
The ACM Student Magazine

Introduction to Linux Networking and Security

by Wei-Mei Shyr and Brian Borowski

Linux is a member of the UNIX family but is different than most UNIX implementations
because it provides a great UNIX server/workstation environment at a low cost, can be run
on a wide variety of platforms, and contains no proprietary code. In this article, we will give
a brief introduction to the IP networking services, how to configure them, and how to set
up a relatively secure Linux workstation. Please note that the examples given here are
from the Slackware distribution. The paths of the files might be different on other
distributions of Linux.

Linux TCP/IP Network Services

Linux supports a full and high quality implementation of the TCP/IP networking protocols.
With a network interface card or a modem and PPP, one can connect a machine to a local
area network or the Internet and have access to many additional services and network
utilities. Linux provides two methods of establishing host-network services. Servers can
either run stand-alone or under the control of a program called inetd. Heavily used

services will usually run stand-alone. This means the service does all the management and
listening on a socket or port. The most common stand-alone services are inetd,

syslogd, portmapper, named, and routed. The file /etc/rc.d/rc.inet2 configures the

stand-alone services. Here is an example of /etc/rc.d/rc.inet2

#!/bin/sh
#
rPREc.inet2 This shell script boots up the entire INET system.
Constants.
NET="/usr/sbin"
IN_SERV="lpd"

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331636.331642&domain=pdf&date_stamp=1999-09-01

LPSPOOL="/var/spool/lpd"
echo -n "Starting daemons:"

Start the SYSLOGD/Klogd daemons. These must come first.
if [-f ${NET}/syslogd]; then
 echo -n " syslogd"
 ${NET}/syslogd & # Backgrounded to avoid an ugly notice from bash-2.0
 echo -n " klogd"
 ${NET}/klogd
fi
...
Start the INET SuperServer
if [-f ${NET}/inetd]; then
 echo -n " inetd"
 ${NET}/inetd
else
 echo "no INETD found. INET cancelled!"
 exit 1
fi
....

However, most services run through inetd. inetd is a daemon or background process that
starts up near the beginning of the boot sequence in Linux. inetd listens on many ports,
and when a connection to a port is requested, it starts up the process associated with that
port.

Examples of services run from inetd are ftp, telnet, finger, pop, imap, and mail/smtp. inetd
is like a switch-board operator who receives calls at the main number of an organization
(the IP address of the machine), and then connects the caller to the extension they have
requested (the port or socket).

There are two files that configure inetd: /etc/services and /etc/inetd.conf (which may

be in /etc/inet/inetd.conf). Below is an example of /etc/inetd.conf

See "man 8 inetd" for more information.
#
<service_name <sock_type <server_path
#
The last 3 services (pop3, imap, uucp) are really only used for
debugging purposes, so we comment them out since they can
otherwise be used for some nasty denial-of-service attacks.

If you need them, uncomment them.
#
ftp and telnet are the standard services.
#
ftp stream tcp nowait root /usr/sbin/tcpd wu.ftpd -l -i -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
installed the Pine package, you may wish to switch to ipop3d by
commenting out the pop3 line above, and uncommenting the pop3 line below.
#pop3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap2 stream tcp nowait root /usr/sbin/tcpd imapd
#
The Internet UUCP service.
#
uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/lib/uucp/uucico
-l
....

Configuring Network Services

To configure the stand-alone services, edit /etc/rc.inet2. Disable a service by

commenting out the lines related to that service. A line is commented out by placing a #

before it. Here is an example of a commented out service:

Start the ROUTEd server.
if [-f ${NET}/routed]; then
echo -n " routed"
${NET}/routed -g -s
fi

To configure the inetd services, edit /etc/services and /etc/inetd.conf. The /etc/

services file associates services with their ports. It lists the name of the service, the port

number for that service, and the protocol (udp or tcp). Here is the line for the ftp service:

ftp 21/tcp

/etc/inetd.conf contains parameters that determine how the services runs. Here is an
example of the line for the ftp server:

ftp stream tcp nowait root /usr/sbin/tcpd wu.ftpd -l -i -a

To disable the ftp program, comment it out by putting a # at the beginning of the line. To

activate the change, reload inetd. This is done by finding the process-id (PID) of inetd, and
then sending it the hangup signal known as SIGHUP or just HUP.

{find out the PID}
$ ps -aux | grep inetd
root 479 0.0 0.2 1944 1520 ? S Mar 02 1:18 /usr/sbin/inetd
 { ^ this is the PID}
$ kill -HUP 479

The file /etc/services will most likely only need to be edited when adding new services.

This might be necessary when installing network utilities.

