skip to main content
10.1145/3316781.3317755acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article

Acceleration of DNN Backward Propagation by Selective Computation of Gradients

Authors Info & Claims
Published:02 June 2019Publication History

ABSTRACT

The training process of a deep neural network commonly consists of three phases: forward propagation, backward propagation, and weight update. In this paper, we propose a hardware architecture to accelerate the backward propagation. Our approach applies to neural networks that use rectified linear unit. Considering that the backward propagation results in a zero activation gradient when the corresponding activation is zero, we can safely skip the gradient calculation. Based on this observation, we design an efficient hardware accelerator for training deep neural networks by selectively computing gradients. We show the effectiveness of our approach through experiments with various network models.

References

  1. Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-neuron-free deep neural network computing. In ACM SIGARCH Computer Architecture News, Vol. 44. IEEE Press, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM Sigplan Notices 49, 4 (2014), 269--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Dadiannao: A machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 609--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127--138.Google ScholarGoogle ScholarCross RefCross Ref
  5. Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. 2014. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567 (2014).Google ScholarGoogle Scholar
  6. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770--778.Google ScholarGoogle ScholarCross RefCross Ref
  7. Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In International Conference on Machine Learning. 448--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. 2018. ZeNA: Zero-Aware Neural Network Accelerator. IEEE Design & Test 35, 1 (2018), 39--46.Google ScholarGoogle ScholarCross RefCross Ref
  9. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 1097--1105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10). 807--814. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Minsoo Rhu, Mike O'Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and Stephen W Keckler. 2018. Compressing DMA engine: Leveraging activation sparsity for training deep neural networks. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 78--91.Google ScholarGoogle ScholarCross RefCross Ref
  12. Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator. IEEE Computer Architecture Letters 10, 1 (2011), 16--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).Google ScholarGoogle Scholar
  14. Andrea Vedaldi and Karel Lenc. 2015. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international conference on Multimedia. ACM, 689--692. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018. Recent trends in deep learning based natural language processing. ieee Computational intelligence magazine 13, 3 (2018), 55--75.Google ScholarGoogle Scholar
  16. Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016. Cambricon-x: An accelerator for sparse neural networks. In The 49th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 20. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Acceleration of DNN Backward Propagation by Selective Computation of Gradients

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      DAC '19: Proceedings of the 56th Annual Design Automation Conference 2019
      June 2019
      1378 pages
      ISBN:9781450367257
      DOI:10.1145/3316781

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 June 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate1,770of5,499submissions,32%

      Upcoming Conference

      DAC '24
      61st ACM/IEEE Design Automation Conference
      June 23 - 27, 2024
      San Francisco , CA , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader