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Introduction

Uncompressed multimedia (graphics, audio and video) data requires considerable storage 
capacity and transmission bandwidth. Despite rapid progress in mass-storage density, 
processor speeds, and digital communication system performance, demand for data 
storage capacity and data-transmission bandwidth continues to outstrip the capabilities of 
available technologies. The recent growth of data intensive multimedia-based web 
applications have not only sustained the need for more efficient ways to encode signals and 
images but have made compression of such signals central to storage and communication 
technology.

For still image compression, the `Joint Photographic Experts Group' or JPEG[19] standard 

has been established by ISO (International Standards Organization) and IEC (International 
Electro-Technical Commission). The performance of these coders generally degrades at low 
bit-rates mainly because of the underlying block-based Discrete Cosine Transform (DCT)
[20] scheme. More recently, the wavelet transform has emerged as a cutting edge 

technology, within the field of image compression. Wavelet-based coding[29] provides 

substantial improvements in picture quality at higher compression ratios.

Over the past few years, a variety of powerful and sophisticated wavelet-based schemes 
for image compression, as discussed later, have been developed and implemented. 
Because of the many advantages, the top contenders in the upcoming JPEG-2000 standard
[14] are all wavelet-based compression algorithms.

The goal of this article is two-fold. First, for readers new to compression, we briefly review 
some basic concepts on image compression and present a short overview of the DCT-based 
JPEG standard and the more popular wavelet-based image coding schemes. Second, for 
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more advanced readers, we mention a few sophisticated, modern, and popular wavelet-
based techniques including one we are currently pursuing. The goal of the upcoming JPEG-
2000 image compression standard, which is going to be wavelet-based, is briefly 
presented. For those who are curious, a number of useful references are given. There is 

also abundance of information about image compression on the Internet.

Background

Why do we need compression?

The figures in Table 1 show the qualitative transition from simple text to full-motion video 

data and the disk space, transmission bandwidth, and transmission time needed to store 
and transmit such uncompressed data.

Table 1 Multimedia data types and uncompressed storage space, transmission 
bandwidth, and transmission time required. The prefix kilo- denotes a factor of 
1000 rather than 1024.

 

Multimedia 
Data

Size/
Duration

Bits/
Pixel or   

Bits/
Sample

Uncompressed   
Size  

(B for bytes)

Transmission  
Bandwidth  
(b for bits)

Transmission  
Time (using a  
28.8K Modem)

A page of 
text 

11'' x 8.5''
Varying 

resolution
4-8 KB 32-64 Kb/page 1.1 - 2.2 sec

Telephone 
quality 
speech 

10 sec 8 bps 80 KB 64 Kb/sec 22.2 sec

Grayscale 
Image 

512 x 512 8 bpp 262 KB 2.1 Mb/image 1 min 13 sec

Color Image 512 x 512 24 bpp 786 KB 6.29 Mb/image 3 min 39 sec

Medical 
Image 

2048 x 
1680

12 bpp 5.16 MB 41.3 Mb/image 23 min 54 sec

SHD Image 
2048 x 
2048

24 bpp 12.58 MB 100 Mb/image 58 min 15 sec



Full-motion 
Video 

640 x 
480, 1 

min  
(30 

frames/
sec)

24 bpp 1.66 GB 221 Mb/sec 5 days 8 hrs

The examples above clearly illustrate the need for sufficient storage space, large 
transmission bandwidth, and long transmission time for image, audio, and video data. At 
the present state of technology, the only solution is to compress multimedia data before its 
storage and transmission, and decompress it at the receiver for play back. For example, 
with a compression ratio of 32:1, the space, bandwidth, and transmission time 
requirements can be reduced by a factor of 32, with acceptable quality.

What are the principles behind compression?

A common characteristic of most images is that the neighboring pixels are correlated and 
therefore contain redundant information. The foremost task then is to find less correlated 
representation of the image. Two fundamental components of compression are redundancy 
and irrelevancy reduction. Redundancy reduction aims at removing duplication from the 
signal source (image/video). Irrelevancy reduction omits parts of the signal that will not 
be noticed by the signal receiver, namely the Human Visual System (HVS). In general, 
three types of redundancy can be identified:

●     Spatial Redundancy or correlation between neighboring pixel values.
●     Spectral Redundancy or correlation between different color planes or spectral 

bands.
●     Temporal Redundancy or correlation between adjacent frames in a sequence of 

images (in video applications).