Note that we use tcpd to control access to the ftp daemon. The tcpd program is a

wrapper program that can be set up to monitor incoming requests for telnet, finger,

ftp and other Internet services. It works as follows: whenever a request for service

arrives, the inetd daemon runs tcpd, which logs the request and does some checking.
When all is well, tcpd runs the appropriate server program and goes away. For details, see
the tcpd manual page. Access control for tcpd is configured using the /etc/hosts.allow

and /etc/hosts.deny files. tcpd looks at hosts.allow then hosts.deny. It stops at the

first match. Consequently, one can permit a few machines to have ftp or telnet access and
then deny access to everybody else in hosts.deny. Here is a sample /etc/hosts.allow:

ALL: 10.100.10.0/255.255.255.0

The ALL refers to all wrapped inetd services. This does not include stand-alone services.

The second field 10.100.10.0/255.255.255.0 means all machines on the 10.100.10.0

subnet have access to all the services. Now we want to disallow access for everybody else.
Put the following line into /etc/hosts.deny:

ALL: ALL

The non-existence of the /etc/hosts.* files or empty /etc/hosts.* means no restriction. This
is an insecure configuration unless legitimate connections might come from many diverse
networks.

Security: An Overview

People often ask, "How secure is my machine?" The answer is that any publicly accessible
machine is necessarily insecure and vulnerable to security problems. Hence, we should
take proper steps to minimize the vulnerability. There are three different aspects of
security: physical, system, and network.

Physical security is the first layer of security. Home users probably need not worry about
this too much. However, in a public environment, this aspect of security is a much larger
concern. Keep in mind that re-booting the system is only a ctl-alt-del away if users have
access to the console. If users can reboot the system, it is trivial to manipulate the data on
the system. Whenever possible limit user access to the console.

System Security is a topic all by itself and addresses issues such as restricting user
accounts to the minimal necessary privileges. For example do users really need a full shell
environment or will a restricted menu system do? System security also involves choosing
secure, hard-to-guess passwords; reading CERT bulletins and applying patches when
necessary; and not allowing root to log in from any terminal except the console. This
means the file /etc/securetty should have only one line in it:

console

System administrators have to log in as themselves first, then run su. For increased

accountability, this program logs the user name of those who became root.

Network security is the most vulnerable part of your system. The following
recommendations will significantly improve network security:

● Strip down the OS
In standard Linux installations such as Slackware, Debian or Red Hat, many network
services are enabled by default. This may be a good thing if when setting up a
server, but when configuring a user's workstation, many of these services have no
benefit, and may pose serious security concerns. Disabling these services is a good
idea. In fact, the rule that most users should follow is that any services you do not
intend to use should be disabled.

Under Linux, system processes are started at boot time by adding and removing files
in /etc/rc.d. For example, sendmail is started from the file rc.M. To disable such a

service, you comment out the corresponding lines. In some Linux distributions, these
services are in /etc/rc.d/rcN.d, where N is a number (the system run level).

Disable services by deleting or renaming the files in the /etc/rc.d/rcN.d directory.

Other candidates are named, routed, and httpd.

● Disable unnecessary inetd network services
Disable unneeded inetd services, in the manner described above (inetd.conf).

Many inetd services are not necessary. Comment out any that are not needed. Good
candidates are: nntp (news), finger, uucp, the ``r-commands'' like rsh, rlogin, and
rexec. Use SSH instead, see below.

Some services to possibly leave enabled are: ftp (in.ftpd), but configure ftp not to
permit anonymous access unless absolutely necessary; telnet (in.telnetd), the user
interface for remote access; and auth (in.identd), the user identification program.

● Disable unnecessary stand-alone services (/etc/rc.d/rc.inet2)

Only inetd and syslogd are essential. The rest can be commented out if not

needed.
● Use SSH as a secure replacement for rlogin, telnet and rcp

SSH uses cryptography to mutually authenticate users and hosts. It also encrypts the
stream of data for confidentiality. When SSH is used, all data sent across the network
is encrypted; this assumes that it is operating in a secure mode with the normal RSA
authentication and public-key encryption enabled. This makes it very difficult for
eavesdroppers to obtain useful data by intercepting the stream of traffic.
For more information, see http://www.cs.hut.fi/ssh/.

● Use TCP-wrappers to control the access to inetd services
Define the access lists in /etc/hosts.allow and /etc/hosts.deny.

● Use the latest sendmail

Keep up with the latest stable version of sendmail. Disable it completely if email
services are accessible elsewhere.

● Use Tripwire as an early intrusion detection system
Tripwire maintains a checksum database of important system files. It is available via
anonymous ftp from ftp://ftp.auscert.org.au/pub/coast/COAST/Tripwire

Recent Security Incidents

The following are a few Linux security advisories that have been announced recently. You
can find more in-depth descriptions of the incidents at cert.org .

