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Abstract. We identify and study a natural and frequently occurring subclass of Concurrent Read,
Exclusive Write Parallel Random Access Machines (CREW-PRAMs). Called Concurrent Read,
Owner Write, or CROW-PRAMs, these are machines in which each global memory location is
assigned a unique “owner” processor, which is the only processor allowed to write into it. Considering
the difficulties that would be involved in physically realizing a full CREW-PRAM model, it is
interesting to observe that in fact, most known CREW-PRAM algorithms satisfy the CROW
restriction or can be easily modified to do so. This paper makes three main contributions. First, we
formally define the CROW-PRAM model and demonstrate its stability under several definitional
changes. Second, we precisely characterize the power of the CROW-PRAM by showing that the class
of languages recognizable by it in time O(log n) (and implicitly with a polynomial number of
processors) is exactly the class LOGDCFL of languages log space reducible to deterministic
context-free languages. Third, using the same basic machinery, we show that the recognition problem
for deterministic context-free languages can be solved quickly on a deterministic auxiliary pushdown
automaton having random access to its input tape, a log n space work tape, and pushdown store of
small maximum height. For example, time O(n11e) is achievable with pushdown height O(log2 n).
These results extend and unify work of von Braunmühl, Cook, Mehlhorn, and Verbeek; Klein and
Reif; and Rytter.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—automata; unbounded-action devices (e.g., cellular automata, circuits, networks of machines);
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F.1.2 [Computation by Abstract Devices]: Modes of Computation—parallelism and concurrency; F.1.3
[Computation by Abstract Devices]: Complexity Measures and Classes—relations among complexity
classes; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—computations on discrete structures; F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems—parsing

General Terms: Algorithms, Theory

Additional Key Words and Phrases: CROW-PRAM, DCFL recognition, owner write, parallel
algorithms

1. Introduction and Related Work

There is now a fairly large body of literature on parallel random access machine
(PRAM) models and algorithms. There are nearly as many definitions of this
model as there are papers on the subject. All agree on the general features of
such models—there is a collection of more or less ordinary sequential processors
with private, local memories, that all have access to a shared global memory. The
model is synchronous—in each time unit, each processor executes one instruc-
tion. There is much more diversity regarding other features of the model. For
example, there are differences as to whether the model has single- or multiple-
instruction streams, how many processors there are, how they are numbered, how
they are activated, what instruction set they have, what input convention is used,
and how simultaneous read or write requests to a single global storage location
are arbitrated. Most of these variations make little or no difference in the power
of the model.

Two features seem to have a substantial impact on the power of the model.
One is uniformity. In general, we study uniform models in this paper, that is,
ones where a single program suffices for all input lengths, and where a single
processor is initially active, creating other processors as desired. The second
sensitive feature is arbitration of memory access conflicts. Two main variants
have been most intensively studied. Following the nomenclature introduced by
Vishkin [1983], the CRCW (Concurrent Read, Concurrent Write) PRAM allows
memory access conflicts. All processors reading a given location in a given step
receive its value. Among all processors writing to a given location in a given step,
one is allowed to succeed, for example, the one with the lowest processor
number. (Other resolution rules for write conflicts have been proposed. All are
known to be equivalent in power up to constant factors in running time, and
polynomial factors in number of processors and global memory size, although the
models are separated if processors and memory are more tightly constrained.)

In the CREW (Concurrent Read, Exclusive Write) model, concurrent reads
are allowed, as above, but concurrent writes are not. CREW algorithms must
arrange that no two processors attempt to write into the same global memory
location at the same time.

In this paper, we introduce a third variant, argue that it is a more “natural”
model than the CREW PRAM, and give a surprising characterization of its
power. There are several reasons to study this restriction of the CREW-PRAM.
The CREW-PRAM model has been criticized for being too powerful to serve as
a realistic model of physically realizable parallel machines due to its “unbounded
fanin.” Anderson and Snyder [1991] point out that the two stage programming
process of first using the CREW-PRAM model to develop a straightforward fully
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parallel algorithm (e.g., for the “or” of n bits), and then emulating this algorithm
on a physically realizable network, could lead to a sub-optimal algorithm
(Q((log n)2) for the above example). Nevertheless the CREW-PRAM has
arguably been the most popular theoretical model for the design, specification
and analysis of parallel algorithms, due principally to the simplicity and useful-
ness of the global memory model for programmers.

How can a CREW-PRAM algorithm ensure that it is obeying the Exclusive
Write restriction? With two exceptions discussed below, all CREW-PRAM
algorithms we have considered achieve, or can be easily modified to achieve,
write exclusion by the following simple stratagem: each global memory location is
“owned” by one processor, which is the only processor ever allowed to write into
that cell. Further, the mapping between global memory addresses and processor
numbers is easy to compute, so that each processor has no difficulty in
determining which cells it owns. For example, processor p might own the block of
k consecutive cells beginning at global memory address kp. We call this the
Owner Write restriction, and call PRAMs that obey this restriction Concurrent
Read, Owner Write PRAMs, or CROW-PRAMs. The ownership restriction seems
to be a very natural framework in which to design exclusive write algorithms.
Similar but not identical notions of “ownership” have appeared in the earlier
lower bound work of Cook et al. [1986], and have also proven useful in practice
for certain cache coherence protocols. (See, e.g., Archibald and Baer [1986].) In
many current architectures of parallel systems, the machines provide a global
memory programming model, implemented using physical hardware in which
every memory cell is local to some processor. Caching or other techniques are
used to ameliorate the cost of access to non-local memory. If nonlocal writes are
prohibited, the necessary cache coherence algorithms are simplified. In fact, a
positive solution to the CROW versus CREW problem discussed in Section 3
would presumably suggest an interesting new approach to the cache coherence
problem.

We give a precise definition of the CROW-PRAM model in Section 2 below.
Most CREW-PRAM algorithms are in fact CROW-PRAM algorithms, or can be
easily modified to be so. It is useful therefore to consider the power of the more
restricted CROW-PRAM model, in order to understand its feasibility as a model
for parallel programming. This is the main goal of our paper. Unexpectedly, this
question turns out to be intimately related to the complexity of deterministic
context-free language (DCFL) recognition.

The recognition problem for a deterministic context-free language L is to
decide, given a word x, whether x [ L. The sequential complexity of this
problem has been well studied, and there are many practical sequential algo-
rithms for solving it in space and time O(n). The small-space and parallel time
complexities of the problem are less well understood. Two main results in these
areas are by von Braunmühl, Cook, Mehlhorn, and Verbeek [Cook 1979; von
Braunmühl et al. 1983], and by Klein and Reif [1988].

Cook [1979] presents a sequential algorithm for the DCFL recognition prob-
lem that runs in polynomial time on a Turing machine using only polynomial in
log n space. This result has been improved by von Braunmühl et al. [1983] who
give Turing machine algorithms with optimal time-space product for any space
bound in the range from (log n)2 to n.
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Building somewhat on the ideas of Cook [1979] and von Braunmühl et al.
[1983], Klein and Reif [1988] present an O(log n) time CREW-PRAM algorithm
for DCFL recognition. (It is known that results of Stockmeyer and Vishkin [1984]
can be combined with the algorithm of Ruzzo [1980] to yield an O(log n) time
algorithm for general CFL recognition, but only on the more powerful CRCW-
PRAM model.)

Our main result is the following characterization of CROW-PRAMs:

THEOREM 1. A language L is accepted by a CROW-PRAM in O(log n) time
(and implicitly with a polynomial number of processors) if and only if L is log-space
reducible to a DCFL.

The class LOGDCFL of languages log-space reducible to DCFLs was first
defined and studied by Sudborough [1978], who showed that it is equal to the
class of languages recognizable in polynomial time by log-space bounded deter-
ministic auxiliary pushdown automata (DauxPDAs), defined by Cook [1971]. Our
proof establishes that L is accepted by a CROW-PRAM in time O(log n) if and
only if L is accepted by a DauxPDA in polynomial time, log space, and with stack
height restricted to O(log2 n), thus giving an alternative proof of a result of
Rytter [1985]; see Theorem 12.

Our result appears to be the first to precisely characterize a parallel time
complexity class (up to constant factors) in terms of a sequential one. For
example, Sudborough’s “hardest DCFL” [Sudborough 1978] provides a natural
example of a problem complete for CROW-PRAM time O(log n). Complete
problems have been discovered by Chandra and Tompa for CRCW-PRAM time
classes [Chandra and Tompa 1990]. We know of no analogous natural problems
that are complete for CREW-PRAM time classes. Following an earlier version of
our paper [Dymond and Ruzzo 1986], Lange and Niedermeier [1993] established
characterizations of other PRAM variants in terms of sequential complexity
classes.

We use the DCFL characterization to demonstrate the stability of CROW-
PRAM complexity classes under definitional changes. For example, it follows
from the DCFL simulation that a CROW-PRAM can be simulated without time
loss by a parallel machine on which there is no global memory, but each
processor contains a single externally visible register, that may be read (but not
written) by any other processor. This model seems to be closer to the way that
some parallel machines have actually been constructed than models with an
independent global memory not associated with any processor.