Image compression research aims at reducing the number of bits needed to represent an 
image by removing the spatial and spectral redundancies as much as possible. Since we 
will focus only on still image compression, we will not worry about temporal redundancy.

What are the different classes of compression techniques?

Two ways of classifying compression techniques are mentioned here. 

(a) Lossless vs. Lossy compression: In lossless compression schemes, the 
reconstructed image, after compression, is numerically identical to the original image. 



However lossless compression can only a achieve a modest amount of compression. An 
image reconstructed following lossy compression contains degradation relative to the 
original. Often this is because the compression scheme completely discards redundant 
information. However, lossy schemes are capable of achieving much higher compression. 
Under normal viewing conditions, no visible loss is perceived (visually lossless).

(b) Predictive vs. Transform coding: In predictive coding, information already sent or 
available is used to predict future values, and the difference is coded. Since this is done in 
the image or spatial domain, it is relatively simple to implement and is readily adapted to 
local image characteristics. Differential Pulse Code Modulation (DPCM) is one particular 
example of predictive coding. Transform coding, on the other hand, first transforms the 
image from its spatial domain representation to a different type of representation using 
some well-known transform and then codes the transformed values (coefficients). This 
method provides greater data compression compared to predictive methods, although at 
the expense of greater computation.

What does a typical image coder look like?

A typical lossy image compression system is shown in Fig. 1. It consists of three closely 

connected components namely (a) Source Encoder (b) Quantizer, and (c) Entropy Encoder. 
Compression is accomplished by applying a linear transform to decorrelate the image data, 
quantizing the resulting transform coefficients, and entropy coding the quantized values.

Fig. 1. A Typical Lossy Signal/Image Encoder

Source Encoder (or Linear Transformer)

Over the years, a variety of linear transforms have been developed which include Discrete 
Fourier Transform (DFT), Discrete Cosine Transform (DCT) [1], Discrete Wavelet Transform 

(DWT)[29] and many more, each with its own advantages and disadvantages.

Quantizer

A quantizer simply reduces the number of bits needed to store the transformed coefficients 
by reducing the precision of those values. Since this is a many-to-one mapping, it is a lossy 
process and is the main source of compression in an encoder. Quantization can be 
performed on each individual coefficient, which is known as Scalar Quantization (SQ). 
Quantization can also be performed on a group of coefficients together, and this is known 



as Vector Quantization (VQ). Both uniform and non-uniform quantizers can be used 
depending on the problem at hand. For an analysis on different quantization schemes, see 
[12].

Entropy Encoder

An entropy encoder further compresses the quantized values losslessly to give better 
overall compression. It uses a model to accurately determine the probabilities for each 
quantized value and produces an appropriate code based on these probabilities so that the 
resultant output code stream will be smaller than the input stream. The most commonly 
used entropy encoders are the Huffman encoder and the arithmetic encoder, although for 
applications requiring fast execution, simple run-length encoding (RLE) has proven very 
effective. An overview on various entropy encoding techniques can be found in [12,18].

It is important to note that a properly designed quantizer and entropy encoder are 
absolutely necessary along with optimum signal transformation to get the best possible 
compression.

JPEG : DCT-Based Image Coding Standard

The idea of compressing an image is not new. The discovery of DCT in 1974 [1] is an 

important achievement for the research community working on image compression. The 
DCT can be regarded as a discrete-time version of the Fourier-Cosine series. It is a close 
relative of DFT, a technique for converting a signal into elementary frequency components. 
Thus DCT can be computed with a Fast Fourier Transform (FFT) like algorithm in O(n log n) 
operations. Unlike DFT, DCT is real-valued and provides a better approximation of a signal 
with fewer coefficients. The DCT of a discrete signal x(n), n=0, 1, .. , N-1 is defined as:

where, C(u) =  0.707   for u = 0 and  
                 =     1        otherwise.

An excellent analysis of DCT and related transforms and their applications can be found in 
[26].

