
Virtual-Time-Accelerated Emulation for Blockchain Network
and Application Evaluation

Xiaoliang Wu

Illinois Institute of Technology

Chicago, Illinois

xwu64@hawk.iit.edu

Jiaqi Yan

Illinois Institute of Technology

Chicago, Illinois

jyan31@hawk.iit.edu

Dong Jin

Illinois Institute of Technology

Chicago, Illinois

dong.jin@iit.edu

ABSTRACT
Blockchain technologies are in the ascendant of transforming the

ways we manage contracts, make transactions, and manifest own-

ership of property. The trend calls for a realistic testing and evalua-

tion platform for blockchain applications and systems. We present

Minichain, a container-based emulator that allows testing proof-

of-work-based blockchains on a commodity computer. Minichain

contains a realistic and configurable network environment, which is

missing in today’s blockchain testbeds. This unique feature enables

us to evaluate the impact of network events (e.g., cyber-attacks)

and conditions (e.g., congested or failed links) on blockchain appli-

cations. Meanwhile, Minichain allows the direct execution of un-

modified application code in the containers for fidelity, and utilizes

the virtual time technique to speed up experiments and improve

the system scale that one can accurately emulate. In particular,

we mathematically analyze the convergence of the proof-of-work-

based consensus algorithm to show the effectiveness of virtual

time. We evaluate the performance of Minichain across both net-

work layer and application layer, and demonstrate its usability by

emulating a selfish mining attack initiated from the network layer.

ACM Reference Format:
Xiaoliang Wu, Jiaqi Yan, and Dong Jin. 2019. Virtual-Time-Accelerated

Emulation for Blockchain Network and Application Evaluation. In SIGSIM
Principles of Advanced Discrete Simulation (SIGSIM-PADS ’19), June 3–5, 2019,
Chicago, IL, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3316480.3322889

1 INTRODUCTION
Blockchain technology promises an open, distributed, and secure

digital ledger for recording transactions and contracts. Today, new

ideas based on blockchain technology are springing up all over

financial, legal, and political systems [1, 3, 4]. Specific blockchain-

based projects [6, 7, 22, 23] draw tremendous public attention

not only because of the openness and decentralization offered

by blockchains, but also the innovative application design and

the claimed competitive system performance like high transaction

throughput, short read latency, and high amount of coins. However,

as a blockchain is a complex peer-to-peer distributed system, a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00

https://doi.org/10.1145/3316480.3322889

convincing experimental analysis is essential to support the theo-

retically claimed performance advantages before the actual deploy-

ment, as people certainly prefer witnessing the healthy operation

of a working blockchain to a lengthy and dry whitepaper.

Several blockchain testbeds were proposed by the research com-

munity to meet this emerging demand [5, 24]. The testbeds are often

established on private clusters, and the physical machines running

blockchain applications are directly connected to form small-scale

testing blockchains. The testbeds either do not include the un-

derlying communication network or only offer a static network

environment with no interface to configure. However, blockchain

practitioners have realized the critical impact of network environ-

ment on blockchain applications [29]. Furthermore, blockchains are

increasingly used to boost cyber-security across industries. Evaluat-

ing the effectiveness of those new applications against cyber-attacks

also calls for a realistic network layer in a blockchain testbed. Let

us demonstrate the importance of considering the network envi-

ronment in a blockchain with the following motivating example.

We set up the following scenario with six miners to explore a

known vulnerability of the Ethereum system [29]. All miners keep

mining with a one-second average block generation interval until

the 1000-th block is generated. Figure 1 depicts the distribution

of blocks under different network latency conditions. In the high-

latency network (400 ms link delay), miner 1 publishes more than

50% of blocks (51.1% as shown in Figure 1b). In other words, miner

1 has successfully launched the selfish mining attack [9, 22] so that

it has the potential to break down nearly all the security properties

that a blockchain-based ledger promises. For example, miner 1 now

can prevent new transactions from happening, reverse early-signed

contracts, or even double-spend Ethereum coins. However, the same

issue is not observed in the low-latency network scenario (10 ms

link delay) as shown in Figure 1a, where miner 1 possesses <50% of

the blocks.

Miner 1 46.8%

Miner 2

9.9%
Miner 3

11.0%
Miner 410.6%

Miner 5
9.5%

Miner 6

12.2%

(a) 10 ms Link Delays

Miner 1 51.1%

Miner 2

10.0% Miner 3
9.9%

Miner 410.3%

Miner 5
8.5%

Miner 6

10.2%

(b) 400 ms Link Delays

Figure 1: Comparison of Distributions of Blocks with Differ-
ent Network Delay Settings.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

149

https://doi.org/10.1145/3316480.3322889
https://doi.org/10.1145/3316480.3322889
https://doi.org/10.1145/3316480.3322889
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3316480.3322889&domain=pdf&date_stamp=2019-05-29

The difference motivates us to design a new blockchain testbed

that contains a realistic network layer and allows easy configuration

of the network characteristics, such as link delay, bandwidth, and

packet loss rate. Integration of a working blockchain into a network

testbed offers a solution. Among the various types of network

testbeds, physical network testbeds typically do not offer desired

controllability over the network, and the scale of the network relies

on the available hardware; network simulation testbeds, on the

other hand, do not offer the desired fidelity due to model abstraction

and simplification. In this paper, we develop a container-based

network emulation testbed, Minichain, as it provides a good balance

between fidelity (by executing unmodified blockchain applications

in containers) and scalability (by emulating a network of dozens

of blockchain nodes on a commodity server). Minichain also offers

users the fine-grained control over the network settings as well as

resource management (e.g., CPU slice) among the blockchain peers.

However, integrating blockchains onto a network emulation

has unique challenges. Blockchain applications require resource-

intensive mining processes to add blocks cryptographically, and the

consensus models are often based on computationally expensive

algorithms (e.g., proof-of-work). As a result, emulating a blockchain

may overwhelm the resources of the underlying physical machine,

and hence limit the scale of the system to emulate as well as slow

down the execution speed. A key challenge is how to speed up the

blockchain emulation without losing fidelity.

Solutions to address this challenge are (1) increasing system re-

sources and/or (2) reducing the required computation. The former

includes upgrading the hardware or designing a distributed version

of the testbed. However, being able to evaluate blockchains on a

single commodity server is a pretty handy feature that we intend

to keep. Therefore, in this work, we take the latter approach to

reducing computational cost needed to emulate a blockchain while

preserving the desired fidelity. Our solution is centered around

the application of virtual time in network emulation. In the lit-

erature, virtual time is used for a different purpose in network

emulation [12, 15, 18, 27]. In particular, when the physical system

lacks resources to run an emulation experiment, using virtual time

can extend the execution time for generating accurate experimental

results. In this work, we explore the virtual time differently with

the goal of accelerating the emulation experiment. We notice that

miners race to solve computation-intensive mathematical puzzles

in traditional proof-of-work based blockchains. To maintain a stable

average block interval (e.g., 10 min for Bitcoin) as miners join and

leave the chain, the system dynamically adjusts the difficulty in the

proof-of-work algorithm. The difficulty has a direct impact on the

total amount of computation needed. Therefore, we can leverage

virtual time to quickly advance the system state to the future. By

preserving the same block interval, the difficulty is reduced, and

thus the computational cost is also reduced, which further accel-

erates the emulation experiment. To fully explore virtual time in

Minichain, we first conduct a mathematical analysis of blockchain’s

convergence with and without virtual time; we then integrate vir-

tual time system to Minichain; finally, we demonstrate that the

virtual time is able to speed up the experiment with little fidelity

loss in both benchmarking experiments and a case study.

Our contributions of this work are summarized as follows.

• We develop Minichain, a container-based blockchain emu-

lator, for the first time, to allow users to test and evaluate a

blockchain system on a commodity machine with a realistic

and configurable network environment.

• To speed up the emulation experiment without losing fi-

delity, we analyze and realize the virtual time support in

Minichain. In particular, we mathematically analyze the con-

vergence of the proof-of-work-based consensus algorithm,

which enables Minichain to achieve higher efficiency with

virtual time.

• We evaluate the system performance of Minichain including

the blockchain applications layer, the network layer and

virtual time. We also demonstrate how to use Minichain for

security analysis on an Ethereum blockchain with a case

study.

In the remainder of the paper, we introduce the background

knowledge about blockchain in Section 2, andmathematically prove

the convergence of proof-of-work difficulty in Section 3 to offer

the theoretical support of using virtual time in Minichain. We then

elaborate on the challenges a blockchain emulator faces with the

goal of preserving the fidelity of selected performance metrics

in Section 4 and how we address those challenges in Section 5.

We develop a working prototype system, Minichain, and report

performance evaluation in Section 6. We further demonstrate the

usability of Minichain with a selfish mining attack case study in

Section 7. We discuss related work in Section 8 and conclude the

paper with future work in Section 9.

2 BACKGROUND OF PUBLIC BLOCKCHAIN
2.1 Proof of Work Consensus in Blockchain
A blockchain is an incorruptible, decentralized, and distributed

ledger of programmable and crypotographically-signed transac-

tions that record virtually anything of value. It is also literally a

chain of unique data structures (blocks). A block along with a group

of stored transactions is resistant to modification as it cryptograph-

ically links to the previous block with proper validation. Peers in

the blockchain (called miners) are rewarded with coins of financial

value (e.g., Bitcoin) when they successfully append a new legiti-

mate block to the main chain. To prevent miners from dictating

or confusing the main chain (i.e., everyone has the permission to

read and write), a trustless public blockchain system relies on a

consensus algorithm to determine who to publish the next block.

Today, most existing public blockchains adopt proof of work

(PoW) to select the winner, while promising alternatives exist, such

as proof of stake (PoS) and delegated proof of stake (DPoS). PoW

works by allowing every untrustworthy party to solve a problem

to prove their computational capacity fairly. The selected problem

is mathematically hard to solve but easy to verify. For example, the

Bitcoin blockchain uses the hashcash where miners exhaustively

search a nonce whose hashed value is less than a target value.

PoW applied in a blockchain can be further illustrated by how

Alice and Bob commit a transaction:

(1) Bob shares the public key of his account with Alice.

(2) Alice bridges the transaction from Alice’s public key to Bob’s

public key and signs the transaction with her private key.

(3) Alice broadcasts the signed transaction to the entire network.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

150

(4) Miners verify the transaction and seal the transaction into

one block.

(5) Miners compete by solving a hard problem until one miner

discovers the valid answer.

(6) The winning miner broadcasts the valid block to the entire

network.

(7) Bob and Alice confirm the transaction when they receive

the block that contains their transaction.

2.2 Key Emulation Performance Indicators
One problem with PoW is how to set an appropriate difficulty.

Solving the problem using proof-of-work is meaningless to the

transaction made between Alice and Bob other than facilitating the

agreement on which miner publishes the transaction. On one hand,

making a problem too hard means less computational resources

can be allocated to verify and store transactions. On the other

hand, the next block is likely to be found by multiple miners if

the difficulty remains easy, making consensus hard and slow to

emerge. A PoW algorithm dynamically adjusts its difficulty based

on the system’s available computational resources. Since blockchain

applications and users always demand their submitted transactions

to be confirmed at a stable and reasonably fast speed, such difficulty

adjustment keeps the interval of block generation at a desired stable

value as miners join and leave. In this way, a blockchain balances the

interests of users of the digital ledger (e.g., Alice and Bob) against

the consensus of the flow-in-and-out computational capacity (e.g.,

miners).

The transaction-making example mentioned above also demon-

strates the key emulation performance indicators (KEPIs) that a

blockchain testing system ought to focus. We consider the block

interval (ideally a stable and reasonably fast value) as a KEPI but not

the PoW’s difficulty, as it signifies the completion of the first step

of transaction confirmation in a block. To prevent double spending,

a transaction confirmation is not complete until the block holding

the transaction has depth with a certain number of blocks. There-

fore, the transaction throughput (i.e., the number of completed

transactions per time unit) is another KEPI. Finally, the end-to-end

communication between Alice and Bob and the block broadcast by

miners rely on the reliable underlying networking infrastructure.

Traditional performance metrics like network throughput and end-

to-end latency should be considered as KEPIs in the context of this

paper.

In summary, we consider block interval, transaction throughput,

network throughput and latency as the KEPIs, and the design goal

of our blockchain testing system focuses on the fidelity of those

KEPIs. We exclude the difficulty of the PoW, as it does not affect the

KEPIs in a PoW-based blockchain as long as the difficulty reaches

its convergence state.

3 CONVERGENCE OF POW DIFFICULTY
Performing proof-of-work plays an indispensable role in achieving

consensus in a blockchain system. However, PoW is designed in

a way such that its difficulty is independent of the block interval

and the transaction throughput when a blockchain reaches a steady

state. In this section, we use a specific blockchain, Ethereum, to

demonstrate (1) how a blockchain converges to a steady state, (2)

what a converged blockchain looks like, and (3) the mathematical

proof that difficulty is irrelevant to KEPIs during the steady state.

Ethereum generates blocks as follows:

(1) All miners start off mining a new block bi by solving a prob-

lem with difficulty Di , in which miners need to find a new

piece of data that hashes to a value less than the pre-defined

target, which takes Di expected hash operations.

(2) When a new candidate block is found and published by a

certain miner, other miners stop mining to verify block bi .
Once verified, bi is appended to the main chain and miners

repeat the mining step. We assume bi is always valid for

simplicity.

Block intervalTi (i.e., the duration of the block generation cycle)

is one KEPI of interest in a blockchain.We defineT (Di)with respect

to the current difficulty Di of the PoW as T (Di) = M(Di) +V (Di)

whereM(Di) is the mining time, V (Di) the verification time. Since

V (Di) ≪ M(Di) in most real-world applications, we ignore V (Di)

in the hereafter analysis. All the assumptions made in both this

section and Section 5 are summarized in Table 1.

Difficulty Di is defined to be the expected number of hashing

operations to discover the first valid i-th block. PoW dynamically ad-

justs the difficultyDi . Particularly, Ethereum’s dynamic adjustment

algorithm [8] is expressed as:

Di+1 = Di +

⌊
Di
2048

⌋
×max(1 −

⌊
Ti
10

⌋
,−99) + ⌊2 ⌊i/100,000⌋−2⌋

(1)

The hash function used by PoW generally leaves miners no strategy

other than enumerating exhaustively. On one hand, since valid

results are not unique and are distributed evenly in the hash func-

tion’s input and output spaces, it is not guaranteed after Di hash

operations a miner can found a valid block; on the other hand, a

miner may also report a valid block before Di hash operations. The

second component in Equation 1 adjusts the previous difficulty Di
depending on how much time is spent on finding the i-th block

(Ti). The last component in Equation 1, bn(i) = ⌊2 ⌊i/100,000⌋−2⌋, is

mainly for Ethereum’s future support of proof of stake design. In

normal emulation, block number i seldom goes beyond 200,000,

which makes bn(i) ≤ 1. Therefore, we ignore bn(i) hereafter from
Ethereum’s PoW difficulty analysis.

Assume all the miners are mining the blocks at an aggregated

hash rate HR (e.g., number of hash operations performed per sec-

ond), the average block interval (ignoring the time spent on val-

idation) can be calculated as Ti =
Di
HR which renders Equation 1

to

Di+1 = Di +

⌊
Di
2048

⌋
×max(1 −

⌊
Di/HR

10

⌋
,−99) (2)

We eliminate themax function by splitting the recursive formula 2

into two cases

Di+1 =

Di +

⌊
Di
2048

⌋
× (1 −

⌊
Di /HR

10

⌋
), 0 ≤ Di < 1000HR

Di − 99

⌊
Di
2048

⌋
, Di ≥ 1000HR

(3)

3.1 Convergence without Floor Function
Without loss of generality, we replace integer divisions with normal

divisions to make the proof concise. We define α1 = (1 + 1

2048
),

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

151

β = − 1

20,480HR , α2 = (1 − 99

2048
), and HPE = 1000HR so that

Equation 3 is simplified to

Di+1 =

{
βD2

i + α1Di , Di < HPE

α2Di , Di ≥ HPE
(4)

The dividing line Di = HPE = 1000HR in Equation 4 is defined

as follows.