The DCFL recognition algorithms of von Braunmühl et al. [1983] and Klein
and Reif [1988] are difficult ones, and use superficially different approaches. The
third goal of this paper is to provide a unified approach to both problems, which,
although based on both, we believe to be simpler than either. We obtain both a
small time parallel algorithm and a small space sequential algorithm for DCFL
recognition using different implementations of the same high level procedures.
The small space algorithm provides an improvement to a result by Rytter [1985],
and a technical refinement to the results of von Braunmühl et al. [1983]. Rytter
had shown, using a sequential implementation of Klein and Reif [1988], that it is
possible to obtain a polynomial time, O(log2 n) space algorithm for DCFL
recognition using space mainly as a pushdown store (more precisely, a log n
space DauxPDA with an O(log2 n) bounded pushdown), rather than unrestricted
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O(log2 n) space as in von Braunmühl et al. [1983]. We improve these results by
performing our simulation on a DauxPDA (like Rytter) while attaining a
time-space product similar to that of von Braunmühl et al.

Section 2 presents the CROW-PRAM model, and discusses variations in the
definition. Section 3 presents its simulation by deterministic auxiliary pushdown
automata, establishing CROW-PRAM-TIME(log n) # LOGDCFL. Section 4
introduces some definitions and notation needed in our DCFL recognition
algorithm. Section 5 presents a high-level description and correctness proof of
the DCFL recognition algorithm. Section 6 discusses CROW-PRAM implemen-
tation of the algorithm, establishing the other inclusion needed for Theorem 1,
that is, LOGDCFL # CROW-PRAM-TIME(log n). Finally, Section 7 refines the
simulation of Section 5 to obtain a faster sequential algorithm than that obtained
by combining the CROW-PRAM algorithm of Section 6 with the general
simulation of Section 3.

Further work involving the owned global memory concept in PRAMs has
appeared following a preliminary version of this paper [Dymond and Ruzzo
1986]. Fich and Wigderson [1990] give a lower bound separating EROW and
CROW PRAMs. Rossmanith [1991] introduces and studies Owner Read, Owner
Write PRAMs, showing, for example, that they can do list ranking in O(log n)
time. Nishimura [1994] considers the owner concept in CRCW-PRAMs. Nieder-
meier and Rossmanith [1995a; 1995b] have considered the owner concept with
other PRAM variants. Lin et al. [1997] show that CROW-PRAMs are sufficiently
powerful to execute a variant of Cole’s parallel merge sort algorithm in time
O(log n). Work on further restrictions of the CROW-PRAM model by Lam and
Ruzzo [1989] and Dymond et al. [1996] is described at the end of Section 2.

2. Definition of CROW-PRAMs

We start by defining the CREW-PRAM model we will use. As mentioned above,
most of the details of the definition are not critical. For specificity, we use the
definition of Fortune and Wyllie [1978] (called simply a P-RAM there) which
has: an unbounded global memory and an unbounded set of processors, each
with an accumulator, an instruction counter and an unbounded local memory.
Each memory cell can hold an arbitrary nonnegative integer. The instruction
repertoire includes indirect addressing, load, store, add, subtract, jump, jump-if-
zero, read, fork, and halt. The input is placed in a sequence of special read-only
registers, one bit per register. The read instruction allows any processor to read
any input bit; concurrent reads are allowed. A fork instruction causes a new
processor to be created and to begin executing at a designated location with all
local memory cells zero, and with its accumulator initialized to the value in the
accumulator of its creator. Initially, one processor is active, with its local memory
zero, and the length of the input given in its accumulator. The model accepts if
the initially active processor halts with a one in its accumulator. For technical
reasons, we deviate from Fortune and Wyllie [1978] in that the model is not
defined to reject if two processors attempt to write into the same global memory
location at the same time; rather, such an algorithm is simply not a CREW
algorithm.

These CREW-PRAMs do not have “processor numbers” or “IDs” as a built-in
concept, but we will need them. We adopt the following processor numbering
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scheme. The (unique) processor active initially is numbered 0; the first child
processor created by processor i will be numbered 2i 1 1, its second 2(2i 1
1), . . . , and its kth, k $ 1 will be numbered 2k21(2i 1 1). This corresponds to
the natural embedding of an arbitrary tree (the processor activation tree) into a
binary tree by the rule “eldest child becomes right child, next younger sibling
becomes left child.” Reverse preorder traversal of the activation tree and the
binary tree are identical. As we will see, many other numbering schemes will also
work; this one is fairly natural. Processors do not automatically “know” their
number, but it is easy to program them to compute it, if needed.

Definition. A CROW-PRAM algorithm is a CREW-PRAM algorithm for
which there exists a function owner(i, n), computable in deterministic space
O(log n), such that on any input of length n processor p attempts to write into
global memory location i only if p 5 owner(i, n).

The intuitive definition given earlier said that the owner function should be
“simple”. We have particularized this by requiring that it be log space comput-
able and that it be oblivious, that is, independent of the input, except for its
length. We have not required that the model detect ill-behaved programs, that is,
ones that attempt global writes in violation of the ownership constraint. Such
programs simply are not CROW programs. These seem to be natural choices, but
we will also show that our main results are fairly insensitive to these issues. We
could generalize the model in any or all of the following ways:

G1. Allow the owner function to depend on the input.

G2. Allow the owner function to depend on time.

G3. Allow “bounded multiple ownership”, that is, owner(i , n) is a set of size O(1) of
processor numbers.

G4. Allow ill-behaved programs, by defining the model to halt and reject if an attempted
write violates the ownership constraint.

G5. Allow any processor numbering scheme that gives processors unique numbers and
allows one to compute in logarithmic space the parent of a given processor p, the
number of older siblings it has, and the number of its kth child.

G6. Allow the owner, parent, and sibling functions above to be computable by a
deterministic log space auxiliary pushdown automaton that runs in polynomial time.

Alternatively, we could restrict the model in any or all of the following ways:

R1. Require that the owner function be the identity—owner(i , n) 5 i . This is equivalent
to saying that the machine has no global memory; instead it is a collection of
processors each with a private local memory and one globally readable “communica-
tions register.”

R2. Require that processors use only O(1) local memory locations.

R3. Require that the machine be write oblivious, that is, the times and locations of writes
to global memory are independent of the input, except for its length.

One consequence of our results is that CROW-PRAMs, even ones satisfying only
the relatively weak conditions G1–G6, can be simulated by CROW-PRAMs
satisfying the strict conditions R1–R3, with only a constant factor increase in
time and a polynomial increase in number of processors.

Is it possible that CREW- and CROW-PRAMs have equivalent power? On the
positive side, conditions G1–G6 are fairly generous. It is difficult to imagine a
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protocol by which a PRAM algorithm could achieve write exclusion that would
not be covered by these. For example, note that a general CREW-PRAM
algorithm can be considered to be a CROW-PRAM algorithm where the owner
function is allowed to be input- and time-dependent (conditions G1 and G2
above) and in some sense computable by a CREW-PRAM in real time. We know
that, say, CREW-PRAM time O(log n) can be simulated by a logarithmic space
deterministic auxiliary pushdown automaton that runs in time nO(log n), so real
time CREW-PRAM computable functions may not be that different from nO(1)

DauxPDA computable ones. Thus it seems possible that time on CROW-PRAMs
and CREW-PRAMs might be identical. At least, this provides some intuitive
support for the empirical observation that most known CREW-PRAM algo-
rithms are CROW-PRAM algorithms.

In one context, we know the two models are equivalent. Following the
appearance of an extended abstract of this paper [Dymond and Ruzzo 1986],
Ragde (personal communication; see also Fich [1993] and Nisan [1991]) ob-
served that nonuniform CROW-PRAMs, that is, ones having arbitrary instruc-
tions, exponentially many processors initially active, and allowing different
programs for each value of n, running in time t are equivalent to Boolean
decision trees of depth 2 t. Nisan [1991] established that for any set recognized by
a (nonuniform) CREW-PRAM in time t(n) 5 O(log n), for each n there is a
equivalent Boolean decision tree problem of depth 2 t(n). Taken together these
results show time on the two models is the same up to a constant factor in the
nonuniform setting. This leaves open the stronger conjecture that any set
recognized by a CREW-PRAM in time log n can be recognized on a CROW-
PRAM in time O(log n), both of the ordinary, uniform variety and both using
polynomially many processors. Note that Nisan’s simulation of CREW by CROW
uses nonuniformity in a fundamental way and uses 22 t(n)

initially active proces-
sors, and that in his nonuniform model all languages are recognizable in
O(log n) steps.