In 1992, JPEG established the first international standard for still image compression where 
the encoders and decoders are DCT-based. The JPEG standard specifies three modes 
namely sequential, progressive, and hierarchical for lossy encoding, and one mode of 



lossless encoding. The `baseline JPEG coder' [19,30] which is the sequential encoding in 

its simplest form, will be briefly discussed here. Fig. 2(a) and 2(b) show the key 

processing steps in such an encoder and decoder for grayscale images. Color image 
compression can be approximately regarded as compression of multiple grayscale images, 
which are either compressed entirely one at a time, or are compressed by alternately 
interleaving 8x8 sample blocks from each in turn. In this article, we focus on grayscale 
images only.

Fig. 2(a) JPEG Encoder Block Diagram

Fig. 2(b) JPEG Decoder Block Diagram

The DCT-based encoder can be thought of as essentially compression of a stream of 8x8 
blocks of image samples. Each 8x8 block makes its way through each processing step, and 
yields output in compressed form into the data stream. Because adjacent image pixels are 
highly correlated, the `forward' DCT (FDCT) processing step lays the foundation for 
achieving data compression by concentrating most of the signal in the lower spatial 
frequencies. For a typical 8x8 sample block from a typical source image, most of the spatial 
frequencies have zero or near-zero amplitude and need not be encoded. In principle, the 
DCT introduces no loss to the source image samples; it merely transforms them to a 
domain in which they can be more efficiently encoded.

After output from the FDCT, each of the 64 DCT coefficients is uniformly quantized in 
conjunction with a carefully designed 64-element Quantization Table (QT)[19]. At the 

decoder, the quantized values are multiplied by the corresponding QT elements to recover 



the original unquantized values. After quantization, all of the quantized coefficients are 
ordered into the "zig-zag" sequence as shown in Fig. 3.  This ordering helps to facilitate 

entropy encoding by placing low-frequency non-zero coefficients before high-frequency 
coefficients. The DC coefficient, which contains a significant fraction of the total image 
energy, is differentially encoded.

Fig. 3. Zig-Zag sequence

Entropy Coding (EC) achieves additional compression losslessly by encoding the quantized 
DCT coefficients more compactly based on their statistical characteristics. The JPEG 
proposal specifies both Huffman coding and arithmetic coding.  The baseline sequential 
codec uses Huffman coding, but codecs with both methods are specified for all modes of 
operation. Arithmetic coding, though more complex, normally achieves 5-10% better 
compression than Huffman coding.

Wavelets and Image Compression

What is a Wavelet Transform ?

Wavelets are functions defined over a finite interval and having an average value  of zero. 
The basic idea of the wavelet transform is to represent any arbitrary function (t) as a 
superposition of a set of such wavelets or basis functions. These basis functions or baby 
wavelets are obtained from a single prototype wavelet called the mother wavelet, by 
dilations or contractions (scaling) and translations (shifts). The Discrete Wavelet Transform 
of a finite length signal x(n) having N components, for example, is expressed by an N x N 
matrix. For a simple and excellent introduction to wavelets, see [6]. For a thorough 

analysis and applications of wavelets and filterbanks, see [24,29].

Why Wavelet-based Compression?

Despite all the advantages of JPEG compression schemes based on DCT namely simplicity, 



satisfactory performance, and availability of special purpose hardware for implementation, 
these are not without their shortcomings. Since the input image needs to be ``blocked,'' 
correlation across the block boundaries is not eliminated. This results in noticeable and 
annoying ``blocking artifacts'' particularly at low bit rates as shown in Fig. 4. Lapped 

Orthogonal Transforms (LOT) [16] attempt to solve this problem by using smoothly 

overlapping blocks. Although blocking effects are reduced in LOT compressed images, 
increased computational complexity of such algorithms do not justify wide replacement of 
DCT by LOT.

(a)

(b)



Fig.  4(a)  Original Lena Image, and  (b) Reconstructed Lena with DC component 
only, to show blocking artifacts

Over the past several years, the wavelet transform has gained widespread acceptance in 
signal processing in general, and in image compression research in particular. In many 
applications wavelet-based schemes (also referred as subband coding) outperform other 
coding schemes like the one based on DCT. Since there is no need to block the input image 
and its basis functions have variable length, wavelet coding schemes at higher compression 
avoid blocking artifacts. Wavelet-based coding is more robust under transmission and 
decoding errors, and also facilitates progressive transmission of images. In addition, they 
are better matched to the HVS characteristics. Because of their inherent multiresolution 
nature[17], wavelet coding schemes are especially suitable for applications where 

scalability and tolerable degradation are important.

