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ABSTRACT
Time-based habitual behavior is exhibited in humans globally. Given
that sleep has such an innate influence on our daily activities, mod-
eling the patterns of the sleep cycle in order to understand the
extent of its impact allows us to also capture stable behavioral
features that can be utilized for predictive measures. In this paper
we show that patterns of temporal preference are consistent and
resilient across users of several real-world datasets. Furthermore,
we integrate those patterns into large-scale agent-based models to
simulate the activity of users in the involved datasets to validate pre-
dictive accuracy. Following simulations reveal that incorporating
clustering features based on time-based behavior into agent-based
models not only result in a significant decrease in computational
overhead, but also result in predictive accuracy comparable to the
baseline models.
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1 INTRODUCTION
For some time now, humans have experienced unprecedented con-
nectivity between friends, family, and even complete strangers
thanks to the invention of communicative tools such as the tele-
phone and the internet. As these tools evolve, information is gener-
ated and shared in a constant flood between countless users. In an
effort to understand the nature of human behavior, researchers have
analyzed these interactions and crafted many descriptive features
of behavior on social networks. However, a sometimes overlooked
characteristic of social network interactions is intrinsic human be-
havior that is consistently and globally exhibited. One of the less
latent of these features is of course a human’s need to sleep, which
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introduces a temporal preference to sequences of the information
stream [4] [12]. And despite the seemingly simple nature of sleep
cycles in social network analysis at a high level of abstraction, there
are multiple challenges that must be addressed to enable a simu-
lator to fine-tune to the presence of temporal preference. These
challenges can be represented as the following analytical questions:
(i) How stable are the temporal preference patterns across different
mediums, time zones, seasons, and agents? (ii) How can these patterns
be accounted for in complex systems with multiple agents? (iii) What
ultimate effects does temporal preference have on simulations? We
address the first of these questions in Section 3, where we perform
empirical analysis on two real-world datasets. Section 4 discusses
the second question, utilizing temporal preference in agent-based
models [5]. Section 5 discusses the third question by validating the
results from the previous sections.

2 DATASETS
To illustrate the intrinsic nature of temporal preference across medi-
ums, we choose two essentially different networks for analysis. The
first one is created from a Call Detail Record (CDR) dataset [1] [3].
This dataset contains records of the time of outgoing calls and texts
for 2300 cellphone users across multiple districts within a three-
months time range. Our reasoning for choosing this dataset was
the fact that its metadata represent simple calls and texts which
are a fairly generalizable type of communication. We primarily use
this data as a baseline for model comparisons. The second dataset
contains multiple user interactions with GitHub data. This choice
was motivated by the fact that GitHub is a social collaborative
network, which effectively captures the work life of many people
within an online medium. The GitHub data was created by LEI-
DOS for DARPA’s SocialSim Challenge [2]. This dataset contains
non-private, anonymized event streams on GitHub for a three year
period. There are over 19 million recorded users and over 64 million
recorded repositories involved. We use this dataset for the principal
simulations that are discussed in Section 5 of this paper.

3 ANALYSIS OF TEMPORAL BEHAVIOR
Hypothetically, the plot of a person’s activity should be cyclical,
within a 24-hour period. Regardless of activity levels during the
day, any productivity at night will lag and diminish as tiredness
sets in. This will be reflected in all communicative systems that
the person utilizes as they settle down to sleep. This makes sense
intuitively, but is this hypothesis verifiable?

3.1 Baseline analysis
To set a reliable paradigm for our analysis of temporal preference,
we use our largest dataset: GitHub. An important step in analyzing
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Figure 1: Weekly activity trend for USA and China users for
the GitHub dataset

Figure 2: Weekly text and call trend for CDR users within a
single time zone

the temporal behavior of users for such a large dataset is to set up
conditions for user clustering. Due to an interest in the tools of
GitHub, events are generated from users all over the globe, thus
time zones must be accounted for. In our dataset, we are able to
retrieve the country codes for large number of users in the GitHub
dataset and assign them to one of the 243 detected countries. For
each country, we gather the number of active users per hour for
the entire dataset. A user is considered active for a given hour as
long as an action was generated by this user within that defined
time range. Following this method for a week for two of the most
active countries yields Figure 1. We apply this method to our cell
data for a week as well, which is presented in Figure 2.