In a few restricted settings, we know the two (uniform or nonuniform) models
to be different. Suppose processors 1 through n are initially active, and each
knows one bit bi of the input. In Fortune and Wylie’s definition of CREW-
PRAM acceptance, a write collision causes the model to halt and reject. Under
this definition, the language 0*10* can be recognized in one step by a (nonuni-
form) CREW-PRAM: any processor having a 1 bit writes it into global location
0. If the input contains two or more 1’s, the resulting write conflict correctly
causes the input to be rejected. However, Marc Snir (personal communication)
has shown that a CROW-PRAM requires V(log n) steps to solve this problem
from the same initial state. Similarly, a (nonuniform) CREW-PRAM using our
definition of acceptance, where write conflicts are strictly disallowed, can be
separated from the corresponding CROW-PRAM by the problem of computing
the “or” of n bits, given that at most one of them is 1. (This has been called a
“partial domain” problem by Fich, in contrast to the more usual situation where
an algorithm is required to produce a correct answer on all n-bit input
sequences.) The CREW algorithm given above also solves this problem in one
step, and no write conflict can happen since there is at most one 1 bit. Snir’s
result implies that a CROW-PRAM requires time V(log n) for this problem
(even nonuniformly).
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Snir’s result, however, does not separate CREW from CROW either in the
uniform case (where V(log n) steps are required to activate n processors in both
models) or under our definition of acceptance where write conflicts are strictly
disallowed (independent of uniformity). In the latter case, the results of Cook et
al. [1986] show that even a CREW-PRAM requires time V(log n) to test whether
its input contains at most one 1 bit.

The only full domain problem known to us where (uniform) CREW-PRAMs
seem more powerful that CROW-PRAMs is the recognition problem for unam-
biguous context-free languages. For this problem, Rytter [1985] has given an
O(log n) CREW-PRAM algorithm that appears to use the power of nonowner
exclusive writes in a fundamental way. Loosely speaking, it seems that the
unambiguity of the underlying grammar allows one to repeatedly exploit a
feature like the partial domain “or”.

While CROW-PRAMs appear to be nearly as powerful as CREW-PRAMs, it
is interesting to compare them to a possibly weaker parallel model, the parallel
pointer machine of Dymond and Cook [1980]. PPMs consist of an unbounded
pool of finite state transducers, each with a finite set of pointers to other
processors. A PPM operates by sensing the outputs of its neighboring processors,
and moving its pointers to other processors adjacent to its current neighbors.
Cook [1981] proposed such a model as an example of the simplest possible
parallel machine with “variable structure.”

Lam and Ruzzo [1989] establish that time on PPMs is linearly related to time
on a restricted version of the CROW-PRAM, on which doubling and adding one
are the only arithmetic operations permitted. (In fact, they also showed a
simultaneous linear relationship between the amounts of hardware used on the
two machines.) Our conjecture that the CROW-PRAM’s ability to access two
dimensional arrays in constant time cannot be directly emulated on a CROW-
PRAM whose arithmetic capability is so limited has been proved recently by
Dymond et al. [1996]. Since two dimensional arrays appear to play an important
part in the DCFL simulation algorithm of Section 6, this suggests that quite
different techniques would be needed to recognize DCFLs in time O(log n) on
the PPM, if this is indeed possible. An analogous nonconstant lower bound on
two dimensional array access was proved for sequential unit cost successor
RAMs by Dymond [1979].

3. Simulation of CROW-PRAMs by DauxPDAs

In this section, we will prove the first half of Theorem 1, namely:

THEOREM 2. Any set L recognized in time O(log n) on a CROW-PRAM is in
LOGDCFL. More specifically, L is recognizable by a polynomial time, log space
bounded deterministic auxPDA whose pushdown height is bounded by O(log2 n).

Recall that LOGDCFL is the class of languages log space reducible to
deterministic context-free languages. Sudborough [1978] defined the class, and
characterized it as the set of languages recognized in polynomial time on a
logarithmic space deterministic auxiliary pushdown automaton.

The main construction is similar to analogous ones given by Pratt and
Stockmeyer [1976], Fortune and Wyllie [1978] and Goldschlager [1982] showing

23PRAMs with Global Memory and Language Recognition



that PRAM time log n is contained in DSPACE(log2 n). We define three
mutually recursive procedures:

state(t, p) returns the state of processor p at time t, i.e., after the tth
instruction has been executed.

local(t, p, i) returns the contents of location i of the local memory of
processor p at time t.

global(t, i) returns the contents of global memory location i at time t.
Each depends only on the values of these procedures at time t 2 1, so the
recursion depth will be at most t. Furthermore, each procedure will require only
O(log n) bits of local storage, so by well known techniques these procedures can
be implemented on a logarithmic space deterministic auxiliary PDA whose
pushdown height is at most O(log2 n). This much of the proof is essentially the
same as in Fortune and Wyllie [1978], Goldschlager [1982], and Pratt and
Stockmeyer [1976]. The main novelty with our proof is that our algorithm runs in
polynomial time, rather than time n log n as in the earlier results. This is possible
because the owner function allows us in global(t, i) to directly identify the only
possible writer of global memory location i at time t 2 1. This allows each of our
procedures to make only O(1) recursive calls per invocation, which gives a
polynomial running time. If we were simulating a general CREW-PRAM algo-
rithm, it would appear necessary to check all processors at time t 2 1 to see
whether any of them wrote into i, and if so, whether more than one of them did.
This appears to require more than polynomial time.

Extensions to these basic procedures to accommodate generalizations G1–G6
are quite direct, except for G4, ill-behaved programs. G4 is also possible, but
more delicate, since in effect we must check at each step that none of the many
nonowners attempts to write to a global cell, while maintaining the property that
our algorithm makes only O(1) recursive calls per invocation.

PROOF OF THEOREM 2. Detailed descriptions of the three procedures follow:
A typical PRAM instruction is “global indirect store l”, whose meaning is “store
the accumulator into the global memory location whose address is given by the
contents of local memory location l”. We will not describe the rest of the
PRAM’s instruction set in great detail; see Fortune and Wyllie [1978].

The state of processor p at time t is an ordered pair containing the instruction
counter, and the contents of the accumulator of p at the end of the tth step. We
define three auxiliary functions accumulator(S), instruction-counter(S), and in-
struction(S), that, for any state S, give the accumulator portion of S, the
instruction counter portion of S, and the instruction pointed to by the instruction
counter of S, respectively. Assume that a value of 0 in the instruction counter
designates a “halt” instruction, which by convention will be the instruction
“executed” in each step before processor p is activated and after it has halted.
Also, assume that instruction (S) will be a “halt” instruction if it is not otherwise
defined, for example, after a jump to a location beyond the end of the program.
It is convenient to assume that the local memory of a processor is set to zero as
soon as it halts, but its accumulator retains its last value. We assume that
processor 0 initially executes instruction 1, and that a processor activated by a
“fork l” instruction initially executes instruction l. We also assume that each
processor maintains in local memory location 0 a count of the number of “fork”
instructions it has executed. (This count should be initially 0, and is incremented
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immediately after each “fork” is executed.) It is easy to modify any PRAM
algorithm to achieve this. We also use two functions parent(p) and sibling-
count(p) that, for any processor number p, return the processor number of the
parent of p, and the number of older siblings of p, respectively. For the processor
numbering scheme we have chosen these functions are very easy to compute.
Namely, if k is the largest integer such that p is evenly divisible by 2k, then
sibling-count(p) 5 k, and parent(p) 5 p/ 2k11.

procedure Simulate-CROW-PRAM
comment: Main Program.
begin

let T 5 c log n comment: An upper bound on the running time of the
PRAM.

if state(T , 0) 5 (0, 1) then accept
end

function global(t , i)
comment: Returns the contents of global memory location i at time t .
begin

if t 5 0 then return 0
S ;5 state(t 2 1, owner(i))
if instruction(S) 5 “global indirect store l” and

local(t 2 1, owner(i), l) 5 i
then return accumulator(S)
else return global(t 2 1, i)

end

function local(t , p , i)
comment: Return the contents of local memory location i of processor p at time

t .
begin

if t 5 0 then return 0
S ;5 state(t 2 1, p)
case instruction(S):

“halt” ; return 0
“local store i” ; return accumulator(S)
“indirect local store l” ; if i 5 local(t 2 1, p , l)

then return accumulator(S)
end
return local(t 2 1, p , i)

end

function state(t , p)
comment: Return the state of processor p at time t .
begin

if t 5 0 then
if p 5 0

then comment: AC is initially length of input.
return (1, n)

else comment: All other processors are idle at time 0.
return (0, 0)

S ;5 state(t 2 1, p)
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AC ;5 accumulator(S)
IC ;5 instruction-counter(S)
case instruction(S):

“load l” ; return (IC 1 1, local(t 2 1, p , l))
“indirect load l” ; return (IC 1 1, local(t 2 1, p , local(t 2 1, p , l)))
“global indirect load l”

; return (IC 1 1, global(t 2 1, local(t 2 1, p , l)))
“add”, “sub”, “read”

; similar to “load”
“store”, “fork l” ; return (IC 1 1, AC)
“jump l” ; return (l , AC)
“jump-if-zero l” ; if AC 5 0

then return (l , AC)
else return (IC 1 1, AC)