Definition 3.1. Explicit Hash Power, denoted as HPE , is the total
number of hash operations a blockchain system performs for 1000

seconds of PoW with a constant hash rate HR.

If the computational power consumed by the current block

is higher than HPE , Ethereum exponentially decreases the next

block’s difficulty until reaching a converging point. Otherwise,

the difficulty is adjusted quadratically. We divide the difficulty ad-

justment into two cases, and conquer each case in the following

sub-sections.

3.1.1 Convergence of Case 1. Let us consider the case that the

current blockchain is under the explicit hash power Di < HPE =
1000HR,

Di+1 = βD2

i + α1Di (5)

Definition 3.2. Implicit Hash Power, denoted as HPI , is the total
number of hash operations a blockchain system performs for 10

seconds of PoW with a constant hash rate HR.

Theorem 3.3 (Convergence Below HPE). The difficulty con-
verges to the implicit hash power HPI (see Equation 5). More con-
cretely,

• If HPI ≤ Di < HPE , Di monotonically decreases to HPI ;
• If 0 < Di < HPI , Di monotonically increases to HPI .

Proof. The proof is based on the following lemma about mono-

tone sequence’s convergence.

Lemma 3.4. If a sequence of real numbers is increasing and bounded
above, then its supremum is the limit.

Lemma 3.5. If a sequence of real numbers is decreasing and bounded
below, then its infimum is the limit.

Let f (Di) = βD2

i + α1Di , where Di ≤ HPE . With Di ≤ HPE <

−
α1

2β = 10245HR, we take f ’s derivative as

f (Di)
′ = 2βDi + α1 > 0

Therefore, {Di } is a monotonic sequence. Note that we still need

to determine if {Di } is monotonically increasing or decreasing.

Without loss of generality, we introduce an arbitrary constant

0 < c ≤ 1000, and assume Di = c × HR. Using the recursive

relation defined in (5), Di+1 can be expressed as

Di+1 =β(c × HR)2 + α1(c × HR)

=βc2HR2 + α1cHR

=c × HR × (1 +
1

2048

−
c

20480

)

In other words, we have{
Di+1 ≥ Di , 0 < c < 10,

Di+1 < Di , 10 ≤ c < 1000,
(6)

which indicates the convergence of sequence {Di }:

• when 0 < Di < HPI = 10HR, {Di } monotonically increases.

By Lemma 3.4, {Di } converges to HPI .
• when HPI = 10HR ≤ Di < HPE , {Di } monotonically de-

creases. By Lemma 3.5, {Di } converges to HPI .

Therefore, the difficulty converges to the implicit hash power HPI ,
since Di converges to the same limit 10HR in the both cases. □

3.1.2 Convergence of Case 2. {Di } in the case 2 is a geometric

sequence with a common ratio α2 < 1. Instead of converging to

zero,Di decreases exponentially toHPE . Then,Di falls into the case

described in Equation 5 and continues decreasing monotonically

to HPI . In summary, if we replace integer divisions with normal

divisions, the following theorem holds true (visually illustrated by

Figure 2).

Theorem 3.6 (Convergence of Simplified Ethereum’s PoW

Difficulty). With the adjustment algorithm defined as

Di+1 = Di +
Di
2048

×max(1 −
Di

10HR
,−99) (7)

D∞ ≡ limi→∞ Di = HPI regardless of the initial value.

3.2 Convergence with Floor Function
Although the integer division does not affect the convergence of

Ethereum’s difficulty, it affects how the difficulty converges. As-

sume HR ≥ 2
20

(i.e., at least 1M hash per second), we describe the

convergence with the following theorem.

Theorem 3.7 (Convergence of Ethereum’s PoW Difficulty).

With the adjustment algorithm defined as

Di+1 = Di +

⌊
Di
2048

⌋
×max(1 −

⌊
Di/HR

10

⌋
,−99) (8)

sequence {Di } converges in three different ways depending on the
initial difficulty values. More specifically, ∀i ∈ Z+:

• Monotonically-decrease convergence case: ∀i > 0,Di+1 ≤ Di
and limi→∞ Di = 2HPI when 2HPI ≤ D0

• Monotonically-increase convergence case: ∀i > 0,Di+1 ≥ Di
and limi→∞ Di = HPI when 2048

HR < D0 ≤ HPI
• Static convergence case: ∀i > 0,Di = D0 when HPI < D0 <

2HPI

Notice that since
2048

HR ≪ 1, we don’t need to bother with the case

of D0 ≤ 2048

HR . Figure 3 depicts the convergence of {Di } according to

Theorem 3.7. Note that Theorem 3.7 still holds even if HR changes

afterward. In that case, the difficulty converges to c ×HR(T), where
10 ≤ c ≤ 20 and HR(T) is the hash rate function over time. The

proof for Theorem 3.7 is based on the same idea of Theorem 3.6,

and the complete version is described in a supplementary technical

report [26].

3.3 Irrelevance of Difficulty to KEPIs
We define the steady state of the blockchain as its PoW difficulty

converges based on Theorem 3.7. The value of difficulty is indepen-

dent of those blockchain KEPIs in a steady state.

In terms of Ethereum’s block interval, T∞ ≡ D∞/HR become

a constant between 10 to 20 seconds at convergence since D∞

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

152

Location Assumption

Equation 3 Mined blocks are always valid.

Equation 3 V (Di) ≪ M(Di) and thus V (Di) is ignored.

Hash Rate HR = 2
26 = 64Mhps (hash per second) in Figure 2 and Figure 3, but is considered as a parameter in analysis.

Dilation Factor TDF = 0.1 in virtual time, otherwise TDF = 1.0

Dilated Hash Rate HRVT = HR ×TDF = 6.4Mhps in Figure 5, Figure 6, Figure 7, and Figure 8

Equation 1 Block number i < 2 × 10
5
and thus ⌊2 ⌊i/100,000⌋−2⌋ is ignored.

Equation 2 The computation power of the blockchain system is HR.

Table 1: Assumptions Made in the Analysis of the Difficulty in an Ethereum Blockchain.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time Step

109

1010

1011

Eh
te

re
um

 D
iff

icu
lty

 /
Lo

g
Sc

al
e

Initial Difficulty D0 = 8HR
Initial Difficulty D0 = 80HR
Initial Difficulty D0 = 1800HR

Figure 2: Based on Equation 7, Ethereum’s difficulty con-
verges to the implicit hash power HPI regardless of the ini-
tial values.

0 500 1000 1500 2000 2500 3000
Time Step

109

1010

1011

Eh
te

re
um

 D
iff

icu
lty

 /
Lo

g
Sc

al
e

Initial Difficulty D0 = 8HR
Initial Difficulty D0 = 80HR
Initial Difficulty D0 = 1800HR
Initial Difficulty D0 = 15HR

Figure 3: Based on Equation 8, Ethereum’s difficulty con-
verges in three ways depending on the initial value.

becomes c ×HR, 10 ≤ c ≤ 20 according to Theorem 3.7; for Bitcoin,

the mean block interval is fixed at 10 minutes, independent of the

actual value of the difficulty.

In terms of transaction throughput π , between blockbi and block
bj (i < j) in a converged blockchain

π (i, j) =
transactions stored in blocks∑j

k=i Tk

∀k ∈[i, j],Tk=T∞
=============⇒ =

∑j
k=i TXk

(j − i + 1)T∞
=
TX (i, j)

T∞

=
TX (i, j)

c
, 10 ≤ c ≤ 20 (9)

where TX (i, j) is the average number of transactions stored in

blocks. Again π is independent of the difficulty, but is determined

by the number of transactions being put into blocks by ledger users.

In terms of network latency and throughput, they are determined

by the conditions of the underlying communication network, such

as protocol stacks (e.g., TCP/UDP), hardware capabilities (e.g., band-

width), network congestion (e.g., queuing) and other characteristics

that are independent of the blockchain application layer. The anal-

ysis indicates that ignoring a converged PoW difficulty does not

affect the fidelity of KEPIs. The fact actually speeds up the experi-

ments when integrated with virtual time. Details are described in

Section 5.

