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ABSTRACT

As the computational complexity of applications on the consumer

market, such as high-definition video encoding and deep neural net-

works, become ever more demanding, novel ways to efficiently com-

pute data intensive workloads are being explored. In this context,

In-Memory Computing (IMC) solutions, and particularly bitline

computing in SRAM, appear promising as they mitigate one of the

most energy consuming aspects in computation: data movement.

While IMC architectural level characteristics have been defined by

the research community, only a few works so far have explored

the implementation of such memories at a low level. Furthermore,

these proposed solutions are either slow (<1GHz), area hungry (10T

SRAM), or suffer from read disturb and corruption issues. Overall,

there is no extensive design study considering realistic assumptions

at the circuit level. In this work we propose a fast (up to 2.2Ghz),

6T SRAM-based, reliable (no read disturb issues), and wide voltage

range (from 0.6 to 1V) IMC architecture using local bitlines. Beyond

standard read and write, the proposed architecture can perform

copy, addition and shift operations at the array level. As addition

is the slowest operation, we propose a modified carry chain adder,

providing a 2× carry propagation improvement. The proposed

architecture is validated using a 28nm bulk high performances tech-

nology PDK with CMOS variability and post-layout simulations.

High density SRAM bitcells (0.127μm) enable area efficiency of

59.7% for a 256×128 array, on par with current industrial standards.
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1 INTRODUCTION AND RELATEDWORK

Data intensive workloads such as artificial intelligence or real-

time video streaming and rendering applications require more and

more computational capabilities both in so-called ”edge devices”

and in servers. In this context, increasing efficiency, understood
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as reducing energy consumption while maintaining or enhanc-

ing performance, is a major concern in both scenarios. Recently,

In Memory Computing (IMC) solutions have been proposed as

a method for substantially increasing computational capabilities

while simultaneously reducing energy consumption [1, 5, 11]. A

subset of these innovations utilize in-SRAM computing (in-cache

or scratchpad memory), namely bitline computing, which has been

proposed as a method for accelerating neural networks and finite

state automata [6, 13]. While [1] and [2] clearly define the need for

SRAM-based IMC solutions, 6T SRAM-based IMC solutions [6, 7]

struggle with read disturb data corruption, limiting profitability

for ultra-low power or high performance applications in terms of

degraded read stability and reduced speed. To address this issue, [2]

proposes using 10T SRAM bitcells which do not suffer from read

disturb issues, at the expense of reducing the bitcell array density

(at least 2× lower than 6T bitcells), confining it to low density ap-

plications. The same work also proposes the use of a Carry Ripple

Adder (CRA) to perform in-memory additions. However, they do

not propose any implementation, layout, or performance consider-

ations from a circuit perspective. Finally, in [8], a capacitive adder

is proposed; however, such analog-based approaches suffer from

high variability, limited supply range, and slow operation.

This work proposes a dense, reliable, and fast SRAM array that

performs IMC operations at 2.3 to 2.8 × the frequency of current

state-of-the-art solutions [6, 7]. This work also enables fast in-

memory addition: 2.2Ghz for 8-16bits, down to 1.2Ghz for 64bits.

To accomplish this, we implement a fast carry adder pitched un-

derneath the memory array which outperforms a standard carry

ripple adder [2] by 60 to 70% depending on its depth. The proposed

architecture is designed and laid out in 28nm high performance

CMOS PDK technology from TSMC. Its functionality is validated

through electrical simulations accounting for variability and layout

parasitic effects.

Overall, the main contributions of this work are:

• We propose an innovative in-SRAM IMC architecture en-

abling in-memory bitwise, addition, shift and copy opera-

tions. We implement it in a 28nm bulk high performance

CMOS technology PDK and demonstrate its operation

through CMOS variability and layout aware simulations.

• We propose the use of local read bitlines to (i) avoid data

corruption issues during in-SRAM processing operations

and (ii) enable high frequency operations (2.2Ghz at 1V).

• We propose a method to mask the carry propagation delay

of in-memory addition and implement a fast carry adder

to improve its performance (60-70% improvement).

• We explore the design space of the proposed IMC memory

architecture and provide energy, area and speed values for

various configurations.
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Figure 1: Diagram schematic showing the concept of bitline

computing used in thiswork. (a) Standard bitline computing

with highlighted read disturb risks and (b) proposed local

bitlines-based bitline computing.

