
a React component and hooks into Nuclide’s existing debug-
ging capabilities. This makes it easy for developers to run,
debug, and visualize HackPPL models from within an editor
that is already typically used for Hack development. Users
can either run their script in its entirety or set breakpoints to
debug specific parts of their model. Any calls to our visualiza-
tion library will render charts in the playground as the script
executes. Figure 1 shows a screenshot of the playground
where a breakpoint paused the execution of inference. The
user can interact with the debugger as shown in the bottom
pane of the figure. The trace plot, displayed on the right pane,
is updated in real-time as inference progresses, and can be
used to help assess model convergence.

Fig. 1.When users open a compatible Hack script in the Nuclide
IDE, the HackPPL playground pane automatically appears and calls
to our Viz library will be rendered

6.4 Visualization Library
Our visualization library, Viz, provides an API for common
visualization needs such as rendering distributions and plot-
ting results of inference. It is built on top of Plotly [22],
and adds special markers necessary to display charts within
the HackPPL Playground. The advantage here is that we
are able to use any charts available in the Plotly library for
PPL-specific visualizations without needing to change our
playground extension. Direct integration with the HackPPL
Playground allows us to provide reactive charts, which up-
date in realtime as inference progresses. These reactive charts
include running mean trace plots,posterior distribution scat-
terplots, and marginal distribution plots for latent variables.

7 Case Study
We now present a case study using a crowdsourced anno-
tation model. We introduce the problem followed by a dis-
cussion on the probabilistic approach and demonstrate the
HackPPL workflow with results from a simulated dataset.

7.1 Motivation and Modeling
Social media companies routinely rely on the annotations
provided by reviewers to estimate prevalence, or overall
occurrence, of content that violates certain community stan-
dards. However, this can often be a challenging task as only
a small subset of content can be manually reviewed, and hu-
mans reviewers may be prone to error. Fortunately, Bayesian
approaches are very effective because they allow for reason-
ing under such uncertainty and give the ability to infer not
just a point estimate of the prevalence, but also its credible
intervals.
Previously, Carpenter [6] has proposed various genera-

tive models for annotated data. The models help to infer
the overall prevalence as well as the confusion matrix of
labelers and item level difficulty. However, these models are
conditioned on the observed ground truth label of each item.
Passonneau and Carpenter [25], on the other hand, describe
a model based on the work by Dawid and Skene [9] for cases
where the true labels are also unknown. In this case study,
we will be focusing on the latter model.

More formally, assume that there are K categories of con-
tent, each with prevalence of θ(.), where

∑K
k=1 θk = 1. The

true category yi of an item i is not directly observed, but we
do have the label rℓ given by human labeler ℓ. This rating is a
noisy observation, corrupted by a confusion matrixψ ℓ , such
thatψ ℓ

a,b is the prior probability that labeler ℓ would assign
a label of b to an item with the true category a. The goal of
the inference is to estimate: 1) The true prevalence for each
category, θ , 2) The latent category that each individual piece
of content belongs, y, and 3) The accuracy of each labeler
on different content types,ψ. The joint probability is given
in Equation 4:

P(θ ,ψ,y |r ) ∝ P(θ )P(y |θ )P(ψ)P(r |y,ψ) (4)
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7.1.1 Model in HackPPL
For brevity, we present a simplifiedmodel in Listing 14 where
K = 2 and there is a single confusion matrix for all label-
ers. This matrix is fully specified by the false positive (FPR)
and the false negative rates (FNR), where positive refers to
violating content. To address the bimodal likelihood of the
model [6], we constrain false positive and false negative
probabilities to follow a Uniform(0.0, 0.5) distribution. We
place a uniform prior on the prevalence estimate θ . The true
category of each item is defined with the DTensor abstrac-
tion and is marginalized out of the model when used with
HMC, as discussed in Section 5. We then use vectorization
and broadcasting semantics of tensors to efficiently define
the likelihood distribution of the labels and obtain the score
of the ratings.

Listing 14. Two category annotation model with a single confusion
matrix for all labelers using a non-informative prior for prevalence
<<__PPL>>

class AnnotationModel implements PPLModel {

public function __construct(

private int $n, private DTensor<int> $labels) {}

public function run(): void {

$theta = sample(

new Beta(Tensor::scalar(1.), Tensor::scalar(1.)),

'theta')->expand(vec[$this->n]);

$u = new Uniform(Tensor::scalar(0.), Tensor::scalar(.5));

$fpr = sample($u, 'false_positive_rate');

$fnr = sample($u, 'false_negative_rate');

$tpr = $fnr->neg()->add(Tensor::scalar(1.0));

$cat = sample(new Bernoulli($theta)),

'item_category')->toRealValueTensor();

$probs = Tensor::where($cat, $tpr, $fpr);

sample(new Bernoulli($probs), 'labels', $this->labels);

}

}

7.2 Result
Our primary goal in this case study is to assess how well
the model predicts uncertainty in prevalence estimates. For
validation, we generate annotation data for 1000 pieces of
content, which may be either non-violating or violating, and
compare against the known prevalence rates used in this
generation. The simulation is repeated for prevalence levels
from 0.05 to 0.3 with increments of 0.05. In order to under-
stand the uncertainty around prevalence in the presence ofs
labeler error, we also simulate data for different confusion
matrices, with FPR and FNR ranging between 0.1 to 0.4. We
produce 100 datasets for each prevalence and confusion ma-
trix configuration, and run HMC for 10000 iterations with
5000 burn-in iterations. We also start the sampling from the
expected values of the prior distributions.

Since we are interested in assessing our predictions for the
uncertainty in prevalence, we show the coverage probabili-
ties against true prevalence values in Figure 3. Overall, the
credible intervals cover the ground truth prevalence for most

Fig. 2. Running mean of preva-
lence values for a scenario with
a target prevalence of 0.1

Fig. 3. Coverage probability
across 100 simulated datasets for
the various levels of prevalence

Fig. 4. Expected values of esti-
mated vs. simulated prevalence;
FPR = FNR = 0.1

Fig. 5. 95% credible interval
width of estimated vs. simulated
prevalence; FPR = FNR = 0.1

scenarios; the coverage probabilities are obtained above 90%
for all scenarios. The boxplots of the expected prevalence
in Figure 4 for a particular simulation setting show that the
expected values are centered around the true prevalence.
The credible intervals in Figure 5 have increasing widths
with respect to the true prevalence values. On average, 95%
credible intervals have a width of 0.04 and increases to 0.065
when base prevalence is 5% and 30%, respectively. In Figure
2, we also provide the running mean of prevalence for a sce-
nario with a true prevalence of 0.1, where we observe that
the mean converges to the true value after 500 iterations.

The annotation model is used to estimate the uncertainty
in predicting prevalence by incorporating labeler accuracy.
The goal of this model when used in production is to as-
sist with monitoring changes in prevalence over time. In
an offline environment, we can validate our model using
simulated data. The model can easily be used to observe
time patterns of credible intervals, and it can also be used
with change point detection techniques to detect changes in
prevalence patterns.

8 Conclusion
This paper has overviewed the design motivations and their
implementations in the building of HackPPL. By integrating
probabilistic programming directly into the development of
a general-purpose programming language, HackPPL aims to
offer a compelling user experience without compromising
on performance. We have integrated directly with familiar
tools, including the Hack language, PyTorch tensors, and the
Nuclide IDE, in order to provide a modeling experience that
is both ergonomic and efficient. HackPPL is now deployed at
a large technology firm and is being used to solve business
problems through deep integrations with critical services.
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