4 DESIGN OF MINICHAIN
The design goal of Minichain is to allow users to conduct high-

fidelity emulation experiments of a blockchain system concerning

both application behaviors and network characteristics at low cost

(e.g., evaluating a new application design on a single laptop). There

are two design objectives.

• Minichain enables realistic emulation of the blockchain ap-

plications with high usability, including direct execution

of unmodified blockchain applications, flexible experiment

generation, accurate emulation of transactions and mining

activities and data collection.

• Minichain enables realistic emulation of the underlying net-

work including user-specified delay, loss, and bandwidth per

communication link.

Figure 4 depicts the two-layer system architecture corresponding

to the two design objectives, and details are illustrated in the next

two subsections.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

153

Flow Delay Throughput Loss

…... …... …... …...

Linux NetEm

Linux Container

Blockchain Application

Virtual Network Interface

Linux Container

Blockchain Application

Virtual Network Interface

Linux Container

Blockchain Application

Virtual Network Interface

Linux Container

Blockchain Application

Virtual Network Interface

Blockchain Application Layer

Blockchain Network Layer

Virtual Time

Figure 4: System Architecture of Minichain.

4.1 Emulation of Blockchain’s Transactions
and Mining Activities

Minichain supports the concurrent running of multiple blockchain

peers to emulate a blockchain system. We conceptualize peers to be

either blockchain application programs that commit transactions

or PoW-based mining programs that help to confirm transactions

with economic motivations (e.g., earning coins). Emulation of these

peers requires Minichain to be

• Realistic: direction execution of the diverse and original

blockchain codes conducting both transactions and mining

activities;

• Transparent: execution of unmodified binaries;

• Extensible: support of various blockchain systems (e.g., Bit-

coin, Ethereum and many other).

Minichain meets those requirements by running each peer indis-

tinguishably within a Linux container [16]. The Linux container is

a lightweight OS-level virtualization technique. Without additional

efforts, users can directly execute unmodified binaries of blockchain

peer regardless of the peer function (e.g., mining or transaction) or

the type of blockchain (e.g., Bitcoin or Ethereum). A container offers

a blockchain peer its own process tree, networking stack, and file

system. Running peers inside containers is also resource-economic

to enhance system scalability, as containers share the same kernel

of the host machine.

While Linux container makes Minichain capable to run realis-

tic, transparent, and extensible blockchain system, we encounter a

unique challenge due to the characteristic of PoW in a blockchain.

All miners work to solve mathematically hard puzzles (e.g., hash-

cash in Bitcoin and Ethereum). As a result, a significant amount of

computational resources are consumed and it significantly increases

the time for a blockchain system to converge, which negatively

affects the performance of Minichain. However, the requirement of

high-fidelity emulation forbids us to save emulation resources by

eliminating or simplifying the mining activities. Therefore, the chal-

lenge Minichain confronts is how to reduce the time and resources

spent on mining without modifying the mining code.

Our theoretical analysis of blockchain’s convergence in Section 3

sheds lights upon this dilemma. Since the difficulty of PoW as

well as the solving process of PoW do not affect the KEPIs after a

blockchain converges, we propose to reduce PoW’s difficulty by

dilating the elapsed time from all miner’s perspective. If solving

a PoW takes a miner t seconds, we dilate the duration to
t

T DF ,

where TDF < 1 is called time dilation factor. In this way, we have

put peers in the virtual time of dilated speeds, a technique used by

several network emulators [12, 18, 27], but for different purposes

(typically TDF > 1). A blockchain running in virtual time still

converges in the same way it does without virtual time (see the

conclusion in Section 3), and only the converged difficulty is dilated

by
1

TDF . Moreover, the KEPIs (e.g., block interval and transaction

throughput) are not affected by the dilated time. The proof and

explanation to support the above statement are further elaborated

in Section 5.

4.2 Emulation of Blockchain’s Network
Environment

Another design objective is to offer a realistic network environ-

ment to emulate blockchain applications. However, the scale of the

blockchain’s network is often too large to emulate in a commodity

computer. In particular, it requires more resources than the under-

lying physical machine can offer. For example, Ethpool, a regular

and healthy-functioning Ethereum mining pool, has more than 700

active workers [2]. Even emulating only the active miners in this

pool requires bringing up hundreds of interconnecting network

devices (e.g., switches and routers).

Considering the limited resources of a commodity machine (CPU,

memory, bandwidth), we have to abstract the network emulation

environment inMinichain in a way that well balances the emulation

scalability and fidelity. Our guideline is to preserve the fidelity of

the KEPIs described in Section 2.2 including the end-to-end network

flow metrics such as delay, throughput, and packet loss between

any two active blockchain peers. Meanwhile, other network per-

formance metrics, like queuing delay on each device, interference

among conflicting flows, are not the focus of our design. Under

this guideline, we model a virtual link for any pair of blockchain

peers that requires communication, where users can directly set the

expected network flow characteristics. Implementation-wise, we

utilize the Linux network emulation tool NetEm [17] to achieve the

per-virtual-link configuration. The emulated network consisting

of multiple virtual links can be abstracted as “one big switch" with

active peers connected via one of its many ports. The traffic flow

between any two peers is accurately shaped by NetEm according to

the users’ specification.

4.3 System Architecture
Minichain is composed of two layers as shown in Figure 4. In the

blockchain application layer, blockchain peers are directly executed

in the isolated Linux containers (orange boxes). Linux containers

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

154

support many types of blockchain systems, such as Ethereum and

Bitcoin. The peers either run the mining code or make transactions

as if they are on a real distributed blockchain system. By embedding

the virtual time into all the containers, we are able to save both

the computational resources consumed for blockchain’s consensus

algorithm as well as the emulation experimental running time.

The network layer produces the communication behaviors for

the container-based blockchain peers. With the limited physical

resources of the host machine, it is often infeasible to accurately

emulate the large-scale underlying communication network (red

oval). Minichain is designed to overcome this challenge by abstract-

ing the physical network into a big switch entity (blue box). The

containers are now logically connected in two steps. First, each

container dedicates its virtual network interface to one port on the

abstracted big switch. Second, users configure the network condi-

tions of those ports using NetEm. In particular, for any active flow

between two peers, we insert a flow entry describing the expected

end-to-end delay, bandwidth, and packet loss. The design greatly

enhances the system scalability without losing fidelity concerning

those network layer KEPIs.

5 BLOCKCHAIN CONVERGENCE IN
VIRTUAL TIME

The benefits to enable virtual time in Minichain include reduced

computational resource and faster blockchain convergence speed

when experimenting PoW-based blockchain applications. This sec-

tion mathematically illustrates the benefits.

5.1 Convergence of Difficulty in Virtual Time
The block interval in virtual time can be expressed as

Ti =
Di

HR ×TDF
=

Di

HRVT

The dilated hash rate is defined with respect to the blockchain

system’s real hash rate, i.e.,HRVT = HR×TDF . Under the same as-

sumption that the contribution made by the block number is safely

ignored, below is the modified version representing the difficulty

dynamics.

Di+1 = Di +

⌊
Di
2048

⌋
×max(1 −

⌊
Di/HRVT

10

⌋
,−99) (10)

The dividing line to eliminate the max function is the dilated
explicit hash power, i.e., Di = HPVTE = 1000HRVT , and thus we

obtain

Di+1 =

{
βVTD2

i + α1Di , Di < HPVTE
α2Di , Di ≥ HPVTE

(11)

We again replace the integer division with the normal division.

Note that α1, α2 in Equation 11 are the same as those in Equation 4,

but β − 1

20480HR in Equation 4 is adjusted to βVT = − 1

20480HRVT .

By repeating the same function analysis in Theorem 3.6, we draw

the same conclusion of convergence as follows.

Theorem 5.1 (Convergence of Simplified Ethereum’s Diffi-

culty in Virtual Time). Let us define the adjustment algorithm in

virtual time as follows, where HRVT = HR ×TDF .

Di+1 = Di +
Di
2048

×max(1 −
Di

10HRVT
,−99) (12)

We also define the dilated implicit hash power HPVTI = 10HRVT =

10HR × TDF . Sequence {Di } converges to HPVTI regardless of the
initial value. In other words, D∞ ≡ limi→∞ Di = 10 × HRVT .