The remainder of this paper is organized as follows. Section 2

presents bitline computing and introduces the proposed LG-enabled

IMC operations scheme. Section 3 presents the proposed memory

architecture while Section 4 details the BL logic considered in this

work. Section 5 explains the work’s functional validation method-

ology. Section 6 presents the performance trade-off of the proposed

architecture. Finally, Section 7 concludes the paper.

2 RELIABLE BITLINE COMPUTING

Beyond standard read and write operations, in-memory computing

operations can be performed on one (shift, copy) or two operands

(NOR, AND, XOR, ADD).This section presents how such operations

are performed in the proposed memory architecture.

Standard Operations Read and write operations are performed

in a standard manner by accessing a single wordline (WL). As the

proposed memory uses local bitlines, before each read operation,

both local and global Read BLs (LBLs, GRBLs) are precharged to

Vdd. Then, the WL is activated. One of the LBLs discharges, activat-

ing one of the Local Read Ports (LRP), in turn discharging of one

of the GRBLs, as demonstrated in [12, 14]. Two single ended Sense

Amplifiers (SA) connected to the GRBLs output the data. Overall,

the proposed memory enables simultaneous 1 read + 1 write opera-

tion (2-ports), or 2 read + 1 write (3-ports) by accessing the GRBL

independently if all the accessed words belongs to different LBLs.

Slow IMC operations In SRAM memories, IMC operations

can be performed by simultaneously accessing two WLs after a

precharge phase to Vdd. Depending on the states of the accessed

bitcells, one or both of the BLs are discharged as shown Figure 1-a.

In the end, the BL (respectively BL) carries the result of an AND

operation (respectively NOR). These operations form the basis of

bitline computing. When applied to standard 6T bitcells in opposite

states, if the PMOS transistor of one bitcell is weaker than the ac-

cess and pulldown transistors of the other bitcell, the cell may flip,

leading to data corruption. This effect can be shown with variability

simulations, particularly in the slowP-FastN CMOS corner. In [7]

and [1], data corruption is avoided by strongly reducing the WL

voltage (i.e., the operation frequency, lower than 1Ghz).
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Figure 2: Proposed memory organization with detailed

Local Group schematic diagram (red). The Local Group

Precharge (LGP) and the Local Read Port (LRP) are identi-

fied in green and blue respectively.

Proposed fast and reliable IMC scheme We propose an in-

novative approach to performing bitline computing-based IMC

operations with 6T SRAM bitcells (contrary to [2]) while avoiding

read disturb risks. In this work, the two accessed bitcells are always

connected to different LBLs, eliminating the risk of bitcell shorting,

as shown Figure 1-b. Within an LBL, an IMC operation is identi-

cal to a standard read. Then, either one or both of the GRBLs are

discharged through the read ports depending on the states of the

accessed bitcells. As previously described, the GRBL (resp. GRBL)
carries the result of an AND (resp. NOR) between the two operands.

This approach enables full WL dynamic voltage range without read

disturb issues while avoiding the use of 10T bitcells.

3 PROPOSED ARCHITECTURE

3.1 Memory Array organization

Figure 2 shows the organization of the proposed memory array.

Besides the memory array, it contains: (i) WL decoders and drivers,

(ii) BLmultiplexers to enable data interleaving, (iii) Sense Amplifiers

(SA) and (iv) a BL logic block. Finally, the control signals (such as

the local group precharge PRE L and enable Rd EN signals) are

generated in the Control Signal Generation (CSG) block. Inside

the memory array, the bitcells are organized into Local Groups

(LGs). Each LG contains k bitcells along an LBL, an LG Read Port

(LGRP), a Local Group Precharge (LGP), and is connected to a GRBL

through its LGRP. The GBRLs are connected to two single ended

SAs, which are in turn connected to the BL logic block. The BL

logic block (described in Section 4) performs bitwise NOR, AND,

and XOR operations as well as more complex operations, such as

copy, shift, and addition.

3.2 Decoding Logic and Precharge Management

In this work we consider a straightforward WordLine (WL) decod-

ing scheme consisting of two WL Decoders (WDs) connected to a

single WL driver. Two encoded wordline addresses to the operation
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Figure 3: Block schematic of the modified WL decoder used

in this work.

operands are decoded by WD0 and WD1. A AND operation be-

tween the decoded addresses is performed before driving the WLs

(highlighted as ”WD fusion” in Figure 3).