Subband Coding

The fundamental concept behind Subband Coding (SBC) is to split up the frequency band 
of a signal (image in our case) and then to code each subband using a coder and bit rate 
accurately matched to the statistics of the band. SBC has been used extensively first in 
speech coding [10] and later in image coding [31] because of its inherent advantages 

namely variable bit assignment among the subbands as well as coding error confinement 
within the subbands.

(a)



(b)

Fig. 5(a)  Separable 4-subband Filterbank, and 5(b)  Partition of the Frequency  
Domain

Woods and O'Neil [31] used a separable combination of one-dimensional Quadrature Mirror 

Filterbanks (QMF) to perform a 4-band decomposition by the row-column approach as 
shown in Fig. 5(a). Corresponding division of the frequency spectrum is shown in Fig. 5

(b). The process can be iterated to obtain higher band decomposition filter trees. At the 

decoder, the subband signals are decoded, upsampled and passed through a bank of 
synthesis filters and properly summed up to yield the reconstructed image. Interested 
readers may look into a number of books and papers [24,27,28,29] dealing with single 

and multi-dimensional QMF design and applications.

From Subband to Wavelet Coding

Over the years, there have been many efforts leading to improved and efficient design of 
filterbanks and subband coding techniques. Since 1990, methods very similar and closely 
related to subband coding have been proposed by various researchers under the name of 
Wavelet Coding (WC) using filters specifically designed for this purpose. Such filters must 
meet additional and often conflicting requirements [24,29]. These include short impulse 

response of the analysis filters to preserve the localization of image features as well as to 
have fast computation, short impulse response of the synthesis filters to prevent spreading 
of artifacts (ringing around edges) resulting from quantization errors, and linear phase of 
both types of filters since nonlinear phase introduce unpleasant waveform distortions 
around edges. Orthogonality is another useful requirement since orthogonal filters, in 
addition to preservation of energy, implement a unitary transform between the input and 
the subbands. But, as in the case of 1-D, in two-band Finite Impulse Response (FIR) 
systems linear phase and orthogonality are mutually exclusive, and so orthogonality is 
sacrificed to achieve linear phase.



Link between Wavelet Transform and Filterbank

Construction of orthonormal families of wavelet basis functions can be carried out in 
continuous time. However, the same can also be derived by starting from discrete-time 
filters. Daubechies [9] was the first to discover that the discrete-time filters or QMFs can 

be iterated and under certain regularity conditions will lead to continuous-time wavelets. 
This is a very practical and extremely useful wavelet decomposition scheme, since FIR 
discrete-time filters can be used to implement them. It follows that the orthonormal bases 
in [9] correspond to a subband coding scheme with exact reconstruction property, using 

the same FIR filters for reconstruction as for decomposition. So, subband coding developed 
earlier is in fact a form of wavelet coding in disguise. Wavelets did not gain popularity in 
image coding until Daubechies established this link in late 1980s. Later a systematic way of 
constructing a family of compactly supported biorthogonal wavelets was developed by 
Cohen, Daubechies, and Feauveau (CDF) [7]. Although the design and choice of various 

filters and the construction of different wavelets from the iteration of such filters are very 
important, it is beyond the scope of this article.

An Example of Wavelet Decomposition

There are several ways wavelet transforms can decompose a signal into various subbands. 
These include uniform decomposition, octave-band decomposition, and adaptive or wavelet-
packet decomposition [29].  Out of these, octave-band decomposition is the most widely 

used. This is a non-uniform band splitting method that decomposes the lower frequency 
part into narrower bands and the high-pass output at each level is left without any further 
decomposition. Fig. 6(a)  shows the various subband images of a 3-level octave-band 

decomposed Lena using the popular CDF-9/7 [7] biorthogonal wavelet.



(a)

(b)

Fig. 6(a)  Three level octave-band decomposition of Lena image, and (b) Spectral 
decomposition and ordering.

Most of the subband and wavelet coding schemes can also be described in terms of the 
general framework depicted as in Fig. 1. The main difference from the JPEG standard is the 
use of DWT rather than DCT. Also, the image need not be split into 8 x 8 disjoint blocks. Of 
course, many enhancements have been made to the standard quantization and encoding 
techniques to take advantage of how the wavelet transforms works on an image and the 
properties and statistics of transformed coefficients so generated. These will be discussed 
next.