We observe discernible, cyclical activity trends for the top 87
countries for the GitHub data. In addition to this, a distinctive
temporal pattern is visible in both call and text actions. The baseline
analysis of these activity trends confirm our initial conjectures, as

there are drops and rises in activity during the respective sleep
cycle of users, especially so for the collaborative social network.
According to Figure 1 the maximum activity levels for GitHub are
reached at around midday, and the minimum activity levels are
reached during the night. In addition to this, there is a consistent
drop in activity during weekends.

3.2 Consistency testing
After observing consistent activity trends for a majority of the coun-
tries in the GitHub data, we check to see if these time series were
also all stationary by analyzing the temporal preference patterns
for a three-month range. For US users in particular, we find via
the Dickey-Fuller test [8] that for 2208 observations (hour unit) for
stationarity, the yielded p-value was 0.000029, which indicates that
all activity trends were stationary, validating the lack of seasonality
for workers. This also agrees with intuition.

Next, we test the stability of the sinusoidal pattern. Using all
2300 available users in the cellphone data we calculate the average
number of active users within that set for every hour in a week.
This time series acts as a ground truth to the shape of the sinu-
soidal temporal preference pattern. Dropping N number of users,
finding the exhibited time series, and then statistically comparing
the normalized shape of this time series to the ground truth can
show the resilience of the expected temporal preference pattern.
For the comparison we use the Kolmogorov-Smirnov (KS) test [9]
and mean absolute error (MAE). The former test shows, given a
small enough D statistic, that the two samples must come from
the same distribution. The latter test is an error statistic so we can
check that the two normalized curves are not dissimilar in pattern
directly. As seen in Table 1 the D statistic and MAE are relatively
low up until N = 2000, and even then the MAE for the two curves
remains under 0.1. This, coupled with an average KS p-value of
0.83 (for the null hypothesis that the two samples came from the
same distribution) indicates that despite the increasingly shrinking
subset of active users, the innate phenomena of temporal preference
holds both from the perspective of sample distribution and pattern.
Table 1: Resilience of the general shape of temporal prefer-
ence for CDR users

Num of users dropped KS D stat MAE
10 0.0179 0.0016
100 0.0238 0.0038
1000 0.0655 0.0139
2000 0.2023 0.0489

3.3 Generalized user clustering
As mentioned above, the GitHub analysis done only covers the
activity trends for the top 87 countries. In order to harness the
complete functionality of user temporal preference for simulation
purposes for such a large dataset, the activity trends for the GitHub
users under the remaining country codes are assessed. However,
it must be noted that of the remaining 156 countries, we exclude
24 completely due to sheer lack of user activity, as the associated
users contribute less than 1000 events in the entirety of the GitHub
event dataset. The remaining 132 countries have reasonable activity
trends, though their time series are not as distinctive or clearly
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cyclical as the top 87. We cluster these countries by similar time
series shape. Once these clusters were found, an average weekly
event time series was formed as an aggregate of all countries within
that set. This clustering is useful for the following simulations.

4 INCORPORATING THE BEHAVIORAL
TRENDS INTO AGENT-BASED MODELS

Given our empirical analysis of behavioral trends shows features
of temporal preference, the questions we must now address is how
can this be accounted for in complex systems with multiple agents?
Below, we describe how we construct our agent simulators and
incorporate temporal preference into them.

