Crossroads

d he ACM Student Magazine

Prefix Compression of Sparse Binary Strings

by David Salomon

Note from ACM Crossroads: Due to errors in
the layout process for printing on paper, the
version of this article in the printed magazine
contained several errors (mostly related to
superscripts). This HTML version is the
accurate version. Please refer to this HTML
version instead of the printed version and
accept our apologies for any inconvenience.

Introduction

in which the vast majority of elements are
zero. A typical sparse binary string, of a million bits, may have just 100 nonzero bits. Sparse
strings can be compressed efficiently. Several simple, efficient compression methods are
described in Fraenkel and Klein [2]. The method described here uses the concept of prefix,

proposed by Anedda and Felician [1].

Before getting to the details of the method, we should consider the occurrences of sparse
binary strings in practice. For instance:

. Drawing - Imagine a drawing, technical or artistic, done with a black pen on white paper.
Many non-complex drawings remain mostly white. When such a drawing is digitized,
most of the resulting pixels are white, and the percentage of black pixels is small. The
resulting bitmap is an example of a sparse string.

Databases - Imagine a large database of text documents. A bitmap index for such a
database is a set of bitstrings (or bitvectors) that simplifies the identification of a set of
documents, containing a given word. To implement a bitmap, we first prepare a list of all
distinct words wj , in all documents. Suppose there are Wsuch words. The next step is to

search each document di and prepare a bit-string Di of length W containing a 1 in

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331624.331631&domain=pdf&date_stamp=2000-03-01

position j if word wj appears in document di . The bitmap is the set of all bit-strings. If

the documents in the database tend to contain only a small fraction of the set of words,
then the bit-strings will be sparse.

Details of the Method

The principle of the prefix compression method is to

1. assign an address to each nonzero bit in the sparse string

divide each address into a prefix and a suffix

3. select all the one-bits whose addresses have the same prefix and write them on the
compressed file by writing the common prefix, followed by all the different suffixes

N

Compression can be achieved if the addresses of many one-bits have the same prefix. In order
for several one-bits to have the same prefix, their addresses should be close. However, in a
long, sparse string, the one-bits may be located far apart. Prefix compression tries to bring
together one-bits that are separated in the string by breaking up the string into equal-size
segments. These segments are then placed one below the other, effectively creating a sparse
matrix of bits. It is easy to see that one-bits, widely separated in an original string, may be
closer together in this matrix. As an example consider a binary string of 220 bits (a megabit).
The maximum distance between bits in the original string is about a million, but when the
string is rearranged as a matrix of dimensions 210x210 = 1024x1024, the maximum distance
between bits is only about a thousand.

Our challenge is to assign addresses to matrix elements such that

1. the address of a matrix element is a single number
2. spatially related elements are assigned similar addresses

The usual way of referring to matrix elements is by row and column. We can create a one-
number address by concatenating the row and column numbers of an element, but this is
unsatisfactory. For instance, consider the two matrix elements at positions (1,400) and
(2,400). They are certainly close neighbors but their addresses would be 1400 and 2400, not
very close!

We therefore use a different method. Think of the matrix as a digital image where each bit
becomes a pixel (white for a zero-bit and black for a one-bit) and we require that this image be
of size 2"x2" for some non-negative integer n. This normally requires extending the original
string with zero bits until its size becomes an even power of two (22"). The original size of the
string should therefore be written to the compressed file for the use of the decompressor. If the
string is sparse, the corresponding image has few black pixels. Those pixels are assigned

addresses using the concept of a quadtree.

To understand how this is done, let's assume that an image of size 2"x2" is given. We divide it
into four quadrants and label them (0, 13). Notice that the digits 0--3 are 2-bit numbers. Each

quadrant is subsequently divided into four subquadrants labeled in the same way. Each
subquadrant thus gets a four-bit (two-digit) label. This process continues recursively and as the
subquadrants get smaller, their labels grow. When this numbering scheme is carried down to
individual pixels, the number of a pixel turns out to be 2n bits long. Figure 1 shows the pixel
numbering in a 23x23 = 8x8 image and also a simple image consisting of 18 black pixels. Each
pixel number is six bits (three digits) long and they range from 000 to 333. The original string
being used to create this image is

10000100 01000100 00100100 00011110 00100100 01000100 11000000 11000000

(where some of the six trailing zeros may have been added to make the string size an even
power of two).