“halt” ; comment: See if parent activated p in this step.
p9 ; 5 parent(p)
S9 ; 5 state(t 2 1, p9)
if instruction(S9) 5 “fork l” and

local(t 2 1, p9 , 0) 5 sibling-count(p)
then return (l , accumulator(S9))
else comment: p not activated; just pass AC .

return (0, AC)
end

end

Correctness of the simulation is a straightforward induction on t. Implementa-
tion of the procedures on an DauxPDA is also easy. Note that each procedure
has local variables requiring at most O(log n) bits of storage, so the DauxPDA
needs only that much space on its work tape. The recursion depth is equal to the
PRAMs running time, that is, O(log n), so the pushdown height will be at most
the product of those two quantities, that is, O(log2 n). Each procedure makes
at most O(1) recursive calls per recursive level, so the running time
of the simulation is (O(1))O(log n) 5 nO(1). This completes the proof of
Theorem 2. e

The simulation given above is easily adapted to accommodate the generaliza-
tions G1–G6 to the definition of CROW-PRAMs proposed earlier. Allowing a
more general owner function, say depending on the input or on time (G1, G2) is
trivial—just add the appropriate parameters at each call. Using a different
processor numbering convention is equally easy, provided that parent( p), and
sibling-count( p) are easily computable (G5). Allowing these functions to be log
space and polynomial time DauxPDA computable will not effect the asymptotic
complexity bounds (G6). Bounded multiple ownership (G3), is also easy—in the
global procedure, where we check whether the owner of global memory cell i
wrote into it, we would now need to check among the set of owners to see if any
of them wrote. Since this set is only of size O(1), the running time would still be
polynomial.

Changing the procedures to accommodate ill-behaved PRAM algorithms (G4)
is more subtle. The first change required is that we must now determine the exact
running time Ta of the algorithm. Using some upper bound T . Ta might cause
us to falsely reject due to an invalid global store by some processor after Ta. The
value of Ta is easily determined by evaluating state(t, 0) for t 5 0, 1, . . . until
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processor 0 halts and accepts. (If it does not accept, there is no need to worry
about ownership violations.) The second, and more interesting change, is to
check all “store” instructions by all active processors p up to time Ta, basically by
doing a depth first search of the processor activation tree.

procedure Simulate-G4-CROW-PRAM
comment: Modified Main Program, incorporating G4.
begin

t ;5 0
while instruction(state(t , 0)) Þ “halt” do t ;5 t 1 1
if accumulator(state(t , 0)) Þ 1 then halt and reject
Ta ;5 t
treewalk(0, 0)
halt and accept

end

procedure treewalk(t , p)
comment: “Visit” processor p at each time t between t and Ta, and

(recursively) any descendants created during that interval. For each,
verify that no non-owner writes occur.

begin
for t ;5 t to Ta do

S ;5 state(t , p)
if instruction(S) 5 “global indirect store l” and

owner(local(t 2 1, p , l)) Þ p
then halt and reject; comment: Owner violation; quit.

if instruction(S) 5 “fork l”
then

p9 ;5 child’s processor number
treewalk(t 1 1, p9)

end

Correctness of this procedure is argued as follows: If the CROW-PRAM
algorithm has no owner write violations, then the procedure is correct, as before.
On the other hand, suppose there is a violation, and the first violation occurs at
time t by some processor p. Our procedures correctly determine the state of the
PRAM up until time t. After time t, the state of the PRAM is undefined,
whereas our procedure calls return values as if the violation had not occurred.
However, eventually treewalk will detect the fault. It may reject when evaluating
state(t9, p9) for some t # t9 # Ta with p9 Þ p, but on a branch of the processor
activation tree that happens to be explored before p ’s branch. At the latest,
however, it will detect the fault after evaluating state(t, p). We can count on this,
since our simulation is faithful up to time t 2 1, and the state of the PRAM at
that time contains all the information we need to deduce that processor p is
active at time t, and about to execute a “store” in violation of the ownership
constraint. Hence, eventually we will evaluate state(t, p), detect the fault, and
halt.

The running time of this algorithm is still polynomial, since treewalk(2, p) is
called exactly once for each active processor p, and there are at most polynomi-
ally many processors to be checked.

Thus, we have shown the following:
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THEOREM 3. Any set recognized in time O(log n) on a generalized CROW-
PRAM, that is, one satisfying generalizations G1–G6 of the basic definition, is in
LOGDCFL.

This completes the proof of the “only if” direction of Theorem 1. The converse
is shown in the following sections.

4. DPDA Definitions and Notation

We assume familiarity with deterministic pushdown automata (DPDA), as
defined, for example, by Harrison [1979], as well as standard variations on this
model.

Our DPDAs have state set Q, input alphabet S and pushdown alphabet G. The
empty string is denoted by e, the length of string S by uS u, and string concatena-
tion by “ z ”. At each step either the current topmost pushdown symbol is popped
off the pushdown, or a single new symbol is pushed onto the pushdown above the
current symbol. We assume the transition function d is defined for every possible
state, input symbol and pushdown symbol. Thus

d: Q 3 ~S ø $e%! 3 G 3 Q 3 ~G ø $pop%! .

The DPDA begins in state q0 with g [ G as the initial pushdown contents, with
the input head at the left of the input, and accepts by entering state qa with g as
the only pushdown contents after having advanced the input head to the right
end of the input. We assume the DPDA never fails to read all the input and
always empties its pushdown of all symbols except g at the end of the computa-
tion. Furthermore, we assume that for all s [ G there is some transition pushing
s. By standard techniques (see, e.g., Harrison [1979, Sect. 5.6]), there is a
constant c . 0 such that the DPDA can be assumed to have the above
properties and to halt in time c z n at most, with maximum pushdown depth n,
on any input of length n.

The efficient simulation of a DPDA to be described makes use of the concepts
of instantaneous description and surface configuration [Chomsky 1962; Cook
1971], both of which are defined relative to a particular input x 5 x0 x1

. . . xn21,
xi [ S. A surface configuration (or surface, for short) is a triple (q, i, s) where q
is a state, i is an integer coded in binary between 0 and n representing the
position of the input head, and s [ G represents the topmost pushdown symbol.
The set of all surface configurations is denoted U. An instantaneous description
(id) of the DPDA is a pair ^u, S& where u is a surface configuration and S [ G*
is a string representing all but the topmost symbol of the pushdown (with
bottommost pushdown symbol represented by the rightmost position of S). For
convenience, we refer to S as the stack. Thus, the initial id is ^(q0, 0, g), e& and
the unique accepting id is ^(qa, n, g), e&. An id where the stack component is e
is called an e-id. (Note that an e-id corresponds to a pushdown of one symbol, in
the surface configuration.) For an id I 5 ^u, S&, we define height(I) to be uS u and
define projection functions surface(I) 5 u, and stack(I) 5 S.

A surface configuration u 5 (q, i, s) is said to be popping if the transition
defined for q, xi and s pops the pushdown, and is pushing otherwise. An id is
popping or pushing as its surface configuration is popping or pushing.
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We write I1 £ I2 if id I2 follows from id I1 in one step of the DPDA on input
x, I1 £t I2 if I2 follows I1 in exactly t steps, and I1 £* I2 if I1 £ t I2 for some t $ 0.

By our definition, ids only represent configurations of the machine with at
least one pushdown symbol; if I1 is a popping e-id, there is no id I2 such that I1
£ I2. Thus, a popping e-id is said to be blocked. It should be noted that a blocked
id is not necessarily terminal, especially if it represents the final point in a
subcomputation; see Proposition 6.

For convenience, we assume the final accepting configuration is defined to
pop, so that it will be a blocked id. Transitions from configurations having head
position n, that is, past the last input character, are defined only for e moves. We
denote by ^u, S1& z S2 the id ^u, S1 z S2&, that is, ^u, S1& modified so that the
symbols of S2 are placed below the symbols of S1 on the stack. We illustrate
some of the notation with three useful propositions.

Proposition 4 (Bottom padding). For all surface configurations u, v and
strings S1, S2, S3 [ G*

^u, S1& £k ^v, S2& f ^u, S1& z S3 £k ^v, S2& z S3.

Note that the converse is not true in general, but is true in the following case.

Proposition 5 (Bottom unpadding). For all surface configurations u, v and
strings S1, S2, S3 [ G*, if

^u, S1 z S3& £k ^v, S2 z S3&

and

; j # k^u, S1 z S3& £ j I f height~I! $ uS3u,

then

^u, S1& £k ^v, S2& .

Proposition 6 (Block continuation). For all surface configurations u, v, w and
strings S1, S2, S3 [ G*

^u, S1& £ j ^v, e& and ^v, S2& £k ^w, S3& f ^u , S1 z S2& £k1j ^w, S3& ,

even if ^v, e& is blocked.

In addition to the restrictions on DPDAs discussed above, we assume that no
id can occur twice in a computation of the DPDA when started at any given id
[Harrison 1979, Section 5.6]. This justifies using ids as references to particular
points in computations. For example, if I £ t J, we could refer to the id J to
uniquely identify the point in the computation t steps after id I.