Advanced Wavelet Coding Schemes

A. Recent Developments in Subband and Wavelet Coding

The interplay between the three components of any image coder cannot be over-
emphasized since a properly designed quantizer and entropy encoder are absolutely 
necessary along with optimum signal transformation to get the best possible compression. 
Many enhancements have been made to the standard quantizers and encoders to take 
advantage of how the wavelet transform works on an image, the properties of the HVS, 
and the statistics of transformed coefficients. A number of more sophisticated variations of 
the standard entropy encoders have also been developed. These include Q, QM, ELS, Z, 
and ZP coders [3,25]. These have lead to improved results in terms of lower bit rates for a 

required image quality and better image quality for a given bit rate.



Over the past few years, a variety of novel and sophisticated wavelet-based image coding 
schemes have been developed. These include EZW[23], SPIHT[22], SFQ[32], CREW[2], 

EPWIC[4], EBCOT[25], SR[26], Second Generation Image Coding[11], Image Coding 

using Wavelet Packets[8], Wavelet Image Coding using VQ[12], and Lossless Image 

Compression using Integer Lifting[5]. This list is by no means exhaustive and many more 

such innovative techniques are being developed as this article is written. We will briefly 
discuss a few of these interesting algorithms here.

 
  
1. Embedded Zerotree Wavelet (EZW) Compression

In octave-band wavelet decomposition, shown in Fig. 7(a), each coefficient in the high-
pass bands of the wavelet transform has four coefficients corresponding to its spatial 
position in the octave band above in frequency. Because of this very structure of the 
decomposition, it probably needed a smarter way of encoding its coefficients to achieve 
better compression results. Lewis and Knowles [15] in 1992 were the first to introduce a 

tree-like data structure to represent the coefficients of the octave decomposition.

Later, in 1993 Shapiro [23] called this structure zerotree of wavelet coefficients, and 

presented his elegant  algorithm for entropy encoding called Embedded Zerotree Wavelet 
(EZW) algorithm. The zerotree is based on the hypothesis that if a wavelet coefficient at a 
coarse scale is insignificant with respect to a given threshold T, then all wavelet coefficients 
of the same orientation in the same spatial location at a finer scales are likely to be 
insignificant with respect to T. The idea is to define a tree of zero symbols which starts at a 
root which is also zero and labeled as end-of-block. Fig. 7(a) and 7(b) shows a similar 

zerotree structure. Many insignificant coefficients at higher frequency subbands (finer 
resolutions) can be discarded, because the tree grows as powers of four. The EZW 
algorithm encodes the tree structure so obtained. This results in bits that are generated in 
order of importance, yielding a fully embedded code. The main advantage of this encoding 
is that the encoder can terminate the encoding at any point, thereby allowing a target bit 
rate to be met exactly. Similarly, the decoder can also stop decoding at any point resulting 
in the image that would have been produced at the rate of the truncated bit stream. The 
algorithm produces excellent results without any pre-stored tables or codebooks, training, 
or prior knowledge of the image source.



(a)

(b)

Fig. 7(a) Structure of zerotrees, and 7(b) Scanning order of subbands for encoding

Since its inception in 1993, many enhancements have been made to make the EZW 
algorithm more robust and efficient. One very popular and improved variation of the EZW 
is the SPIHT algorithm.

2.  Set Partitioning in Hierarchical Trees (SPIHT) Algorithm

Said and Pearlman [22], offered an alternative explanation of the principles of operation of 

the EZW algorithm to better understand the reasons for its excellent performance. 
According to them, partial ordering by magnitude of the transformed coefficients with a set 



partitioning sorting algorithm, ordered bitplane transmission of refinement bits, and 
exploitation of self-similarity of the image wavelet transform across different scales of an 
image are the three key concepts in EZW. In addition, they offer a new and more effective 
implementation of the modified EZW algorithm based on set partitioning in hierarchical 
trees, and call it the SPIHT algorithm. They also present a scheme for progressive 
transmission of the coefficient values that incorporates the concepts of ordering the 
coefficients by magnitude and transmitting the most significant bits first. They use a 
uniform scalar quantizer and claim that the ordering information made this simple 
quantization method more efficient than expected. An efficient way to code the ordering 
information is also proposed. According to them, results from the SPIHT coding algorithm 
in most cases surpass those obtained from EZQ algorithm.