4.1 Simulation of the cellphone network
Due to the small scale of the cellphone data, we built a simple, gen-
eralizable agent-based model (ABM) where agent i at time t samples
a Probability Mass Function [10] where discrete random variable X
is the number of calls (or text messages) agent i initiates within that
timestep. The generation of each agent’s action probability distri-
butions follows a simple replay heuristic where action probabilities
are calculated from the agent’s past event counts. This process does
not directly simulate agent interactions, but due to the nature of
the agents’ empirical behaviors, that dynamic is inherently cap-
tured in the system, being exhibited more as a latent feature than a
behavioral model. This choice saves on baseline overhead since the
agents do not need to store and act upon constantly changing state
variables during runtime.

To incorporate the temporal preference of agents within the
cellphone dataset into the ABM, we calculate the hourly fraction
of active agents for calls and texts separately. These yield cyclical
graphs similar to those shown in Figure 2. Additionally, the overall
participation level is calculated for each agent by finding the average
daily activity level for calls and texts separately, and then ranking
them against the other users. This gives each agent a ranked score
of how active they are compared to all other agents. During the
simulation, at each timestep t , the participation level is compared to
the fraction of active agents at the given t . If the agent in question
is not active enough to be among the average number of active
agents, that agent is skipped without even sampling their action
distribution (regardless of respective probabilities).

4.2 Simulation of GitHub
For the dense event stream of the GitHub dataset, the agent-based
model that was built follows the generalizable architecture outlined
in [13]. By clustering users by activity levels and analyzing user
trends (both specific and general) we can retrieve high-level event-
type-specific statistics that can be fed into the ABM without any
superfluous features or data that could increase overhead. This was
done for this particular study, with the ABM being built solely based
on statistics retrieved from a separate statistics engine that was fed
the bulk of the training data. Inside the ABM, each agent has some
behavior model associated with it that determines how it handles
the statistics (e.g. a Bernoulli model with q = 1 − p probability
of either generating an event or not). Of the models discussed in
this study, we utilize the user-centric time-based model, which has
the finest time granularity. Specifically, this model iterates through

each user at an arbitrary timestep (defined here as an hour) until
completion of a defined time range. Like the CDR ABM, this model
does not directly simulate user interactivity, opting to represent it
as a latent feature of the behavior model. In order to incorporate
temporal preference into the GitHub ABM, we first extract the
country codes from the provided dataset and cluster users by those
codes using the generalized user clustering techniques. We then
define each individual user’s participation level (as calculated in the
previous subsection). Following this, we enhance the initialization
process of the ABM itself, allowing the engine to tag each agent with
their country code and participation level upon creation. During a
time-based simulation, a country’s activity trend is sampled for the
given timestep to give the fraction of active users for that country.
That fraction determines the number of associated users that act
at that timestep, given that the participation level ranks of these
users rank them higher than an established level of activity. Any
other users with that country code are completely skipped.

5 SIMULATION RESULTS AND
COMPARISONS

With the specifics and initial conditions for the ABMs for both
datasets described, we now turn to the corresponding results of
these simulations and analyze the outputs of both the baseline ABM
and the ABM with temporal preference incorporated (ABMTP) as
illustrated in the previous section. Two natural question arise when
considering the approach for our analysis: (i) What is the change in
the overhead of the simulation? (ii) What is the difference between
the resultant simulated data?

5.1 Runtime difference and information loss
between CDR simulations

Due to the smaller scale of the cellphone data, it is easy to answer
these questions in detail. We answer each question by calculating
runtime (rt) difference between our ABMTP and our regular ABM
and then comparing the results with a set of statistical measures,
respectively. In particular, we compute the RMSE and Spearman’s
Rho (rs ) [6] between the resultant data of the ABMTP and ABM to
show direct time series similarity and trend correlation between
the two simulated curves. We also assemble a general hourly action
distribution for both models and compute the Kullback-Leibler (KL)
divergence [7] between the two to measure the amount of informa-
tion lost. For the simulations we run both models for all 2300 users
within the entire 3 month range of the dataset. We do this since for
this subsection we are interested in a direct statistical comparisons
between model types as opposed to predictive computation, which
is saved for the GitHub simulations.
Table 2: Runtime and statistical comparisons between the
CDR’sABMandABMTP simulation results formultiple sim-
ulation time ranges