Theorem 5.1 is illustrated in Figure 5 given the constant hash

power and TDF = 0.1. Note that the convergence value in virtual

time (DVT
∞ = 64 M) is only one tenth of the convergence value

without virtual time (D∞ = 640 M) shown in Figure 2.

Theorem 5.2 (Convergence of Ethereum’s Difficulty in

Virtual Time). Let us define the adjustment algorithm in virtual
time as follows, where HRVT = HR ×TDF .

Di+1 = Di +

⌊
Di
2048

⌋
×max(1 −

⌊
Di/(HRVT)

10

⌋
,−99) (13)

We also define the implicit hash power HPVTI = 10HRVT = 10HR ×

TDF . Sequence {Di } converges in three different ways depending on
the initial difficulty value. Specifically, ∀i ∈ Z+:

• Monotonically-decrease convergence. ∀i > 0,Di+1 ≤ Di and
limi→∞ Di = 2HPVTI , when 2HPVTI ≤ D0

• Monotonically-increase convergence. ∀i > 0,Di+1 ≥ Di and
limi→∞ Di = HPVTI , when 2048

HRVT < D0 ≤ HPVTI
• Static convergence. ∀i > 0,Di = D0, when HPVTI < D0 <

2HPVTI

0 2500 5000 7500 10000 12500 15000 17500 20000
Time Step

108

109

1010

Eh
te

re
um

 D
iff

icu
lty

 /
Lo

g
Sc

al
e

Initial Difficulty D0 = 8HR
Initial Difficulty D0 = 80HR
Initial Difficulty D0 = 1800HR

Figure 5: Based on Equation 12, Ethereum’s difficulty con-
verges in virtual time to a dilated implicit hash power re-
gardless of the initial value.

Theorem 5.2 is illustrated in Figure 6 given the constant hash

power and TDF = 0.1. Comparing to Figure 3, the convergence

interval is reduced by 10 times from [640 M, 1,280 M] to [64 M,

128 M]. In summary, we have shown that virtual time, in theory,

can linearly downscale the hash power needed for the Ethereum

blockchain emulation to achieve a stable state.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

155

0 500 1000 1500 2000 2500 3000
Time Step

108

109

1010

Eh
te

re
um

 D
iff

icu
lty

 /
Lo

g
Sc

al
e

Initial Difficulty D0 = 8HR
Initial Difficulty D0 = 80HR
Initial Difficulty D0 = 1800HR
Initial Difficulty D0 = 15HR

Figure 6: Based on Equation 13, Ethereum’s difficulty con-
verges in virtual time in three ways depending on the initial
value.

5.2 Fast Running Time for Convergence
We have so far analyzed the change of difficulty over time, it is also

important to analyze the time for a blockchain emulation system

to converge both with and without virtual time. We simulate two

representative scenarios using the recursive relationship defined

by both Equation 8 and Equation 13.

In the first scenario, we set the common initial difficulty to be

D0 = 8HRVT so that in both real time and virtual time cases, the

difficulty will increase monotonically. We run the simulation for

10,000 steps to generate 10,000 blocks, the difficulty sequence, and

the block generation timestamp sequence. Figure 7 plots the sim-

ulation results with both real time and virtual time. The second

scenario is the same as the first scenario except that the common

initial difficulty is set to D0 = 400HRVT . The difficulty monoton-

ically decreases in both real time and virtual time as shown in

Figure 8. Both scenarios together demonstrate that PoW in virtual

time converges faster and to a lower difficulty value comparing to

that in real time.

6 EXPERIMENTAL EVALUATION
We conduct the performance evaluation of Minichain concerning

the blockchain application layer and the network layer respectively.

We also evaluate the performance of virtual time. All experiments

are executed on a Linux box with 20 cores (2.30GHz Intel Xeon

CPU) and 32GB RAM.We use Ping and iPerf3 to measure end-to-end

network delay and throughput. We bring up the go-ethereum [7]

blockchain application on each peer node emulated by Linux con-

tainers. From the perspective of blockchain applications, the under-

lying network forms a full mesh topology, i.e., a n-node network

containing
n×(n−1)

2
communication links.

6.1 Blockchain Network Emulation
6.1.1 End-to-End Delay Error Analysis. Let us define ∆δ to be the

error of end-to-end delay between a pair of connected hosts. In

particular, ∆δ equals to the difference between the pre-configured

100 101 102 103 104 105

Emulation Running Time (s) / Log Scale

108

109

Eh
te

re
um

 D
iff

icu
lty

 /
Lo

g
Sc

al
e

TDF=0.1 w.r.t. Wall Clock Time
TDF=0.1 w.r.t. Virtual Time
TDF=1.0 w.r.t. Wall Clock/Virtual Time

Figure 7: Based on Equation 8 and Equation 13 respectively,
Ethereum’s difficulty converges faster in virtual time with
the fixed initial difficulty D0 = 8HRVT.

102 103 104 105

Emulation Running Time (s) / Log Scale

108

109

1010
Eh

te
re

um
 D

iff
icu

lty
 /

Lo
g

Sc
al

e
TDF=0.1 w.r.t. Wall Clock Time
TDF=0.1 w.r.t. Virtual Time
TDF=1.0 w.r.t. Wall Clock/Virtual Time

Figure 8: Based on Equation 8 and Equation 13 respectively,
Ethereum’s difficulty converges faster in virtual time with
the fixed initial difficulty D0 = 400HRVT.

link delay and the measured ping delay. We use ping to measure

the delay among peers while varying the size of a fully connected

mesh network using 2, 4, 8, 16 and 32 hosts. Each host pings every

other host simultaneously every second, which results in
n×(n−1)

2

ping data flows. The error analysis of end-to-end delay is performed

in three different scenarios, and we plot the experimental results

using violin plots to show the full distribution of ∆δ in Figure 9.

First, we measure the inevitable latency of Minichain by setting

the delay of all links to zero and disabling mining activities in the

blockchain. In Figure 9a, we observe that the inevitable latency

on every link is ranging from 0.02 ms to 0.18 ms. The figure also

shows that for all the links ∆δ is close to the average value with

small variances. For example, in the case of n = 32, the maximum

and minimum delay errors are ∆δmax = 0.161 and ∆δmin = 0.093

respectively, both are close to the mean value 0.12. The results in

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

156

Figure 9a reveals a lower bound of the link delay Minichain that

can accurately emulate on the testing machine.

Second, we re-use the same network and block application as the

first scenario, but randomly set each link’s delay to be uniformly

distributed between 20 ms and 350 ms. We observe in Figure 9b

that expected ∆δs of each cases are around 0.1 ms with variances

less than 0.02 ms. The error is at least two orders of magnitude

less than the pre-configured link delay, thus has little impact on

the performance of the blockchain applications above. In addition,

the error does not increase as the size of the network increases, a

desired feature for a scalable blockchain emulation testbed.

Third, we study whether the high-workload PoW mining tasks

may affect the fidelity of network emulation in Minichain. Both

miners and network emulation consume CPU resources, one for

hash calculation and the other for data transmission. Figure 9c plots

∆δ when we set half of the nodes to be heavy-duty miners. We

observe the average ∆δ for networks of different sizes are around

0.1 ms, i.e., approximately 0.8% of the expected link delay (20 ms),

which again demonstrates the small error and good scalability of

Minichain regarding end-to-end network latency. In addition, the

high CPU usage for mining does not increase the latency error as

the ∆δ is in the same range compared with Figure 9a and Figure 9b.

6.1.2 Ene-to-End Throughput Error Analysis. We conduct an error

analysis of end-to-end throughput by measuring the throughput

among blockchain peers and comparing with the user-defined band-

width in various scenarios.

We select n hosts in a blockchain and bring up a UDP server

and a UDP client on each host. Each host sends a UDP flow to

every other host using iPerf3 and together there are n × (n − 1)

concurrent UDP communication flows. One constraint is that the

total throughput cannot exceed the hardware limit of the physical

machine (e.g., 50 Gbps in our system). Therefore, we adjust the

network size for different link bandwidths to meet this requirement.