3.  Scalable Image Compression with EBCOT

This algorithm is based on independent Embedded Block Coding with Optimized Truncation 
of the embedded bit-streams (EBCOT)[25] which identifies some of the major contributions 

of the algorithm. The EBCOT algorithm is related in various degrees to much earlier work 
on scalable image compression. Noteworthy among its early predecessors are: the EZW 
algorithm, SPIHT algorithm, and Taubman and Zakhor's LZC (Layered Zero Coding) 
algorithm. Like each of these, the EBCOT algorithm uses a wavelet transform to generate 
the subband coefficients which are then quantized and coded. Although the usual dyadic 
wavelet decomposition is typical, other "packet" decompositions are also supported and 
occasionally preferable.

Scalable compression refers to the generation of a bit-stream which contains embedded 
subsets, each of which represents an efficient compression of the original image at a 
reduced resolution or increased distortion. A key advantage of scalable compression is that 
the target bit-rate or reconstruction resolution need not be known at the time of 
compression. Another advantage of practical significance is that the image need not be 
compressed multiple times in order to achieve a target bit-rate, as is common with the 
existing JPEG compression standard. Rather than focusing on generating a single scalable 
bit-stream to represent the entire image, EBCOT partitions each subband into relatively 
small blocks of samples and generates a separate highly scalable bit-stream to represent 
each so-called code-block. The algorithm exhibits state-of-the-art compression 
performance while producing a bit-stream with an unprecedented feature set, including 
resolution and SNR scalability together with a random access property. The algorithm has 
modest complexity and is extremely well suited to applications involving remote browsing 
of large compressed images.

 



  
4.  Lossless Image Compression using Integer to Integer WT

Although we have concentrated in this article mainly on lossy image coding, lossless coding 
is important for high-fidelity images like medical images, seismic data, satellite images, 
and images generated from studio-quality video. The JPEG standard specifies a lossless 
coding scheme which simply codes the difference between each pixel and the predicted 
value for the pixel. The sequence of differences is encoded using Huffman or arithmetic 
encoding. Unfortunately, the huge size of the images for which lossless compression is 
required makes it necessary to have encoding methods that can support storage and 
progressive transmission of images at a spectrum of resolutions and encoding fidelities 
from lossy to lossless.

The multiresolution nature[17] of the wavelet transform makes it an ideal candidate for 

progressive transmission. However, when wavelet filtering is applied to an input image (set 
of integer pixel values), since the filter coefficients are not necessarily integers, the 
resultant filtered output is no longer integers but floating point values. For lossless 
encoding, to make the decoding process exactly reversible, it is required that the filtered 
coefficients should be represented with integer values. In [5] approaches to build invertible 

wavelet transforms that map integers to integers are described. These invertible integer-to-
integer wavelet transforms are useful for lossless image coding. The approach is based 
upon the idea of factoring wavelet transforms into lifting steps thereby, allowing the 
construction of an integer version of every wavelet transform. The construction is based on 
writing a wavelet transform in terms of lifting, which is a flexible technique that has been 
applied to the construction of wavelets through an iterative process of updating a subband 
from an appropriate linear combination of the other subbands. A number of invertible 
integer wavelet transforms are implemented and applied to lossless compression of images 
in [5]. Although the results are mixed in terms of performance of these newly developed 

filters, it is concluded that using such wavelet transforms permits lossless representation of 
images thereby easily allowing progressive transmission where a lower resolution version 
of the image is transmitted first followed by transmission of successive details.

 
  
5.  Image Coding using Adaptive Wavelets

Now a few words about image coding using adaptive wavelets. The main idea behind the 
research work that we are currently pursuing is that all images are not equal, and so in 
wavelet-based image coding, the wavelet filter should be chosen adaptively depending on 
the statistical nature of image being coded. We have experimented with a variety of 



wavelets to compress a variety of images of different types at various compression ratios. 
Our results [21] show that the performance in lossy coders is image dependent; while 

some wavelet filters perform better than others depending on the image, no specific 
wavelet filter performs uniformly better than others on all images. Similar results have also 
been observed in the context of lossless compression using various integer-to-integer 
wavelet transforms. This adaptive filter selection is important because, when the 
performance of the wavelet filter is poor in the first place, use of even sophisticated 
quantization and context modeling of the transform coefficients may not always provide 
significant enough gain. Hence, the importance of searching and using good wavelet filters 
in most coding schemes cannot be over emphasized. We are currently working on 
algorithms to dynamically determine the right wavelet filter based on the type and 
statistical nature of the input image to be coded.