000 001 010 011 100 101 110 111
002 003 012 013 102 103 112 113
020 021 030 031 120 121 130 131
022 023 032 033 122 123 132 133
200 201 210 211 300 301 310 311
202 203 212 213 302 303 312 313
220 221 230 231 320 321 330 331
222 223 232 233 322 323 332 333

Figure 1: Example of Prefix Compression.

The first step is to use quadtree methods to calculate the three-digit labels of the 18 black
pixels. They are 000, 101, 003, 103, 030, 121, 033, 122, 123, 132, 210, 301, 203, 303, 220,
221, 222, and 223.

The next step is to select a prefix value. For our example we select P = 2, which is justified
below. The code of a pixel is now divided into P prefix digits followed by 3-P suffix digits. The
last step goes over the sequence of black pixels and selects all the pixels with the same prefix.
The first prefix is 00, so all the pixels whose labels start with 00 are selected (i.e., 000 and
003). They are removed from the original sequence and are compressed by writing the token
00]1]]3 on the output stream. The first part of this token is a prefix (00), the second part is a
count (1), and the rest are the suffixes of the two pixels having prefix 00. Notice that a count
of one implies two pixels. To conserve space, the count is always one less than the number of
pixels being counted. Sixteen pixels now remain in the original sequence and the first of them
has prefix 10. The two pixels with this prefix, namely 101 and 103, are removed and
compressed by writing the token 10]1]1|3 on the output stream. This continues until the
original sequence becomes empty. The final result is the nine-token string

00[1/0]3 10/ 1| 1|3 03[1] 0[3 12]2| 1| 2|3 1302 21|0]0 30| 1| 1|3 20] 0] 3 22| 3|
0l 1| 2| 3

or in binary

0000010011 0100010111 0011010011 011010011011 01110010 10010000 1100010111
10000011 10101100011011

(without the spaces). Such a string can be decoded uniquely since each token starts with a two-
digit prefix, followed by a one-digit count c, followed by c+1 one-digit suffixes. Preceding the
tokens, the compressed file should contain, in raw form, the value of n, the original length of
the sparse string, and the value of P used in the compression. The decompressor reads the
values of n and P. These two numbers are all it needs to read and decode all the tokens
unambiguously.

Note that adjacent pixels can have different prefixes. This occurs if they are located in different
quadrants or subquadrants. Pixels 123 and 301, for example, are adjacent in Figure 1 but have
different prefixes.

Notice that our example results in expansion because our binary string is short and therefore
not sparse. A sparse string has to be at least tens of thousands of bits long.

To determine P, we first figure out the maximum number of suffixes per prefix as a function of
both n and P. This yields the maximum size T(n,P) of a token. We then find out the maximum
number R of different prefixes, also as a function of n and P. The product of T and R is the total
size S(n,P) of all the tokens; we select the value of P that minimizes S(n,P). Finally, we
improve the results by considering the expected, rather than the maximum, number of prefixes

and suffixes in a sparse string.

In general, the prefix is P digits (or 2P bits) long and the count and each suffix are n-P digits
each. Since each digit can take on four different values, the maximum number of suffixes in a
token is therefore 4"-P. The maximum size of a token is thus P+(n-P)+4"-P(n-P) digits. Since
each token corresponds to a different prefix, the maximum number of tokens is 4P. The entire
compressed string thus occupies at most

AP[P+(n-P)+4n-P(n-P)] = n-4P+4n(n-P)

digits. To find the optimum value of P we differentiate the expression above with respect to P

d dpP [n-4P+4n(n-P)] = n-4PIn4-4n,

and set the derivative to zero. The solution is

4P = 4" n-In4 or P =logy 4n\n.nda || = 1\2 || logs 4" n-In4 |:|

For n = 3 this yields

P= || 1\2 | 1092 || 43\3x1.386 | = log, 15.388 \2 = || 3.944\2 || = 1.97.

This is why P = 2 was selected in our example. A practical compression program should contain
a table with P values precalculated for all expected values of n. Table 1 shows such values for n
=1,2,*,12.

Table 1: Dependence of P on n.

n: (|1 2 3 4 5 6 7 8 9 10 11 12
P: [|0.76 ||1.26 |[1.97 |(|2.76 |(|3.60 |[4.47 ||5.36 [|6.26 (|7.18 |[8.10 |[9.03 ||9.97
Clear[t]; t=Log[4]; (* natural log *)

Table[{n,NNO.5 Log[2,4"n/(n t)],3]}, {n,1,12}]// Tabl eForm

Mathematica Code for Table 1.