Buffer-Overflows
In some programs, boundary checking is not done for the pre-allocated buffers. When such
buffers are overflowed, the executing program (daemon or set-uid program) can be tricked

into performing various abnormal operations or functions. Generally this works by
overwriting a function's return address on the stack to point to another location, then
executing either a root shell or code that might change the protection on a program such
that it can then acquire root privileges.

99-03: FTP-Buffer-Overflows
By supplying carefully designed commands to the ftp server, intruders can force the server
to execute arbitrary commands with root privilege. Any server running the latest version of
ProFTPD (1.2.0pre1) or the latest version of Wuarchive ftpd (2.4.2-academ[BETA-18]) is
vulnerable.

98-12: Buffer Overflow in Some Implementations of IMAP Servers
The overflow is in library code from the University of Washington IMAP server that handles
SASL server-level authentication. Remote intruders can execute arbitrary commands under
the privileges of the process running the vulnerable IMAP server. If the vulnerable IMAP
server is running as root, remote intruders can gain root access.

Remotely Exploitable Buffer Overflow Vulnerability in mountd
On some systems, the vulnerable NFS server is enabled by default. This vulnerability can
be exploited even if the NFS server does not share any file systems. All un-updated
versions of Red Hat Linux are vulnerable.

"sscan" Scanning Tool
The sscan tool performs probes against victim hosts to identify services which may
potentially be vulnerable to exploitation. Though sscan itself does not attempt to exploit
vulnerabilities, it can be configured to automatically execute malicious scripts to exploit
vulnerabilities. Watch your logs for port scanning.

Denial of Service Attacks
There is a great increase in the number and variety of denial of service attacks in recent
years. A well-known one is the smurf attack. Basically, a large amount of ICMP echo (ping)
traffic is sent to a host or hosts, all of it having a spoofed source address of a victim. On a
multi-access broadcast network, there could be hundreds of machines replying to each
packet. In the common scenario, users with Internet access through a slow link will work
hard to gain access to a high-powered machine located on a high-speed link, install the
various utilities used to attack other hosts, and then launch the attack from this host.
For more information about the smurf attack, see http://users.quadrunner.com/

chuegen/smurf.txt.

Conclusion

Because Linux supports so many avenues of networking, care should be taken to secure
your Linux server. The general rule of thumb is "Only turn on the services you need". Edit
down /etc/inetd.conf, rc.inet2 and /etc/rc.d/rcN.d. Keep up with the security

patches. Use good password policies. Most of the recent Linux distributions include 'passwd'
programs that do not allow you to set an easily guessed password. Make sure your passwd
program is up to date and has these features. Check your system's logs daily for abnormal
activities like port scanning. Become familiar with the processes that normally run on your
system and check regularly for unusual processes (beware of processes with names that
might be very close to regularly running tasks). Scan your systems for unusual or
suspicious files or directories. For example, filenames that start with '.', directories named
'...', and unusual device names like '/dev/ttypx'. Use SSH instead of telnet and FTP for
more secure communication.

There are many web sites and mailing lists on UNIX Security in general and Linux security
in particular. It is important to keep current with the security issues happening around the
Internet; this might include becoming familiar with the latest tools. Here are a few useful
sites:

UNIX Configuration Guidelines
ftp://info.cert.org/pub/tech_tips/UNIX_configuration_guidelines

Security Tools
ftp://info.cert.org/pub/tech_tips/security_tools

Bugtraq
http://www.mit.edu:8008/menelaus/bt/

References

1
Kevin Fenzi (kevin@scrye.com) & Dave Wreski (dave@nic.com). Linux Security

HOWTO v0.9.11, 1 May 1998.

2
Matt Welsh, Phil Hughes, David Bandel, Boris Beletsky, Sean Dreilinger, Robert
Kiesling, Evan Liebovitch, Henry Pierce. Linux Installation and Getting Started Red
Hat Version 3.2, 20 Feb 1998.

3
Terry Dawson, VK2KTJ, Alessandro Rubini (maintainer),alessandro.rubini@linux.it.

Linux NET-3-HOWTO, Linux Networking. v1.3, 1 April 1998.

4
Wietse Venema TCP Wrapper: Network Monitoring, Access Control and Booby Traps.
USENIX Proceedings, UNIX Security Symposium III, September 1992.

5
Maintained by Peter Baer Galvin The Solaris Security FAQ SunWorld, URL: http://

www.sunworld.com/common/ security-faq.html, Last modified: Thursday,

April 01, 1999.

Biography

Wei-Mei Shyr worked as a system administrator for the Unix Support Group at the
Department of Information Technology Services, University of Western Ontario.

Brian Borowski is a network administrator who supports a wide range of network
equipment at the University of Western Ontario.

	acm.org
	Introduction to Linux Networking and Security