Sim
Range
(hr)

ABM
rt (sec)

ABMTP
rt (sec)

RMSE rs KL Div

24 66.95 35.21 69.07 0.9563 0.0076
168 473.4 215.5 819.8 0.9619 0.0178
336 944.4 432.7 800.7 0.9621 0.0158
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Table 2 shows the results of the analysis for several simulation
time ranges, which reveal that despite the proportional decrease of
overhead in the ABMTP, there is little statistical difference between
the two simulated time series, further indicating simulation stability
for the ABMTP.

5.2 Ground truth comparisons for GitHub
As seen in Table 2, one of the most significant differences between
the ABMTP and ABM for the cellphone dataset is the simulation
overhead, where the ABM is 2.8 times slower than the ABMTP.
For the GitHub data, this observation continues to hold for a set of
simulations with 9 million agents, as seen in Table 3. The runtime
(rt) difference between the two models for GitHub is substantial as
well, where the ABM is 3.1 times slower than the ABMTP.
Table 3: Runtime comparisons between ABM and ABMTP
for GitHub’s time-based simulations

Sim Range (hr) ABM rt (sec) ABMTP rt (sec)
24 15.21 5.346
168 103.2 33.09
336 205.4 74.15

Now what about statistical accuracy? For the test on the Github
dataset, we evaluate against ground truth to gain an understanding
of how the two models hold against real-world dynamics. In this
test we simulate data to predict the entirety of the last month of
a seven-month dataset snapshot. Despite the single month time
range, a single simulation of the ABM and ABMTP independently
result in about 66 million events due to the large number of active
agents. Considering this, direct comparisons of time series is neither
computationally efficient nor logical, since the primary goal here is
to capture trends and behavior, as opposed to the exact event counts
or time series. Considering this, we choose to assess the accuracy
of the simulated data via group trends and emergent behavior at a
high level. Specifically, we looked at three statistical measures: the
Ranked Bias Overlap [11] to compare the top 1000 expected most
active users, the average RMSE to compare the activity patterns
for the top 1000 most active users, and the KL Divergence of the
daily activity distribution (as done with the cellphone dataset). The
results are presented in Table 4, comparing the accuracy of all four
models when evaluated against the ground truth, indicating that
accuracy loss is negligible between the ABM and ABMTP for both
the GitHub and CDR datasets.
Table 4: Statistical ground-truth evaluations for GitHub’s
ABM and ABMTP simulation results for a one-month sim-
ulation time range

Model RBO RMSE KL Div
user ABM 0.6592 43.24 0.0762
user ABMTP 0.6588 43.26 0.0695

6 CONCLUSION
We analyzed two greatly differing datasets in order to find temporal
preference of users. We found that the cyclical patterns exhibited in
the event streams were consistent, stationary, and highly resilient,
indicating strong temporal preference for all users. We incorpo-
rated these behavioral trends into agent-based models in order to

capture those intrinsic trends of each agent and use it as a clustering
technique to reduce overhead in simulations.

Using the cellphone dataset we found that despite the noticeable
speed-up achieved by the enhanced temporal preference agent-
based model, the statistical difference between it and the regular
agent-based model was negligible. When using the GitHub data to
predict a month of user activity of 9 million users, we found that
even with the proportional decrease in overhead there was still
little loss of accuracy in our ground truth comparison.

Ultimately, our work has shown that temporal preference is in-
deed an innate behavior of humans that is reflected in communica-
tive media. Utilizing these behavioral trends can yield significant
decreases in simulation overhead for agent-based modeling with
negligible accuracy loss. These trends can also potentially be used
in other methods of simulation aside from computational efficiency,
such as feature clustering and behavioral modeling. Another venue
for future work is the expansion of the agent-based models to
account for dynamic inter-agent dependencies in order to model
phenomena such as information cascades.
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