For example, given a full-mesh topology, if the bandwidth between

two hosts is set to 1 Gbps, the total number of links must be smaller

than or equal to 50 (i.e., 50 Gbps/1 Gbps), and the total number

of hosts is at most 7. We denote ∆τ as the difference between the

measured throughput τ and the pre-configured link bandwidth B.
First, we set the bandwidth of all links to 10 Mbps and disable

all mining activities in the blockchain. Figure 10a shows the distri-

bution of ∆τ with different network sizes. As the number of hosts

increases exponentially from 2 to 32, we observe that every link’s

∆τ is around 0.05 Mbps, i.e., only 0.5% of the line rate. The variance

of ∆τ increases but the range is still acceptably small, e.g., even

when n = 32, 95% of the errors fall within 0.035 ± 0.005 Mbps. The

results indicate that Minichain produces accurate network through-

put for duplex emulated links, and the performance of throughput

remains accurate as the network size grows.

Second, we increase the link bandwidth to 100 Mbps and repeat

the same tests. Note that due to the hardware limit, we can emulate

no more than 500 100 Mbps links (without virtual time). For a

full mesh topology, the number of nodes cannot exceed 22, i.e.,

n×(n−1) < 500. As a result, we show the results of different network

sizes up to 16 hosts. In Figure 10b, we observe that ∆τ is distributed

around 0.4 Mbps except for the n = 16 case. Minichain achieves

99% of the required throughput when emulating 100 Mbps links.

When the size of the full mesh network increases to 16 (close to the

resource limit), the average throughput error deteriorates to 6.64

Mbps, around 6.6% deviates from the pre-defined bandwidth, which

is still reasonably good for many blockchain testing applications.

Third, we conduct the throughput error analysis with high-

workload PoW mining tasks by setting half of the hosts to miners,

and plot the results in Figure 10c. The link bandwidth is set back to

10 Mbps, a reasonable value in real-world applications. Note that

in a blockchain network, nearly all of the bandwidth resources are

used for broadcasting and downloading blocks. For example, the

maximum size of a block in Ethereum is 780 KB, and a 10 Mbps

link is sufficient to support the average block interval of 10 to 19

seconds. In Figure 10c, we observe that ∆τ is in the range of [0.01,

0.025] Mbps. Even the number of hosts is 32, ∆τ is strictly bounded

by 0.03 Mbps. The results indicate that the fidelity of the network

is not affected when Minichain spends a significant amount of

computational resources on blockchain applications.

In summary, Minichain is well designed to support emulation

of a blockchain network with user-specified per-link delay and

bandwidth. The actual delay and throughput are very close to the

desired ones as long as we do not overwhelm the resources of the

underlying physical machine. Even on one commodity server, we

can emulate a blockchain network with decent size. Note that two

untrusted parties in a real-world blockchain system generally have

no reason to establish a high-bandwidth connection. Furthermore,

as Linux containers isolate the inside blockchain applications from

the kernel-level NetEm, we observe little interference between the

running applications and the underlying emulated network.

6.2 Block Application and Virtual time
We evaluate the performance of blockchain application emulated

by Minichain as well as the impact of virtual time. We choose to

measure two block-related KEPIs, average block interval, and block

distribution. The block interval is closely related to the throughput

of transaction operation as shown in Equation 9. The ideal block

interval is mathematically defined in the consensus algorithm. Per-

formance of an emulated blockchain can thus be evaluated by mea-

suring the block interval and then comparing it with the theoretical

value. The block distribution represents how the rewards (e.g., Bit-

coins) are spread out in the blockchain system and received by the

miners. Ideally, the number of rewards a miner obtains should be

proportional to the number of computational resources the miner

invests in the long run. Therefore, an accurate emulated blockchain

system should distribute the blocks to miners proportional to the

CPU resource allocation.

We emulate an Ethereum blockchain system containing 6 miners

in Minichain. Miners start PoW-based mining with the minimum

difficulty, 131,072. We assume that one miner owns 30% of the CPU

resources and the other five miners evenly share the remaining CPU

resources (i.e., 14% for each miner). The six miners form a full-mesh

network topology. We set the communication link between each

pair of miners to be 10 Mbps with 20 ms delay. We run the same

sets of experiments without virtual time and with virtual time for

exactly 80 hours of virtual time and make sure the Ethereum system

converges in both cases. We present the resultant performance

metrics in Table 2 for comparison. “Execution Time in Wall Clock"

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

157

2 4 8 16 32
Number of hosts

0.1

0.2
Δδ

 (
m

s)

0.07 0.07 0.06 0.07
0.12

(a) δ = 0 ms, no miners.

2 4 8 16 32
Number of hosts

0.1

0.2

Δδ
 (

m
s)

0.10 0.09 0.09 0.09
0.14

(b) δ ∼ U[20ms, 350ms], no miners.

2 4 8 16 32
Number of hosts

0.1

0.2

Δδ
 (

m
s)

0.09 0.07 0.07 0.07
0.11

(c) δ = 20 ms, 50% mining hosts.

Figure 9: Error Analysis of End-to-End Delay. ∆δ is the difference between the pre-configured link delay δ and the measured
ping delay.

(a) B = 10 Mbps, no miners. (b) B = 100 Mbps, no miners. (c) B = 10 Mbps, 50% mining hosts

Figure 10: Error Analysis of End-to-End Throughput. ∆τ is the difference between the measured throughput τ and the pre-
configured link bandwidth B.

represents the actual time taken to finish the experiment. “Height

of Chain" is the number of blocks generated during the emulation.

“Mean Block Interval" is calculated as the height of chain divided

by virtual running time (i.e., 80 hours). We also plot the block

distribution for both cases in Figure 11.

Figure 11a shows the distribution of blocks without virtual time.

The expected behavior is that the block allocation among theminers

should be proportional to their allocated CPU resources, and we

observe such allocation in Figure 11a. In other words, like in a real

blockchain system, the probability of publishing the next block

matches a miner’s computing capacity in Minichain. In the entire

experiment, 22,307 blocks are generated with an average block

interval of 12.9 seconds.

Figure 11b shows the distribution of blocks with virtual clock

and TDF = 0.1. When the experiment finishes, the results with

virtual time generate nearly the same distribution shown early

in Figure 11a. While producing the same emulation results (e.g.,

the average block interval oscillates between 10 and 19 seconds),

we observe that Minichain is able to complete the emulation 10

times faster than the case without using virtual time, as shown in

the third column in Table 2. In addition, virtual time adjusts the

converged difficulty in Ethereum to a smaller value. The impact

is that the number of blocks generated in virtual-time-enabled

emulation is 1,005 greater than the one generated without virtual

time. Even so, the mean block intervals for both cases are still very

close, differing by less than 1 second. The reason is that the 80-hour

emulation runs long enough so that the duration of convergence is

dominating the process in which the difficulty keeps increasing. In

summary, virtual time helps Minichain to significantly reduce the

experimental execution time with little fidelity loss.

Miner 1
31.3%

Miner 2

13.8%

Miner 3

13.5% Miner 4
13.8%

Miner 5
14.1%

Miner 6

13.5%

(a) No Virtual Time

Miner 1
31.1%

Miner 2

13.9%

Miner 3

13.8% Miner 4
13.8%

Miner 5
13.8%

Miner 6

13.6%

(b) Virtual Time, TDF = 0.1

Figure 11: Distribution of Blocks among Six Miners in
Minichain with and without Virtual Time.

Metrics No Virtual Time TDF = 0.1

Execution Running Time 80 h 8 h + 2.7 s

Height of Chain 22,307 23,312

Mean Block Interval 12.9 s 12.3 s

Table 2: Blockchain Performance Metrics with and without
Virtual Time.

7 CASE STUDY: NETWORK IMPACT ON
SELFISH MINING

We present a case study of Minichain by realizing the selfish mining

attack scenario described in [29]. The selfish mining attack [9] lever-

ages the rule that a blockchain system treats the longest chain as

its canonical one. It is sometimes also known as 51% attack because

it is usually launched by a miner, or a pool of miners, that controls

more than 50% of the total computational power inside a blockchain

network. With its dominant resource over the blockchain network,

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

158

the attacker eventually generates a chain of valid blocks longer

than others, monopolizing the blockchain system that ought to be

decentralized. Once realized, the selfish mining attacker is able to

determine which new transaction gains confirmation or is able to

reverse confirmed transactions to double-spend coins.