 
  
B.  Performance Comparison: DCT vs. DWT

A final word on the performance of wavelet-based and JPEG coders. The peak signal to 
noise ratios (PSNR) of several different wavelet compression techniques applied to the 512 
x 512, 8-bpp Lena image as well as the performance of a baseline JPEG image compressor 
are compared in [13] and are reproduced in Fig. 8. It is seen that, at compression ratios 

less than 25:1 or so, the JPEG performs better numerically than the simple wavelet coders. 
At compression ratios above 30:1, JPEG performance rapidly deteriorates, while wavelet 
coders degrade gracefully well beyond ratios of 100:1. The graphs also show that both the 
encoding technique and the particular wavelet used can make a significant difference in the 
performance of a compression system: the zerotree coder performs the best; biorthogonal 
perform better than W6; and variable length coders(VLC) perform better than fixed length 
coders(FLC).



       Fig 8. Comparison of Wavelet Compression methods [13]

More detailed PSNR comparison results of many wavelet-based algorithms mentioned here 
can be found at the Image Communications Laboratory's Web site at UCLA [URL http://

www.icsl.ucla.edu/~ipl/psnr_results.html ].

Future Image Compression Standard and Conclusion

JPEG-2000: Image compression standard for the next millennium

A lot of research work has been done on still image compression since the establishment of 
the JPEG standard in 1992. To bring these research efforts into a focus, a new standard 
called JPEG-2000[14] for coding of still images is currently under development, and should 

be completed by the end of year 2000. This standard is intended to advance standardized 
image coding systems to serve applications into the next millennium. It will provide a set of 
features vital to many high-end and emerging image applications by taking advantage of 
new modern technologies. Specifically, this new standard will address areas where current 
standards fail to produce the best quality or performance. It will also provide capabilities to 
markets that currently do not use compression. The standard will strive for openness and 
royalty-free licensing. It is intended to compliment, not replace, the current JPEG 
standards. This standard will include many modern features including improved low bit-rate 
compression performance, lossless and lossy compression, continuous-tone and bi-level 
compression, compression of large images, single decompression architecture, 
transmission in noisy environments including robustness to bit-errors, progressive 
transmission by pixel accuracy and resolution, content-based description, and protective 
image security.



One important point to note is that a vast majority of the 22 candidate algorithms under 
consideration are wavelet-based, and it is almost certain that JPEG-2000 will be based on 
the DWT rather than DCT. More information on JPEG-2000 activity can be found in JPEG's 
website (URL http://www.jpeg.org ), although most of this information is limited to 

JPEG members only.

Conclusion

While the DCT-based image coders perform very well at moderate bit rates, at higher 
compression ratios, image quality degrades because of the artifacts resulting from the 
block-based DCT scheme. Wavelet-based coding on the other hand provides substantial 
improvement in picture quality at low bit rates because of overlapping basis functions and 
better energy compaction property of wavelet transforms. Because of the inherent 
multiresolution nature, wavelet-based coders facilitate progressive transmission of images 
thereby allowing variable bit rates. We have briefly reviewed some of the more 
sophisticated techniques that take advantage of the statistics of the wavelet coefficients. 
The upcoming JPEG-2000 standard will incorporate many of these research works and will 
address many important aspects in image coding for the next millennium. However, the 
current data compression methods might be far away from the ultimate limits imposed by 
the underlying structure of specific data sources such as images. Interesting issues like 
obtaining accurate models of images, optimal representations of such models, and rapidly 
computing such optimal representations are the "Grand Challenges" facing the data 
compression community. Interaction of harmonic analysis with data compression, joint 
source-channel coding, image coding based on models of human perception, scalability, 
robustness, error resilience, and complexity are a few of the many outstanding challenges 
in image coding to be fully resolved and may affect image data compression performance 
in the years to come.
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Glossary of Terms

Please visit my glossary page (http://www.engr.ucdavis.edu/~ssaha/glossary.html) for 

terminology related to data compression.
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