In order to minimize local precharge energy consumption, only

the accessed LG LBLs are precharged. This is accomplished by

decoding the address MSBs separately to generate (i) the PRE L

signals controlling the LGP circuits and (ii) the Rd EN activating

the LRP circuit. Figure 3 presents the architecture of the decoding

structure considered in this work. More optimized WD implemen-

tations can be envisioned, however this strategy is sufficient for

the purpose of this paper. Further optimizations are left for future

works.

4 BITLINE LOGIC

4.1 Architecture

Figure 4 presents a schematic of the proposed IMC logic. The IMC

logic contains several subblocks connected in series: (i) a GRBL

multiplexer and dual single ended SAs consisting of inverter-based

buffers that amplify the GRBL signals, (ii) a BL Logic block that

performs bitwise and complex operations, and (iii) an operation

multiplexer, WriteBack latch, and WriteBack multiplexer (not rep-

resented, identical to GRBL multiplexer) for latching selected opera-

tion results, generating write patterns, and writing back to memory

via GWrLs. The operation multiplexer selects the data to be written

back or sent to the CPU via the memory H-tree. Copy and shift

operations access only one WL and write back the AND and carry

ripple signals respectively.

In [2], addition is performed in 3 cycles; first, the data is read

from the memory. Then, ripple carry propagation occurs over the

next cycle. Finally, the addition logic is completed in the last cycle.

These three operation are performed in a pipeline manner, resulting

in a 1-cycle operation once the pipeline is filled. However, such a

solution adds a non-negligible area overhead (i.e. 3 latches per BL

logic block) and limits the memory frequency to the slowest of the
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Figure 4: Block schematic of the BL logic considered in this

work

three pipeline stages’ frequencies (i.e. the CRA, which can exceed

1ns for more than 32 bit additions).

In this work, we propose directly connecting the adder to the

memory SA outputs. Consequently, addition starts immediately as

data is read from the memory, masking a portion of carry propaga-

tion time within the memory read cycle (as described in Section 5).

In this context, the adder carry logic must be as fast as possible

in order to ”hide” its latency in the in-compressible periods of the

memory access.

4.2 Proposed Fast Carry Ripple Stage

To maximize carry propagation masking, we propose a fast carry

adder based on a dynamicManchester Carry Chain (MCC) adder [10]

implemented in buffered 4-bits configuration, illustrated in Fig-

ure 5-a. It is directly connected to the SA outputs (NOR<0:3>and

AND<0:3>signals). Generate<0:3> and Propagate<0:3> signals are

simply generated with a single nor gate thanks to bitline computing,

greatly reducing the area overhead typically associated with such

an architecture. Figure 5-b presents the corresponding layout in

28nm bulk CMOS technology. 4 MCC blocks are needed per 16

bitcell columns, as columns are mux-4 multiplexed. Remaining

space is used to fit inter-MCC signal buffers as well as decoupling

capacitors (10fF MOS capacitor). It should be noted that the same

precharge signal (EN prech) is used in both the proposed MCC and

in the memory array for LBL and GRBL precharging.

Figure 6-a shows the gain provided by the proposed MCC versus

standard CRA adder for various MCC configurations and adder

depths. Both are pitched under the array with post-layout parasitic

and process variations included in the simulation. With near 80%

performance improvement versus standard CRA, we choose a 4-bit

buffered configuration as the most efficient topology. Figure 6-

b presents the performance gain of the considered 4-bit buffered

topology versus the adder depth and supply voltage. While a dimin-

ishing supply voltage reduces performance (as the serial transistors
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posed fast carry ripple and full adder in buffered 4 stages

configuration.
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Figure 6: (a) Gain provided by the proposed MCC adder ver-

sus CRA for various buffer configuration and adder depth.

(b) Gain provided by a buffered 4 stages MCC adder versus

adder depth and supply voltages.

become more resistive) a 54% improvement is still observed for 64

bit additions at 0.6V.