This method for calculating the optimum value of P is based on the worst case. It uses the
maximum number of suffixes in a token, but many tokens have just a few suffixes. It also uses
the maximum number of prefixes, but in a sparse string many prefixes may not occur.
Experiments indicate that for large sparse strings (corresponding to n values of 9-12), better
compression is obtained if the P value selected is one less than the value suggested by Table 1.
However, for short sparse strings, the values of Table 1 are optimum. Selecting, for example, P

= 1 instead of P = 2 for our short example (with n = 3), results in the four tokens

0]3]00]03]30|33 1|5]01|03|21]22]|23|32 2|5|10]03]20]|21|22|23 3]1]|01]03

that require a total of 96 bits, more than the 90 bits required for the choice P = 2.

In our example the count field can go up to three, which means that an output token, whose
format is prefi x| count | suf fi xes, can compress at most four pixels. A better choice may be
to encode the count field so its length can vary. Even a simple unary code might produce good
results. The unary code of a non-negative integer n is defined as n-1 ones followed by a single
zero or, alternatively, as n-1 zeros followed by a single one. A better choice may be a Huffman

code where small counts are assigned short codes. Such a code may be calculated based on
distribution of values for the count field determined by several ~ “training" sparse strings.

Encoding the prefi x and suf fi x fields does not produce the same benefits because all prefixes
have the same probability of occurrence. In our example the prefixes are four bits long and all
16 possible prefixes have the same probability since a pixel may be located anywhere in the
image. A Huffman code calculated for 16 equally-probable symbols has an average size of four
bits per symbol, so nothing would be gained. The same is true for suffixes.

Results

Table 2 lists test results from six sparse strings. The numbers listed are the compression
factors (the size of the original string divided by the size of the compressed file). The factors
obtained are large, as expected from a sparse string. The following, intuitive compression
method gives order of magnitude estimates for the compression factors expected for sparse
strings. Given a 1Mbit sparse string, we can compress it by writing the positions of the one-bits
on the compressed file. Since the original string is 220 bits long, a bit position is a 20-bit
number. If there are 100 one-bits, the compressed file will be 100x20 = 2000 bits long,
yielding a compression factor of 220/2000 » 524. With 1000 one-bits, the factor should be
about 52. For our more complicated method to be of practical use, it should produce much
better results.

The six test strings used are denoted by S; through Sg and are 1Mbit (= 220 = 1,048,576)
long each. String S; has 100 bits of 1, for a density of 9.54-10-5. The 100 bits are uniformly
distributed over the entire string. String S, is similar except that the 100 one-bits are uniformly
distributed in the central half of the string. Strings S3 and S, are similar to S; and S,,

respectively, except that they have 1,000 bits of 1 (i.e., ten times the density) and in S, the

1,000 bits are uniformly distributed in the central half of the string. Strings Sg and Sg are
similar, with 10,000 bits of 1 (i.e., a density of about 1%0). In Sg, those 10,000 bits are

distributed as in S, and S,.

The method described here (denoted by M1 in Table 2) was compared to three of the
compression methods described in Fraenkel and Klein [2]. These methods are: ORing bits

(M2), variable-size codes (M3), and variable-size codes for base 2 (M4). The results are
consistent and show that M1 is slightly better than M2 and M3, and slightly outperforms M4.

Table 2: Performance Comparison of Four Methods.

S1 S2 S3 Sy S5 Se
M1 5280 2335 550 320 31 25
M2 4277 2305 410 277 24 10
M3 4360 2449 456 208 29 12
M4 5330 2450 548 322 34 29
Conclusion

The prefix method described here is easy to implement and achieves respectable results. It is
one of just a handful of methods specifically developed for the compression of sparse strings,
and thus can be extremely useful in an application where many such strings have to be
compressed and decompressed. The idea of encoding the count field seems attractive and may
considerably improve the performance of the method.

References

Anedda, C., and Felician L. P-Compressed Quadtrees for Image Storing. The Computer
Journal, 31, 4 (1988), 353-357.

2
Fraenkel, A. S., and Klein S. T. Novel Compression of Sparse Bit-Strings-Preliminary
Report, in A. Apostolico and Z. Galil, eds., Combinatorial Algorithms on Words, Vol. 12,
NATO ASI Series F:169-183, New York, Springer-Verlag, 1985.

Biography

David Salomon is with the computer science department at California State University,

Northridge. His interests are in the areas of computer graphics and data compression. He can
be reached at david.salomon@csun.edu

	acm.org
	Prefix Compression of Sparse Binary Strings