However, if one takes the network latency into account, a mali-

cious miner with less than 50% hashrate still has the potential to

damage a healthy blockchain in the way similar to selfish mining

[29]. To demonstrate the feasibility of such an attack and evaluate

its impact, we create a blockchain consisting of 6 fully-connected

miners in Minichain. Miner X owns 45% CPU resource of the test

machine, and the other five peers share the remaining 55% evenly.

We emulate the blockchain with an average block interval of one

second (technically achieved by setting a favorably low difficulty)

and launch the attack. We stop the emulation when the 1000-th

block is produced. We repeat the emulation experiment six times

and the results are plotted in Figure 12.

D= 10ms D= 400ms D= 400ms
TDF=0.5

42%

46%

50%

54%

58%

Bl
oc

ks
 P

ro
du

ce
d

by
 M

in
er

 X
 (%

)

(45.32 ± 1.47)%

(51.10 ± 1.43)% (51.40 ± 1.58)%

Figure 12: In a 6-miner blockchain system, miner X pos-
sesses 45% CPU resources. With different network delay (δ)
settings, miner X’s final distribution of blocks varies. In
a high-latency network (δ = 400 ms), miner X successfully
dominates the blockchain (owning >50% of blocks). Repeat-
ing the experiment with virtual time (TDF = 0.5) produces
the same behavior but shortens the execution time.

The left bar in Figure 12 shows miner X’s share of blocks when

we set all link delays to 10 ms. We observe that miner X did not

produce more than half of the blocks in the system for all runs, i.e.,

only 45.32% ± 1.47% (mean and standard deviation) of the blocks.

However, after setting the link delay to 400 ms, miner X generates

more than half of the blocks in five out of six runs. The blocks

generated by miner X is 51.10%± 1.43%, as shown in the middle bar

in Figure 12. With the high network latency and low block interval,

it is highly likely (83.33%) that miner X monopolizes the blockchain

with less than 50% of the entire computation power. Minichain is

able to demonstrate the 51% attack scenario by emulating a realistic

networking environment. Considering the effect of network con-

ditions often reveals unexpected behavior of a blockchain system,

especially when cyber-security is a critical concern. Minichain is

thus designed to fill this gap for blockchain testing and evaluation.

With the average block interval being 1 second and the number

of generated blocks being 1000, each of the six repeated low-latency-

emulation experiments takes 1014 ± 6.19 seconds to complete; for

the six high-latency-network emulations, it takes 1015 seconds on

average for every one of them. We now enable the virtual time

feature in Minichain with the goal of accelerating the case study

experiment without losing fidelity. The right bar in Figure 12 shows

miner X’s share of blocks over six runs by setting link delay to

400 ms and TDF to 0.5, i.e. time elapsed two times faster than the

wall clock. We observe that the result (51.40% ± 1.58%) is almost

the same as the case without virtual time (i.e., the middle bar). In

five of six runs, miner X generates more than half of the blocks in

virtual time. Meanwhile, with TDF = 0.5Minichain shortens the

experiment running time by nearly half (on average 507.5 seconds

with ±4.13 standard deviation).

8 RELATEDWORKS
8.1 Blockchain Testing and Evaluation
Simulation and public testnet are the twomost commonmethods for

testing and evaluating blockchains and their applications at present.

Researchers have proposed multiple simulation frameworks to an-

alyze blockchains including (1) security and performance of PoW

[10], (2) scalability [11], (3) transaction latency [28], and (4) quality

of network infrastructure [25]. Shadow [14], a parallel discrete-

event network simulation platform, provides a plug-in [21] to sup-

port simulating thousands of Bitcoin reference clients over a large-

scale network topology. While simulation offers great scalability

and flexibility, people often question the fidelity since simulation

executes an abstracted model of the target system to produce behav-

ior. Minichain, in contrast, 1) allows direct execution of unmodified

blockchain application programs in Linux containers and can be eas-

ily extended to support various blockchain systems, while Shadow

requires source code modification of thebitcoind software; 2) runs
real network stack inside the Linux kernel to emulate network ac-

tivities; 3) integrates the virtual time to container-based emulation

for performance enhancement, while [21] uses simulation time.

Testnet is an alternative blockchain network maintained by vol-

unteers in the blockchain community to test their smart contracts

on a test network before deployment on the main blockchain. It

provides high fidelity as the testnet is a replica of the main chain

except testnet uses another set of configuration parameters. How-

ever, testnet does not offer sufficient controllability and flexibility to

users. First, users cannot customize the network conditions of test-

net and thus unable to evaluate the impact of network environment

on blockchain applications. It is also ethically wrong to introduce

unwanted interference to a shared testnet by reproducing known

attacks in it. Minichain, in contrast, is owned exclusively by each

user. Users have the great flexibility to generate customized testing

scenarios and have tight control over them during the experiment.

Another line of research develops private evaluation frameworks

for blockchain systems [5, 24]. Such frameworks benchmark the

performance of a blockchain located in a private cluster with dozens

of physical machines. They do not offer interfaces for users to con-

figure the network environment. Moreover, running experiments

on a private cluster involves manual hardware configuration.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

159

8.2 Virtual Time for Network Emulation
Virtual time has been well studied to improve the performance of

network emulation. The time-dilation-based network emulation

was first proposed by [12] and implemented in Xen to scale CPU and

network bandwidth for network protocol and application testing.

It has also been studied in the software-defined network emulator

Mininet [20] for fidelity and scalability enhancement and various

simulators [13, 15, 19] to address the challenge of synchronization

between emulation and simulation. However, the existing works

focus on improving the temporal fidelity when the network emu-

lated exceeds the system physical resources. TDF is typically set

to be greater than 1, and thus slowing down Linux processes ex-

ecution time to trade for the accurate emulation results. In this

work, Minichain utilizes the virtual time technique in a different

way. Specifically, we set TDF to be less than 1 in order to speed up

the execution time of emulated blockchain peers with the effect of

scaling down the difficulty in the PoW consensus algorithm.

9 CONCLUSION
We present Minichain, a Linux-container-based blockchain emu-

lator for testing and evaluating blockchain applications on a com-

modity computer. The unique characteristics of Minichain include

a realistic and configurable network emulation environment and a

virtual time system to speed up the experiment execution without

losing fidelity. In the future, we will utilize Minichain to perfor-

mance cyber-security evaluation of blockchain systems and appli-

cations. We will also further enhance the scalability of Minichain to

support distributed emulation, and compare its performance with

cluster-based blockchain testbeds.

ACKNOWLEDGMENT
This work is partly sponsored by the Air Force Office of Scien-

tific Research (AFOSR) under Grant YIP FA9550-17-1-0240 and the

Maryland Procurement Office under Contract No. H98230-18-D-

0007. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not nec-

essarily reflect the views of AFOSR and the Maryland Procurement

Office.

REFERENCES
[1] Ian Altman. 2018. How Blockchain Will Transform Business And The Law. (June

2018). Retrieved Janunary 10, 2019 from https://www.forbes.com/sites/ianaltman/

2018/06/29/blockchain-changes-business-law/#611e39135cb9

[2] Bitfly. 2018. Ethpool - Info. (Jan. 2018). Retrieved Janunary 5, 2019 from

https://ethpool.org

[3] Jacob Boersma. 2018. 5 blockchain technology use cases in fi-

nancial services. (June 2018). Retrieved Janunary 10, 2019 from

https://www2.deloitte.com/nl/nl/pages/financial-services/articles/

blockchain-technology-use-cases-in-financial-services.html

[4] Danny Crichton. 2018. Liquid democracy uses blockchain to fix politics, and

now you can vote for it. (Feb. 2018). Retrieved Janunary 10, 2019 from https:

//techcrunch.com/2018/02/24/liquid-democracy-uses-blockchain/

[5] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-

Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In

Proceedings of the 2017 ACM International Conference on Management of Data.
ACM, 1085–1100.