5 FUNCTIONAL VALIDATION

We validate the functionality of the proposed memory by imple-

menting a 256WL×64BL (32WL per LG) memory array with its

periphery and IMC logic, and simulate its critical path at 300K with

10,000 Monte-Carlo runs, accounting for CMOS variability and

equivalent layout parasitics. To optimize the simulation time for

validation, only memory critical paths are simulated (WL decoders

and drivers, equivalent WLs, equivalent GRBLs, two local groups,

and BL logic) in a netlist containing more than 8,000 elements. We

model the propagation time of the signals in thememory and periph-

ery by creating equivalent circuits for the lines with corresponding

gates and extracted RC networks.

We implement the memory using thin oxide transistors from a

TSMC 28nm bulk CMOS high performance technology PDK. While

the memory array is implemented in the Regular Voltage Thresh-

old (RVT) technology flavor to limit static leakage, we utilize the

Low Voltage Threshold (LVT) technology flavor for the peripheral

circuitry in order to optimize performance.

The memory array is designed considering 28nm high density

bitcells with modified SRAM rules (we design a 0.127μm SRAM

bitcells inspired from [4] and [9] and pitched the periphery on the

bottom and sides of the memory array, i.e., on 500nm and 260nm).

Additionally, to account for the required spacing between the SRAM

and logic design rules, we consider a 500nm spacing between the

memory array and the periphery.

Figure 7 presents a chronogram of successive operations per-

formed in the worst-case/slowest BL of the memory array (i.e. the

furthest bitcell from the WL driver). The two bitcells considered are

the first bitcells of the top LGs (furthest from the LGRP and BL logic).

In this chronogram, write operations are performed sequentially to

initialize the two bitcells to ’1’, a NOR IMC operation is performed,

and the result is written back to the first bitcell (switching its state).

During the NOR operation, both LBL0 and LBL1 are discharging,

in turn discharging the GBL which triggers the NOR output. At

the end of the cycle, the NOR data is ready to be latched before the

next operation cycle.

Figure 8 shows the operation of the proposed MCC adder tied

to the memory BL logic output signals with variability simulations

(the MCC output shown is the slowest carry ripple among 10,000

Monte-Carlo runs). Carry ripple propagation begins simultaneously

with the first BL logic block; however, carry propagation progresses

slower than the rate at which data becomes ready from the memory

array (simulation shows an average of 20ps propagation time be-

tween the 1st and 256th BL). In addition, the WL discharge time is

from 60 to 90ps for the considered sizing (as proposed in [3], theWL

in metal 1 is doubled with metal 3, in order to optimize the charging

and discharging time). Taking into consideration mandatory design

margins, we demonstrate that a 16bit addition (100 to 150ps with

variability and post layout parasitics) can be performed during the

IMC operation without any decrease in memory frequency. This

trade-off is explored Section 6.2.

6 PERFORMANCE RESULTS

The proposed memory architecture is benchmarked on three axes:

(i) Area, (ii) Speed and (iii) Energy per operation. Table 1 presents
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the specification of the previously published IMC circuit architec-

tures compared to the proposed solution.

6.1 Area Estimation

Figure 9 shows the layout view of a 256BLx128WL array spread

over 4 LGs of 32WLs. Each LG is 11.7μm × 128.5μm with its WL

drivers. When considered alone, the a 32WL LG results in 71% area

efficiency while 16, 64 and 128 WL LGs feature 55.6, 83.4 and 91%

area efficiencies respectively, to which must be added WL drivers

Table 1: Summary of the proposed architecture features

compared to previously reported in-SRAM IMC memories

Jeloka [7] Akyel [2] This Work

Bitcell Density 6T 10T 6T

Memory Access 1Rd/1Wr 1Wr+2Rd
1Wr+1Rd (1 LG)

1Wr+2Rd(2 LG)

Sensing Single Ended

Array Size 64×64 Not Simulated 256×64
Max

Max Freq. 800Mhz Addition 2.2Ghz

Freq.

Add. type no addition Pipeline Direct

2.2Ghz@8,16bits

Add. Freq. - Not Simulated 1.7Ghz@32bits

1.2Ghz@64bits

Table 2: Worst Case Energy and Frequency Values of IMC

Operations in a 256×64 array.