5. The Basic DPDA Simulation Algorithm

We now will describe a procedure to efficiently simulate a DPDA on input x of
length n. Our algorithm is motivated by the “repeated doubling” idea used, for
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example, by Fortune and Wyllie [1978] and Wyllie [1979] for simulation of space
bounded computations, and by von Braunmühl et al. [1983] and Klein and Reif
[1988], for simulation of pushdown automata. Our approach builds on the ideas
of Klein and Reif, although there appears to be no exact correspondence
between their functions and ours.

We illustrate the idea of repeated doubling and motivate the actual functions
to be introduced later by first describing a “straw man” function Dk. Suppose we
have computed for all surface configurations u [ U and all strings S [ G*, the
2k step transition function Dk(^u, S&), that is, ^u, S& £2k

Dk (^u, S&). Then we
could easily compute the 2k11 step transition function Dk11 by composing Dk

with itself:

Dk11~^u, S&! 5 Dk~Dk~^u , S&!! .

However, efficiency considerations preclude defining Dk for all possible stacks.
Observing that in a computation of 2k steps only the top 2k symbols of the stack
are accessed, S can be “split” by writing S 5 S1 z S2 where S2 contains
everything after the first 2k symbols of S. (S2 will be empty if S has length # 2k.)
Then the above could be rewritten

Dk11~^u, S1 z S2&! 5 Dk~Dk~^u, S1&! z S2! .

Although this could be used to limit the number of stacks considered to those of
length at most 2k, there are still too many for a polynomial number of processors
to compute in O(log n) time. A key observation in constructing an efficient
algorithm is that the number of stacks that need to be considered can be much
more limited than suggested above. It will be shown that it is sufficient to
consider a polynomial-sized set of stacks, provided we use both stack splitting
and a somewhat more complicated doubling technique. To simplify the set of
stacks considered, we compute a function Dk in place of Dk described above, that
gives a particular id reached after at least 2k steps rather than exactly 2k steps.
The advantage is that we can use appropriately chosen break points to keep the
stacks simple.

We first describe the algorithm assuming that all of the stacks are explicitly
manipulated. In Section 6, we describe a PRAM implementation that avoids this
by using a more succinct representation than the stacks themselves. Two
functions on ids are used, Dk and LOWk, each of which is defined inductively on
the parameter k. For an id I1, Dk (I1) returns an id I2 that results after t steps of
the DPDA starting in id I1. The value of t is implicitly determined by the
algorithm itself, but it will be shown that t $ 2k, unless a blocked id is reached
from I1 in less than 2k steps—in this case t is the number of steps needed to
reach the blocked id. Formally, for ids I1 and I2, Dk will satisfy:

Dk~I1! 5 I2 f I1 £ t I2 and either t $ 2k or I2 is blocked. (P1)

The function LOWk(I1) returns the id I2 that is the id of lowest height among
all ids in the computation from I1 to Dk(I1) inclusive, and if there is more than
one id of minimal height in this computation, is the earliest such id, that is, the
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one closest to I1. More formally,

LOWk~I1! 5 I2 N for some t1, t2 $ 0:

~a! I1 £ t1 I2 and I2 £ t2 Dk~I1! ,
~b! @0 # t , t1, I1 £ t J f height~ J! . height~I2! , and
(c) @0 , t # t2, I2 £ t J f height~ J! $ height~I2!

(P2)

Given these definitions, to determine if the DPDA accepts x, it is sufficient to
check whether

D log2 c z n~^~q0, 0, g! , e&! 5 ^~qa, n, g! , e& ,

since the DPDA runs in time at most c z n on any input of length n.
As discussed above it is necessary to restrict the number of stacks on which Dk

must be defined. By careful definition of D the information needed to compute
Dk11 from Dk can be restricted to consideration of ids whose stack contents are
suffixes of stacks produced by Dk operating on e-ids, of which there are only
polynomially many, O(n) in fact. (Recall that we have fixed on a particular input
x of length n.) To state this more precisely, we define SSk (mnemonic for “simple
stacks”) to be the set of strings over G* that represent the bottom portions of
stacks in ids in the range of Dk operating on all e-ids, that is,

SSk 5 $S [ G* uS is a suffix of stack~Dk~^u, e&!! for some u [ U% .

Because uU u 5 O(n), SSk contains O(n2) elements— one for each u [ U and
for each suffix of the unique stack determined by u. To motivate this definition
of SSk, consider the diagram in Figure 1, plotting stack height versus time in a
part of a computation of the DPDA. The diagram shows a stack S1 built up by a
Dk-computation starting from ^u, e&. There must be a complementary computa-
tion, starting at ^v, S1& that eventually empties this stack. In Figure 1, part of S1
is removed in the computation starting at ^v, S1& and continuing to ^w, S2&. The
rest of S1 (consisting of S2) is removed later beginning at ^y, S2&. Note that S2 is
a suffix of S1—which illustrates why SSk contains not only stacks arising from Dk

operating on e-ids, but also all suffixes of such stacks.

FIG. 1. Illustrating SSk.
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We will show later that for k $ 0, the stacks in SSk11 are further restricted in
that each is the concatenation of two strings in SSk, that is,

SSk11 # SSk z SSk for k $ 0. (P3)

For technical reasons, it will be important to maintain the information specifying
how a stack in SSk11 is split into two stacks from SSk, rather than simply treating
stacks as undifferentiated character strings. In the interest of simplicity, however,
we will largely ignore this issue in the current section. It will be treated fully in
Section 6.

In arguing the correctness of our algorithm, we prove the following by
induction on k.

CORRECTNESS CONDITION. Dk and LOWk are well-defined for all
ids with stacks from SSk; and Dk, LOWk and SSk satisfy properties (p)
(P1), (P2) and (P3) above, respectively.

The crux of our algorithm and its correctness proof is captured by the
following lemma, which shows that we can progress at least 2k steps in the
simulation while simultaneously restricting attention to a limited set of stacks, by
applying Dk only at selected low points.

LEMMA 7 (THE LOW-D LEMMA). Let I 5 ^u, S& be an id with S [ SSk, let L 5
LOWk (I), and let J 5 Dk(^surface (L), e&) z stack(L). Then

(a) I £ t J for some t $ 0,
(b) if J is unblocked, then t $ 2k, and
(c) stack ( J) [ SSk z SSk.

PROOF. See Figure 2, which plots stack height versus time in the computation
of the DPDA. (In this figure, the notation “Dk (I) $ 2k” means that id Dk(I) is
at least 2k steps past I. Similar abuse of notation appears in subsequent figures.)
There are three distinct cases. In the first and simplest (not shown in the
diagram), the DPDA blocks (attempting to pop when stack height is zero) before
completing 2k steps. In the second, the Dk-computation from ^surface(L), e&
blocks before completing 2k steps, but we will argue that the overall LOW-D
computation does complete at least 2k steps. In the third case, none of the
subcomputations block.

FIG. 2. The LOW-D Lemma.
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Part (a) follows directly from properties (P1) and (P2).
From correctness property (P2), L is the lowest point in the computation from

I to L (at least), so stack(L) must be a suffix of stack(I) 5 S, which is in SSk by
assumption. Thus, stack(L) is in SSk. From the definition of SSk,
stack(Dk(^surface(L), e&)) is also in SSk. Thus, stack( J) is in SSk z SSk,
satisfying (c).

Now assume J is unblocked. Let M 5 Dk(^surface(L), e&), hence J 5 M z
stack(L). If M is itself unblocked, then from the correctness property (P1) for
Dk, J is at least 2k steps past L and part (b) follows. On the other hand, if M is
blocked but J is unblocked, then stack(L) must have non-zero height. In this case
J cannot precede Dk(I), since otherwise the id succeeding J would be a point of
lower height than L in the range from I to Dk(I), inclusive, contradicting
correctness property (P2). It follows that Dk(I) is unblocked, and part (b) again
follows from correctness property (P1). e

The expression for J in the lemma above occurs so frequently that it is
convenient to introduce a special notation for it. We define D̃k(L) to be
Dk(^surface(L), e&) z stack(L). For example, the LOW-D Lemma shows that
D̃k(LOWk(I)) either progresses 2k steps or blocks.

Note that for I, L, J as in the LOW-D Lemma, if height(L) . 0, then J is
necessarily unblocked, and so D̃k(LOWk(I)) necessarily progresses 2k steps.