[6] ECoinmerce. 2018. Tokenized E-commerce. (Jan. 2018). Retrieved Janunary 10,

2019 from https://www.ecoinmerce.io

[7] ethereum. 2017. go-ethereum. (Jan. 2017). Retrieved Janunary 5, 2019 from

https://github.com/ethereum/go-ethereum/

[8] ethereum/EIPs. 2018. EIPS/eip-2.md. (Jan. 2018). Retrieved Janunary 5, 2019

from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md

[9] Ittay Eyal and Emin Gün Sirer. 2013. Majority is not Enough: Bitcoin Mining

is Vulnerable. CoRR abs/1311.0243 (2013). arXiv:1311.0243 http://arxiv.org/abs/

1311.0243

[10] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert

Ritzdorf, and Srdjan Capkun. 2016. On the security and performance of proof of

work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 3–16.

[11] Sneha Goswami. 2017. Scalability analysis of blockchains through blockchain

simulation. (2017).

[12] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat,

and Geoffrey M. Voelker. 2005. To Infinity and Beyond: Time Warped Network

Emulation. In Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles (SOSP ’05). ACM, New York, NY, USA, 1–2. https://doi.org/10.1145/

1095810.1118605

[13] Christopher Hannon, Jiaqi Yan, and Dong Jin. 2016. DSSnet: A Smart Grid

Modeling Platform Combining Electrical Power Distribution System Simulation

and Software Defined Networking Emulation. In Proceedings of the 2016 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS
’16). ACM, New York, NY, USA, 131–142. https://doi.org/10.1145/2901378.2901383

[14] Rob Jansen and Nicholas Hooper. 2011. Shadow: Running Tor in a box for accurate
and efficient experimentation. Technical Report. MINNESOTA UNIV MINNEAPO-

LIS DEPT OF COMPUTER SCIENCE AND ENGINEERING.

[15] Dong Jin, Yuhao Zheng, Huaiyu Zhu, David M Nicol, and Lenhard Winterrowd.

2012. Virtual time integration of emulation and parallel simulation. In Proceedings
of the 2012 ACM/IEEE/SCS 26thWorkshop on Principles of Advanced and Distributed
Simulation. IEEE Computer Society, 201–210.

[16] Michael Kerrisk. 2013. Namespaces in operation, part 1: namespaces overview.

(Jan. 2013). Retrieved Janunary 5, 2019 from https://lwn.net/Articles/531114/

[17] Michael Kerrisk. 2018. Man Page for NETEM - Network Emulator. (Jan. 2018). Re-

trieved Janunary 5, 2019 from http://man7.org/linux/man-pages/man8/tc-netem.

8.html

[18] Jereme Lamps, Vignesh Babu, David M. Nicol, Vladimir Adam, and Rakesh Kumar.

2018. Temporal Integration of Emulation and Network Simulators on Linux

Multiprocessors. ACM Trans. Model. Comput. Simul. 28, 1, Article 1 (Jan. 2018),
25 pages.

[19] Jereme Lamps, Vignesh Babu, David M Nicol, Vladimir Adam, and Rakesh Kumar.

2018. Temporal Integration of Emulation and Network Simulators on Linux Mul-

tiprocessors. ACM Transactions on Modeling and Computer Simulation (TOMACS)
28, 1 (2018), 1.

[20] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop:

rapid prototyping for software-defined networks. ACM Press, 1–6. https://doi.

org/10.1145/1868447.1868466 01341.

[21] Andrew Miller and Rob Jansen. 2015. Shadow-Bitcoin: Scalable Simulation via Di-

rect Execution of Multi-Threaded Applications. In 8th Workshop on Cyber Security
Experimentation and Test (CSET 15). USENIX Association, Washington, D.C. https:

//www.usenix.org/conference/cset15/workshop-program/presentation/miller

[22] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[23] The Monero Project. 2018. MONERO: Private Digital Currency. (Feb. 2018).

Retrieved Janunary 10, 2019 from https://www.getmonero.org

[24] Huawei Technologies. 2017. Caliper: A Blockchain Benchmark framework. (Jan.

2017). Retrieved Janunary 5, 2019 from https://github.com/hyperledger-archives/

caliper

[25] Bozhi Wang, Shiping Chen, Lina Yao, Bin Liu, Xiwei Xu, and Liming Zhu. 2018. A

Simulation Approach for Studying Behavior and Quality of Blockchain Networks.

In International Conference on Blockchain. Springer, 18–31.
[26] Jiaqi Yan. 2018. On Convergence of Ethereum’s Difficulty under Virtual Time.

(Janunary 2018). Retrieved Janunary 3, 2019 from https://drive.google.com/file/

d/15iK1eDGLwShPoXYH3_0gQ9enSoiDSK_U/view?usp=sharing

[27] Jiaqi Yan and Dong Jin. 2015. VT-Mininet: Virtual-time-enabled Mininet for

Scalable and Accurate Software-Define Network Emulation. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR ’15). ACM, New York, NY, USA, Article 27, 7 pages. https://doi.org/10.

1145/2774993.2775012

[28] Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber. 2017. Predicting

latency of blockchain-based systems using architecturalmodelling and simulation.

In Software Architecture (ICSA), 2017 IEEE International Conference on. IEEE, 253–
256.

[29] Qi Trey Zhong and Zak Cole. 2018. Analyzing the Effects of Network Latency

on Blockchain Performance and Security Using the Whiteblock Testing Platform.

(Jan. 2018). Retrieved Janunary 5, 2019 from https://www.whiteblock.io/library/

analyzing-effects-network.pdf

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

160

https://www.forbes.com/sites/ianaltman/2018/06/29/blockchain-changes-business-law/#611e39135cb9
https://www.forbes.com/sites/ianaltman/2018/06/29/blockchain-changes-business-law/#611e39135cb9
https://ethpool.org
https://www2.deloitte.com/nl/nl/pages/financial-services/articles/blockchain-technology-use-cases-in-financial-services.html
https://www2.deloitte.com/nl/nl/pages/financial-services/articles/blockchain-technology-use-cases-in-financial-services.html
https://techcrunch.com/2018/02/24/liquid-democracy-uses-blockchain/
https://techcrunch.com/2018/02/24/liquid-democracy-uses-blockchain/
https://www.ecoinmerce.io
https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md
http://arxiv.org/abs/1311.0243
http://arxiv.org/abs/1311.0243
http://arxiv.org/abs/1311.0243
https://doi.org/10.1145/1095810.1118605
https://doi.org/10.1145/1095810.1118605
https://doi.org/10.1145/2901378.2901383
https://lwn.net/Articles/531114/
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://www.usenix.org/conference/cset15/workshop-program/presentation/miller
https://www.usenix.org/conference/cset15/workshop-program/presentation/miller
https://www.getmonero.org
https://github.com/hyperledger-archives/caliper
https://github.com/hyperledger-archives/caliper
https://drive.google.com/file/d/15iK1eDGLwShPoXYH3_0gQ9enSoiDSK_U/view?usp=sharing
https://drive.google.com/file/d/15iK1eDGLwShPoXYH3_0gQ9enSoiDSK_U/view?usp=sharing
https://doi.org/10.1145/2774993.2775012
https://doi.org/10.1145/2774993.2775012
https://www.whiteblock.io/library/analyzing-effects-network.pdf
https://www.whiteblock.io/library/analyzing-effects-network.pdf

	Abstract
	1 Introduction
	2 Background of Public Blockchain
	2.1 Proof of Work Consensus in Blockchain
	2.2 Key Emulation Performance Indicators

	3 Convergence of PoW Difficulty
	3.1 Convergence without Floor Function
	3.2 Convergence with Floor Function
	3.3 Irrelevance of Difficulty to KEPIs

	4 Design of Minichain
	4.1 Emulation of Blockchain's Transactions and Mining Activities
	4.2 Emulation of Blockchain's Network Environment
	4.3 System Architecture

	5 Blockchain Convergence in Virtual Time
	5.1 Convergence of Difficulty in Virtual Time
	5.2 Fast Running Time for Convergence

	6 Experimental Evaluation
	6.1 Blockchain Network Emulation
	6.2 Block Application and Virtual time

	7 Case Study: Network Impact on Selfish Mining
	8 Related Works
	8.1 Blockchain Testing and Evaluation
	8.2 Virtual Time for Network Emulation

	9 Conclusion
	References