Operation Rd Wr IMC Add

Type Bitwise 8b 16b 32b 64b

E/op[fJ] 23.5 25.9 23.8 20.7 41.6 83.3 167.3

Carry Prop.
- - - 64 130 258 512

Time [ps]

Array
88.9 136.9 162.9

Leak./op [fJ]

Freq.[Ghz] 2.2 2.2 2.2 2.2 2.2 1.7 1.2

and BL logic (we do not consider theWL decoder as it will be shared

with the neighbor array). While a larger LG enables better area

efficiency, the LG size is limited by a decreasing read margin, as

demonstrated in [12]. Also, a co-optimization between circuit and

application design is necessary to find optimal LG size. Overall, the

256BL by 128WL (32WL per LG) array shown in Figure 9 provides

a 59.7% area efficiency, of which the BL logic accounts for only 4%,

while the simulated 256BL by 64WL (32WL per LG) array provides

a 53.5% area efficiency.

Periphery Pitch Under the Array. On the bottom of the mem-

ory, memory I/O (comprised of SA, BL logic, and WrA) is 6.3μm tall,

spread across 16 SRAM pitch (i.e. 8μm as shown Figure 5). While

laying out the BL logic, we identified that a mux-4 ratio between

the periphery and the array is the most efficient approach regarding

the adder as it provides enough space (2μm) to optimize its layout.

6.2 Speed Evaluation

6.2.1 Bitwise operations. Figure 10 shows the maximum clock

frequency of different proposed IMC architectures compared to

this work at various supply voltages. The red solid curve shows

the maximum frequency achievable by this work’s architecture

performing bitwise IMC operations while accessing simultaneously

two LGs. On the other hand, the triangle markers refer to literature

solutions not using LGs [1, 7]. Overall, LG-enabled IMC operation

provides a 2.8 × improvement versus standard architectures, while

also enabling operation at 416MHz and 0.6V, where standard archi-

tectures no longer function. As a reference, we simulate this work’s
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Figure 9: Layout of a 256BLx128WLmemory array using the

proposed in memory processing architecture. This configu-

ration, enables a 59.7% area efficiency.

architecture without using LGs (blue dotted curve), obtaining sim-

ilar performance to previously published IMC solutions (1Ghz at

1V with a WL voltage reduced to 0.8V). Higher performances can

be achieved; for example, while keeping the same sizing for the

peripheral driver circuits, we show that shorter WLs enable faster

operations (2.5Ghz at 1V for 64 BLs, not shown in Figure 10).

6.2.2 Addition. Table 2 shows the worst-case ripple carry time

and maximum computational frequency of the 4-bit buffered MCC

adder with consideration for CMOS variability and layout effects.

While 8/16 bit addition can be completed during the read pulse,

32/64bit addition require reduced operating frequencies: 1.7Ghz

(1.2Ghz for 64bits). It can be noted here that considering smaller

memories while keeping the same driver sizing (i.e., shorter dis-

charge) would reduce the profitability of the proposed addition

scheme as the ripple time does not scale with the WL charging-

discharging time.

6.3 Energy Assessments

We extract the energy figures for each of the operations performed

in the simulated 256BL by 64WL (32 WL per LG) memory and

display them in Table 2. We include in these simulations the leakage

of the entire memory array as the addition frequency is reduced

with increasing bit depth. Bitwise IMC operations are performed at

2.2Ghz while addition frequency is adapted depending on its depth.

The adder energy scales almost linearly with its depth (leakage

contribution from decreased frequency is <5% when moving from

2.2 to 1.2Ghz), enabling a wide range of addition configurations

(e.g. 8 parallel 8bit additions or 1 single 64bit addition) without

impacting the memory power budget.

7 CONCLUSION

While it is believed that IMC is one of the most promising topics

for the future of computing architectures, there is a lack of circuit

and architecture evaluations of such memories in the community.

In this context, we propose a new architecture that relies on local

bitline based IMC to perform awide range of operations (AND, NOR,

XOR, shift, copy, add). The proposed memory architecture operates

within a wide range of supply voltages (0.6-1V) without any added

reliability degradation compared to standard SRAM architectures.

Additionally, we identify a way to improve the performance of IMC

addition by implementing an MCC enhanced fast adder within the
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Figure 10: Maximum frequency of bitwise operations versus

memory macro supply voltage

memory BL logic. The added BL logic reduces area efficiency by 4%.

Overall the proposed architecture achieves up to 2.2Ghz bitwise

IMC and 16bit addition or 32bit (resp. 64) addition at 1.7Ghz (resp.

1.2Ghz) at 1V. Moreover, the proposed architecture can perform

reliable bitwise operations down to 0.6V at a frequency of 416MHz.
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