The LOW-D Lemma applies to an id I only when its stack is in SSk. We will
need an analogous result when I has a stack consisting of two or three segments
each from SSk. The desired low point in such a stack is found by the following
Iterated LOW function. It will be useful in Section 7 to define the function to
handle any constant number d of stack segments rather than just three. See
Figure 3.

function I-LOWk(I ; id) returns id
comment: Assuming I [ U 3 (SSk)d, return the id of a “LOWk

point” of nonzero height in a computation from I , if one exists. If
not, return the resulting e-id.

begin

FIG. 3. I-LOWk.
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let I 5 ^u , S1 z S2 z . . . z Sd& , where S1, S2, . . . , Sd [ SSk

for i ;5 1 to d do
^u , S& ;5 LOWk(^u , Si&)
if height(^u , S&) . 0

then return ^u , S z Si11 z Si12 z . . . z Sd&
comment: Every segment emptied.
return ^u , e&

end

The desired generalization of the LOW-D Lemma is the following:

LEMMA 8 (THE I-LOW-D LEMMA). Let I 5 ^u, S& be an id with S [ (SSk)d,
and let J 5 Dk (I-LOWk (I)). Then

(a) I £ t J for some t $ 0,
(b) if J is unblocked, then t $ 2k, and
(c) stack( J) [ (SSk)d11.

PROOF. Part (a) follows from properties (P1) and (P2). Let L 5 I-LOWk(I).
Since I-LOWk modifies the stack of its argument only by calling LOWk, it
follows that stack(L) is a suffix of stack(I), and hence by hypothesis is in (SSk)d.
The stack segment added by the call to D̃k is in SSk, establishing part (c).

The key point in establishing (b) is that L 5 I-LOWk(I) is a “LOWk point,”
hence the LOW-D Lemma can be applied. Specifically, let i9 be the last value
taken by i in the for loop, and let u9 be the value taken by u before the last call
to LOWk. Let I9 5 ^u9, Si9&, and L9 5 LOWk(I9). Note that L9 is the last value
taken by ^u, S& before return. Then, letting J9 5 D̃k(L9), and T 5 Si911 z . . . z
Sd, it is easy to see that I £* I9 z T, L 5 L9 z T, and J 5 J9 z T. Now, the
LOW-D Lemma applies to I9, L9, J9. In particular, if J9 is unblocked, then it is
at least 2k steps past I9, hence J is at least 2k past I, satisfying part (b). Thus, it
suffices to show that J9 is unblocked whenever J is unblocked. There are two
cases to consider. First, suppose I-LOWk returns because height(L9) . 0. Then,
as noted earlier, J9 will necessarily be unblocked. On the other hand, if I-LOWk

returns with height(L9) 5 0, then by inspection i9 5 d; hence, T 5 e, so J9 5 J.
Thus, in either case, J is unblocked if and only if J9 is unblocked, and part (b)
follows. e

The I-LOWk function given above (and those that depend on it) is technically
not well defined, since we do not indicate how to determine the decomposition of
its stack parameter into d segments from SSk. Different decompositions could
give different results. In brief, as suggested in the remark following Property
(P3), the algorithm will retain this decomposition information when the stacks
are initially computed. In the interest of simplicity, detailed explanation of this
issue is deferred to the next section. Note, however, that the proof of Lemma 8 is
valid no matter which decomposition is used in I-LOWk, and I-LOWk will be well
defined once we have specified the method for decomposing the stacks in the
next section.

In defining LOWk, it will be convenient to use an auxiliary function “min”,
that takes as argument a sequence of ids and returns the id of minimal height in
the sequence. If there are several of minimal height, it returns the leftmost; for
our applications, this will always be the earliest in time.
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CONSTRUCTION. We are finally ready to define Dk and LOWk for all k $ 0.

[Correctness. Following the parts of the definitions of the functions, we
provide, enclosed in square brackets, appropriate parts of the correctness
arguments needed to establish that Dk, LOWk, and SSk satisfy (p).]

BASIS (k 5 0). For all ids I with height(I) # 1:

D0~I! 5 H J if ?J such that I £ J
I otherwise ~i.e., if I is blocked! ,

and

LOW0~I! 5 min~I, D0~I!! .

[Correctness. By our assumption that for all s [ G there is some state pushing
s, we see that SS0 must be exactly G ø {e}, which is exactly the set of stacks in
the domain of D0 and LOW0. By inspection, for all I in this domain I £ t D0(I),
where t $ 20 unless D0(I) is blocked. Thus (P1) is satisfied. (P2) holds because
there are only two points in the range of points under consideration, and min
selects the lower of these. (P3) holds vacuously.]

The inductive definition of Dk11 and LOWk11 is done in two phases, first
considering ids with empty stacks, which determine SSk11, then considering ids
with stacks in SSk11 2 {e}.

INDUCTIVE DEFINITION OF Dk11 AND LOWk11 ON EMPTY STACKS. (See Figure
4.) For k $ 0, and for all u [ U:

Dk11~^u, e&! 5 D̃k~LOWk~Dk~^u, e&!!! ,

and

LOWk11~^u, e&! 5 ^u , e& .

Basically, this procedure computes D-LOW-D. Assuming the computation
does not block, the id reached by the first D is 2k steps past the starting point,
and satisfies the hypothesis of the LOW-D Lemma. Thus, the subsequent

FIG. 4. Dk11(^u, e&).

35PRAMs with Global Memory and Language Recognition



LOW-D pair achieves another 2k steps progress, and keeps the resulting stack
simple (i.e., in SSk11). This argument is the main ingredient in the correctness
proof, below. The case where the initial id has a non-empty stack will turn out to
be similar, except that we need to precede this with another LOW or two.

[Correctness. Let I 5 Dk(^u, e&). Note that by the definition of SSk,
stack(I) [ SSk, so the hypothesis of the LOW-D Lemma is satisfied by I. If
Dk11(^u, e&) is blocked, then (P1) is immediately satisfied. If it is not blocked,
then neither is I, so I is at least 2k steps past ^u, e&, by property (P1). Applying
the LOW-D Lemma, D̃k(LOWk(I)) is at least 2k steps past I, hence 2k11 past
^u, e&. Thus, Dk11(^u, e&) also satisfies (P1). Clearly, ^u, e& is the earliest id of
height zero at or after itself, so property (P2) is trivially satisfied by
LOWk11(^u, e&). Property (P3) follows directly from the LOW-D Lemma.]

To complete the definition of Dk11 and LOWk11, we must now define them
on all ids with nonempty stacks S [ SSk11 (as defined by Dk11’s action on
e-ids).

INDUCTIVE DEFINITION OF Dk11 AND LOWk11 ON NON-EMPTY STACKS. Using
I-LOWk we define Dk11(I) and LOWk11(I) for all I 5 ^u, S& with u [ U, and
S [ SSk11 2 {e} as the result of the following computations (see Figure 5):

J 5 D̃k~I-LOWk~I!! ,

Dk11~I! 5 D̃k~I-LOWk~ J!! ,

and

LOWk11~I! 5 min~I-LOWk~I! , I-LOWk~ J!! .

[Correctness. Property (P1) follows immediately by applying the I-LOW-D
Lemma twice. Property (P2) is satisfied by LOWk11(I) since the two points to
which min is applied subsume all the low points of all the subcomputations
comprising Dk11. Property (P3) is inapplicable.]

FIG. 5. Dk11(I), stack(I) Þ e.
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We remark that from the I-LOW-D Lemma stack( J) above may consist of
three stack segments, even though stack(I) contains only two. This is the main
reason for defining I-LOWk on more than two stack segments.

Finally, we remark that I-LOWk is the identity function on ids with empty
stack, and is equal to LOWk when d 5 1. Thus, when stack(I) 5 e, the above
definition reduces to exactly the same computation as given earlier for the empty
stack case, since J 5 D̃k(I-LOWk(I)) 5 Dk(I) [ U 3 (SSk)1 in this case.
Similarly, this definition of LOWk11(I) also suffices in the case when stack(I) 5
e. Thus, one could use these more general definitions to handle both cases.

This completes the definitions of D and LOW, and most of the proof of their
correctness. The remaining issue in establishing (p) is the well-definedness of
LOW, D, and hence SSk. It is easy to see by inspection that D0, LOW0, and
LOWk11(^u, e&) for all surface configurations u and all k $ 0 are well-defined.
Dk11(^u, e&) (and hence SSk) is well defined by induction on k, since it depends
only on Dk and LOWk. Dk11 and LOWk11 acting on id’s with nonempty stacks,
however, depend on I-LOWk. As noted earlier, I-LOWk is not fully defined,
since the choice among alternative decompositions of its stack parameter is
unspecified. In the next section, we will present a representation for stacks that
allows a unique decomposition to be efficiently chosen, thus completing the
definition of I-LOWk, and establishing the correctness of the algorithm.

To summarize, the key features of our construction are that LOWk11 and
Dk11 each require only a constant number of calls to the level k procedures, they
guarantee at least 2k11 progress in the simulation, and they need to be defined
on domains of only polynomial size. In the next two sections we will exploit these
features to give fast implementations on PRAMs, and small space implementa-
tions on PDAs.

6. CROW-PRAM Implementation

The one important issue ignored in the discussion so far is the question of
efficiently handling the stacks. To obtain the desired O(log n) running time, we
need to manipulate stacks of length V(n) in unit time. In particular, when
defining Dk11(^u, S&) and LOWk11(^u, S&), where S [ SSk11 # SSk z SSk, it
is necessary to be able to split S into two segments, each a stack in SSk. This will
be done by maintaining an auxiliary array SUMMARYk11 to retain the informa-
tion splitting S into components when S is originally constructed by Dk11(^v, e&)
for some v. In fact, the decomposition information is really the only information
about S needed to apply the inductive definitions—the actual contents of the
stacks are never consulted in the definitions, except in the base cases. This fact
allows us to replace the actual stacks with abbreviations, avoiding the explicit
manipulation of long character strings, provided the decomposition information
is kept available.

We now introduce the more succinct notation for stacks, revise the algorithms
using this notation, and then discuss the CROW-PRAM implementation using
this notation.

By definition any stack S [ SSk is a suffix of stack(Dk(^u, e&)) for some
surface configuration u. We can name S by specifying k, u, and a value h giving
the length of the suffix being considered.
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Definition. A stack reference of level k $ 0, abbreviated “(k)-reference,” is a
pair (u, h) with u [ U and 0 # h. A (k)-reference (u, h) is said to have base u,
height h, and level k. For convenience, e will also be considered a (k)-reference,
denoting the empty stack of height 0.

The intent is that the (k)-reference (u, h) denotes the length h suffix of
stack(Dk(^u, e&)) (provided that h is “valid,” that is, does not exceed the length
of that string).

For k $ 0, the algorithm will maintain an array SUMMARYk indexed by
surface configurations. We now inductively define the structure of the SUM-
MARYk array, the concept of valid (k)-references, and for each valid (k)-
reference R a corresponding string R̂. The value stored in SUMMARY0[u] will be
the actual symbols of stack(D0(^u, e&)). A (0)-reference (u, h) is valid if 0 #
h # height(stack(D0(^u, e&))). For each valid (0)-reference R 5 (u, h), define
R̂ to be the length h suffix of the string stored in SUMMARY0[u]. For k $ 0,
SUMMARYk11[u] will be a pair of valid (k)-references, specified by the algo-
rithm below. A (k 1 1)-reference R 5 (u, h) is valid if h is less than or equal to
the length of R̂1 z R̂2, where (R1, R2) is the pair of (k)-references stored in
SUMMARYk11[u]; and in this case define R̂ to be the length h suffix of R̂1 z R̂2.

The algorithm below fills in the SUMMARY array so that for all k $ 0 the set
of all strings R̂ corresponding to valid (k)-references R is exactly SSk. In
particular, for the (k 1 1)-reference R 5 (u, h) the pair of (k)-references
stored in SUMMARYk11[u] define the decomposition of R̂ into two strings in
SSk.

A valid (k)-reference (u, h) may refer to any suffix of stack(Dk(^u, e&)). Thus,
it is convenient to extend the summary notation to handle references. The
summary of a valid (k)-reference R 5 (u, h), is denoted SUMMARYk[R]. For
k 5 0, it is the length h suffix of SUMMARY0[u]. For k $ 1, it is the pair of
(k)-references from SUMMARYk[u] adjusted to height h, as follows: Suppose
SUMMARYk[u] is the ordered pair of (k)-references (v1, h1) and (v2, h2). If
h . h2, then SUMMARYk[R] is the ordered pair (v1, h 2 h2) and (v2, h2), and
otherwise it is the single (k)-reference (v2, h). This corresponds to popping the
referenced stack until the desired height h is reached.

Below, we define variants ¹k, Lk, I-Lk, MIN of the functions Dk, LOWk,
I-LOWk, min, respectively, of Section 5, that will operate using stack references
and their summary information in place of the stacks themselves. The function
MIN behaves like the version of Section 5, except that it now returns the surface
configuration and height (rather than the full id) of the leftmost (earliest) of
those of its arguments that are of minimum height. The code for ¹k only needs
to be provided for the case of an empty stack. (The definition of Dk(^u, S&), S Þ
e was given in Section 5 only to support the definition of LOWk(^u, S&) and the
associated correctness assertions; it was not otherwise used.) Finally, we note
that, in the code below, the contents of global array SUMMARYk are always set
by the function ¹k before being referenced by Lk.

function ¹0(u; surface) returns (surface, (0)-reference)
comment: Returns the surface and reference corresponding to D0(^u , e&),

and as a side effect, stores stack(D0(^u, e&)) in the global array SUMMARY0[u].
var

v ; surface
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R ; (0)-reference
begin

if u is popping then
SUMMARY0[u] ;5 e
return (u , e)

let ^u , e& £ ^v , s& where s [ G
SUMMARY0[u] ;5 s
R ;5 (u , 1)
return (v , R)

end

function L0(u; surface, R; (0)-reference)
returns (surface, (0)-reference)

comment: Returns the surface and reference of the low point in the interval ^u, R̂&
to D0(^u , R̂&).

var
v ; surface
S , S1 ; string

begin
if R̂ 5 e then return (u , e)
S ; 5 SUMMARY0[R]
let ^u , S& £ ^v , S1& comment: uS u 5 1 and uS1u 5 0 or 2.
if uS u , uS1u then return (u , R)
return (v , e)

end

function I–Lk(u; surface, R1, R2, . . ., Rd; sequence of (k)-references)
returns (surface, sequence of (k)-references)

comment; Returns the surface and a sequence of (k)-references defining the stack
of an unblocked low point (if any) in a computation starting from
^u, R̂1 z R̂2 z . . . z R̂d&. Note this procedure handles any fixed number d of (k)-
references, and the sequence of (k)-references in its return value is no
longer than the sequence in its argument.

var
R; (k)-reference

begin
for i ;5 1 to d do

(u , R) ;5 Lk(u , Ri)
if height(R) . 0 then return (u , R , Ri11, . . . , Rd)

return (u , e)
end

function ¹k11(u; surface) returns (surface, (k 1 1)-reference)
comment; Returns the surface and reference corresponding to Dk11(^u , e&)

and as a side effect, stores the summary for stack(Dk11(^u , e&))
in SUMMARYk11[u].

var
v2, v3 ; surface
R2, R3 ; (k)-reference
R ; (k 1 1)-reference

begin
(v2, R2) ;5 Lk(¹k(u))
(v3, R3) ;5 ¹k(v2)
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SUMMARYk11[u] ;5 (R3, R2)
R ;5 (u , height(R2) 1 height(R3))
return (v3, R)

end

function Lk11(u ; surface, R ; (k 1 1)-reference)
returns (surface, (k 1 1)-reference)

comment: Returns the surface and reference corresponding to the low point in the
interval ^u , R̂& to Dk11(^u , R̂&).

var
S , S1, S2, S3 ; sequence of (k)-references
u1, u2, u3, u9 , w ; surface
R9 ; (k 1 1)-reference
R2 ; (k)-reference
h , h9 ; integer

begin
let R be (w , h)
S ;5 SUMMARYk11[R]
(u1, S1) ;5 I–Lk(u , S)
(u2, R2) ;5 ¹k(u1)
let S2 be the result of prepending R2 to the sequence S1

(u3, S3) ;5 I–Lk(u2, S2)
(u9 , h9) ;5 MIN((u1, S1), (u3, S3))
comment: The sequence S3 may contain 3 (k)-references, but if so uŜ3u . uS1u 5 h9.
R9 ;5 (w , h9)
return (u9 , R9)

end

Correctness follows from the argument given in Section 5 using the correspon-
dence between valid references R and strings R̂ defined above. By induction on
k, one can show that R̂, the string associated with the (k)-reference R returned
by ¹k(u), is exactly stack(Dk(^u, e&)) as defined in Section 5, provided that in
the algorithm of Section 5, each stack Ŝ is decomposed as specified by SUM-
MARY[S]. (Comments in the procedures above referring to Dk assume this
decomposition.)

Finally, the functions ¹k and Lk defined above can be used for a time
O(log n) parallel algorithm for DCFL recognition on a CROW-PRAM. The
algorithm tabulates ¹k, SUMMARYk and Lk for successively higher values of k.

for k ;5 0 to log cn do
for all u [ U do in parallel

Compute ¹k(u) and store in a table in global memory. As a
side effect, store SUMMARYk[u].

for all u , v [ U and all h $ 0 for which R 5 (u , h) is a valid
(k)-reference do in parallel
Compute Lk(v , R) and store in a table in global memory.

Accept iff ¹log cn((q0, 0, g)) 5 ((qa, n , g), e).

Each iteration of the loop can be performed with a constant number of
references to previously stored values of ¹k, Lk, and SUMMARYk. Note that d is
at most three in all calls to I–Lk, since the sequences S and S1 in the
implementation of Lk11 each contain at most two (k)-references, hence S2 and
S3 contain at most three.
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The implementation of tables indexed by surface configurations and refer-
ences, and the initialization of a unique processor for every array entry are done
using now-standard parallel RAM programming techniques; see Goldschlager
[1992] or Wyllie [1979], for examples. Each surface and reference can be coded
by an integer of O(log n) bits, which can be used as a table subscript. These
techniques also suffice to implement the above algorithm on a CROW-PRAM
satisfying restrictions R1–R3.

Since there are only O(n) surfaces and O(n2) references, the number of array
entries (and hence the number of processors) can be kept to O(n3) by reusing
array space rather than having separate arrays for each value of k from 0 to log
n. The values of SUMMARYk, for example, can be discarded as soon as the
values of SUMMARYk11 have been computed.

Thus, we have shown the following theorem.

THEOREM 9. Every DCFL can be recognized by a CROW-PRAM satisfying
restrictions R1–R3 in time O(log n) with O(n3) processors.

LEMMA 10. Any function computable by a log space bounded deterministic
Turing machine can be computed by a CROW-PRAM satisfying restrictions R1–R3
in O(log n) time.

PROOF. (SKETCH). The heart of the proof lies in a CROW-PRAM implemen-
tation of the deterministic pointer jumping technique of Fortune and Wyllie
[1978], which requires time O(log n), is write oblivious, and uses only a single
globally visible, owner write memory location per processor. See Cook and
Dymond [1993] for a detailed description of the simulation of log space by a
parallel pointer machine in O(log n) time, and see Lam and Ruzzo [1989] for a
simulation of the later model by a O(log n) time bounded CROW-PRAM. e

Theorems 2, 9, and Lemma 10 together establish Theorem 1. Alternatively, the
proof of Theorem 9 can be generalized to directly simulate a polynomial time,
log space DauxPDA, by incorporating the work tape into the surface configura-
tions. We also obtain the following corollary.

COROLLARY 11. CROW-PRAMs operating in time Q(log n) and satisfying gen-
eralizations G1–G4 can be simulated by CROW-PRAMs subject to restrictions
R1–R3 with only a constant factor time loss and with only a polynomial increase in
number of processors.

PROOF. It was shown in Section 3 that generalized CROW-PRAMs satisfying
G1–G6 can be simulated by deterministic auxiliary PDAs with log n space and
polynomial time, and thus that languages recognized by such machines are in
Sudborough’s class LOGDCFL of languages log space reducible to determin-
istic context-free languages. Hence, by Theorem 9 and Lemma 10, the
resulting language can be recognized by a CROW-PRAM also obeying restric-
tions R1–R3. e

Following appearance of an earlier version of this paper, Monien et al. [1994]
gave a CREW-PRAM algorithm for DCFL recognition that, for any e . 0, uses
O(log n) time and n21e processors. Their algorithm uses functions similar to
ours, and suggests an approach to improving the processor bound of the
CROW-PRAM algorithm of Theorem 9.
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7. Small Space Sequential Implementation

In Section 3, we presented an algorithm for simulating an O(log n) time
CROW-PRAM by a deterministic auxPDA using polynomial time and O(log2 n)
stack height. This, combined with Theorem 9 and Lemma 10, yields an alternate
proof of the following result of Rytter.

THEOREM 12 (RYTTER [1985]). L is accepted by a polynomial time logarithmic
space DauxPDA if and only if L is accepted by such a machine that furthermore uses
stack height O(log2 n).

An analogous result was previously known for nondeterministic PDAs [Ruzzo
1980], but the best result previous to Rytter’s for stack height reduction in
DauxPDAs required superpolynomial time ([Harju 1979]; c.f. Ruzzo [1980] for
an alternative proof).

COROLLARY 13. [HARJU 1979]. DCFLs are in DauxPDA space O(log n) and
stack height O(log2 n).

The following result is also a corollary.

COROLLARY 14 (COOK [1979]; VON BRAUNMÜHL ET AL. [1983]). DCFLs are in
SC2.

The time bound for the algorithm sketched above, while polynomial, is not
particularly attractive. As shown by von Braunmühl et al. [1983], DCFL recogni-
tion is in simultaneous space S(n) and time O(n111/(log S(n)22 log log n)) on
Turing machines with random access to their input tapes, for any appropriately
constructible S(n) satisfying 2 log2 n # S(n) # n. Their algorithm makes
general use of its space resource, that is, it is not used as a pushdown store, or
even as a stack (in the stack automaton sense [Ginsburg et al. 1967].

The goal of the remainder of this section is to sketch an improvement to our
algorithm to achieve similar bounds to those of von Braunmühl et al., while still
using a DauxPDA.

THEOREM 15. Let S(n) satisfy 2 log2n # S(n) # n and be constructible in linear
time on a log space DauxPDA with stack height bounded by O(S(n)). Any DCFL
can be recognized by a log space DauxPDA with random access to its input tape,
stack height bounded by O(S(n)), and time bounded by O(n11O(1)/(log S(n)22 log log n)).

For example, linear time is possible with stack height ne for any e . 0.
Similarly, time n11e is possible with stack height O(log2 n).

PROOF. (SKETCH). We borrow some of the key ideas from the von Braunmühl
et al. constructions.

First, we outline a more direct algorithm, bypassing the simulation of a general
CROW-PRAM. In Sections 5 and 6, we presented an algorithm for simulating a
DPDA, based on the procedures ¹k and Lk. Our procedure ¹k sets the global
SUMMARYk array as a side effect, and Lk reads from it. It is easy to reformulate
these procedures recursively. In a fully recursive version, ¹k would return the
summary information as an additional component of its function value, and
accesses to SUMMARYk in Lk would be replaced by appropriate calls to ¹k, to
(re-)compute the desired stack summaries.
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Recursive procedures have a straightforward implementation on a space
bounded deterministic auxiliary PDA. The auxPDA’s work tape needs to be long
enough to hold the local variables of a procedure, and the pushdown height must
be r times as large, where r is the depth of recursion, to hold r “stack frames”,
each holding copies of the local variables, return address, etc.

For our procedures, the local variables consist of a few integers plus a bounded
number of surfaces, requiring O(log n) space. The recursion depth is at most
log2 cn. Thus, our procedures can be implemented on a DauxPDA using space
O(log n) and pushdown height O(log2 n). Furthermore, for our procedures,
each level k 1 1 procedure makes a bounded number of calls on level k
procedures. Since the depth of recursion is O(log n), the total number of calls is
at most (O(1))O(log n) 5 nO(1). Exclusive of recursive calls, each procedure
takes time O(log n) to manipulate the surfaces, randomly access inputs, etc.
Thus, the total time for the algorithm is polynomial.

The main idea in improving the time bound is to generalize the construction in
Section 5 to give, for any integer d $ 2, procedures ¹k

d, etc., that reflect
computations of length at least dk, rather than 2k as before. This is easily done
with the machinery we have already developed. For example, ¹k

d is basically the
d-fold composition of ¹̃k

d(I–Lk
d( z )) with itself. Each level k 1 1 procedure

makes O(d) calls on level k procedures. Thus, the number of recursive calls,
which is the main component of the running time, will be

~O~d!! logdn 5 n logdO~d! 5 n11O(1/log d).

Again, to keep the induction simple, we can arrange that the stacks that need
to be considered are suffixes of those built by ¹k11

d (u), which turn out to be the
concatenation of suffixes of at most d stacks built by ¹d

k(v), for various v’s. As
before, it is important that the list of these v’s provides a succinct but useful
“summary” of the stack contents.

One additional refinement of this idea is to simulate S(n) steps of the DPDA
in the base case of our procedures, rather than just one step. Then ¹d

k will
simulate at least S(n) z dk steps.

Finally, choose d 5 S(n)/log2 n, k 5 logd((cn 2 1)/S(n)), and let e 5
cn/(S(n)dk). Note that e # d and S(n)dk , cn, but S(n)dk11 $ S(n)edk $
cn. Thus, ¹d

k((q0, 0, g)) is not guaranteed to simulate a full computation of the
DPDA, but ¹d

k11((q0, 0, g)) is, and furthermore restricting ¹k11 to calculate
the e-fold composition of ¹̃d

k(I–Ld
k( z )) with itself instead of the d-fold

composition also suffices. The resulting algorithm makes O(e) calls on level k
procedures, each of which (inductively) makes (O(d))k calls on level 0 proce-
dures. The total running time is dominated by the time spent in the level 0
procedures, which is O(S(n)) per call, for a total time of

e z ~O~d!!k z S~n! 5 O~n z ~O~n z ~O~1!!k! 5 O~n11O(1/(log S~n! 2 2 log log n)! ,

achieving the desired bound.
Implementation of these procedures on a DauxPDA with O(log n) work tape

and O(S(n)) stack height is straightforward, as before. e

Random access to the input tape is useful in our algorithm and in von
Braunmühl et al.’s for the following reason: Simulation of pop moves requires
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recomputation of portions of the stack, necessitating access to the portions of the
input read during the corresponding push moves. With ordinary sequential access
to the input tape, even though repositioning the tape head may be time
consuming (V(n)), von Braunmühl et al. show that DCFL recognition is possible
in simultaneous space S(n) and time O(n2/S(n)), for 2 log2 n # S(n) # n. This
is provably optimal. Our techniques appear likely to be useful in this case as well,
although we have not pursued this.
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