
Assessing the Adherence of an Industrial Autonomous Driving
Framework to ISO 26262 Software Guidelines

Hamid Tabani, Leonidas Kosmidis, Jaume
Abella, Francisco J. Cazorla
Barcelona Supercomputing Center

Guillem Bernat
Rapita Systems LTD

ABSTRACT
The complexity and size of Autonomous Driving (AD) software
are comparably higher than that of software implementing other
(standard) functionalities in the car. To make things worse, a big
fraction of AD software is not specifically designed for the auto-
motive (or any other critical) domain, but the mainstream market.
This brings uncertainty on to which extent AD software adheres
to guidelines in safety standards. In this paper, we present our ex-
perience in applying ISO 26262 – the applicable functional safety
standard for road vehicles – software safety guidelines to industrial
AD software, in particular, Apollo, a heterogeneous Autonomous
Driving framework used extensively in industry. We provide quan-
titative and qualitative metrics of compliance for many ISO 26262
recommendations on software design, implementation, and testing.

KEYWORDS
Critical Systems, Autonomous Driving, ISO 26262
ACM Reference Format:
Hamid Tabani, Leonidas Kosmidis, JaumeAbella, Francisco J. Cazorla andGuillem
Bernat. 2019. Assessing the Adherence of an Industrial Autonomous Driving
Framework to ISO 26262 Software Guidelines. In The 56th Annual Design
Automation Conference 2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3316781.3317779

1 INTRODUCTION
The potential socio-economic benefits of Autonomous Driving (AD)
have motivated automotive industry to assess the feasibility of
developing autonomous cars. In doing so, intuitively, Advanced-
Driver Assistance Systems (ADAS) such as lane keeping can serve
the automotive industry as a ‘test case’ to master the complexity in
the specification, design, implementation, verification, and valida-
tion of advanced software-controlled functionalites. However, AD
brings its own set of challenges. In particular, safety argumentation
for hardware and software in AD and ADAS differs. In ADAS, it
builds on the ability of the human driver to take the system to a
safe state on the event of a software/hardware failure. That is, the
human acts as a backup safety mechanism and is responsible for
taking the right corrective action. Instead, for AD (especially full
AD or Level 5), there can be no driver. This increases the complexity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317779

of AD software that must handle safety under driving conditions.
To that end, the software implements a complex control building on
artificial intelligence (AI) algorithms and manages big amounts of
sensor data. This translates into a huge increase in computing per-
formance requirements, 100x from 2016 to 2024 according to ARM
prospects [6], and the use of advanced performance-improving
processor designs, e.g. GPUs (Graphics Processing Units). Also,
software (and hardware) must be designed and validated for a high
Automotive Safety Integrity Level (ASIL)1. In particular, for high
levels of autonomous driving in which AD systems will control
safety-related driving aspects, AD systems will reach ASIL-D and
must be designed to remain (fail) operational regardless of the
presence of a fault. This requires robust mitigation techniques to
decrease risks and/or meet specific failure probability bounds.

For road vehicles, ISO 26262 guides the production of software,
listing for each process of the life-cycle i) the safety requirements,
ii) the activities required to meet those requirements, and iii) the
evidence that is required to demonstrate that the requirements are
fulfilled, with traceability as a fundamental element to link high-
level requirements, low-level requirements, and analyzes. In short,
if the designed analyzes and tests are passed (e.g., 100% code cover-
age is achieved), an assessment of the quality of the implementation
and its fit for purpose can be made. For AD software frameworks,
the challenge lies on the fact that so far they have been designed
with low focus on safety as dictated by safety standards. First of
all, during the initial phases of the ISO 26262 safety life-cycle, it is
required to define the AD safety goals, with already some efforts try-
ing to formalize them [11]. Then, safety requirements are allocated,
via a technical safety concept, to software and other architectural
components so that safety goals are not violated. However, the
extent to which AD software frameworks adhere to ISO 26262 Part
6, which specifies the product development at the software level,
has not been assessed.

In this paper, with focus on Apollo [5], an AD framework cur-
rently running on a variety of commercial vehicles, we show AD’s
adherence to ISO 26262 in terms of: i) software architectural de-
sign; ii) software modeling and coding guidelines; iii) software unit
design and implementation; and iv) code coverage, the most com-
mon form of structural coverage analysis. To our knowledge, this
is the first analysis of a complete industrial AD software in the
literature regarding adherence to ISO 26262 guidelines for software.
Hence, our analysis assesses the gaps between AD software current
implementation and the requirements for its certification.

In our analysis, we cover some issues hampering AD heteroge-
neous software adherence to ISO 26262 that can be solved with
1The automotive functional safety standard ISO 26262, defines 4 ASIL varying from
ASIL-A (lowest criticality) to ASIL-D (highest criticality). Besides, the Quality Manage-
ment (QM) category covers those components that cannot cause safety risks upon a
failure.

https://doi.org/10.1145/3316781.3317779
https://doi.org/10.1145/3316781.3317779

Figure 1: A state-of-the-art AD system pipeline.

limited software engineering effort and those that are much deeper
and require research innovations to be successfully addressed. As
an illustrative example of the latter, we show that how the GPU part
(i.e., the GPU code) of AD applications is programmed is at odds
with ISO 26262 requirements. This occurs because programming
languages for the mainstream market, e.g., CUDA, make intrinsic
use of features not recommended in ISO 26262 (e.g., pointers and
dynamic memory). Overall, we provide several key insights and
research directions to address the main challenges brought by AD
software in terms of safety assurance.

The rest of the paper is organized as follows: Section 2 introduces
Apollo and its structure. Section 3 describes themain contribution of
our work: the adherence of Apollo to ISO 26262 software guidelines,
with explicit references to the (little) related work. Finally, Section 4
presents the main conclusions of this work.

2 APOLLO INDUSTRIAL AD FRAMEWORK
Autonomous cars, also known as driver-less cars and self-driving
cars, are vehicles that can guide themselves toward a specified
destination without human intervention. AD software combines
several input sensors such as video cameras, short-range and long-
range radars and laser sensors to detect the surrounding area and
track the moving objects around the car.

AD systems implement very precise navigation techniques in
order to locate the position of the vehicle. By providing the position
of the vehicle and enough information about the surrounding area,
the AD system plans the future paths using the specified routing and
generates control commands for the vehicle to follow the specified
paths. These are the main stages of Apollo and also other state-of-
the-art AD frameworks [2, 4, 5]. All of them have similar design and
implementation characteristics, so the conclusions we derive for
Apollo in this work hold to a large extent for all AD frameworks.

Over 110 industrial partners, encompassing top-tier AI compa-
nies and car manufacturers, already contribute to Apollo as a large
industrial project [5]. Apollo AD is implemented in a large number
of commercial automotive companies, and it is already deployed
on several prototype vehicles, including autonomous trucks. This
is the primary reason for the selection of Apollo for our study.

AD software comprises several modules [7], see Figure 1, with
compute-intensive ones already implemented to use GPUs.

• Object Detection identifies objects of interest surrounding
the car using the LIDAR, camera, and radar sensors.

• Object Tracking is responsible for observing moving objects
like other vehicles, bicycles, and pedestrians over time. In
some AD frameworks, including Apollo, object detection,
and tracking are parts of a bigger module which is called
Perception.

Figure 2: Taxonomy of the Libraries used byApollo’s percep-
tion module.

• Prediction anticipates the future motion trajectories of per-
ceived obstacles and objects.

• Localization uses different sensors to calculate the precise
location of the vehicle.

• Routing finds the best route and guides the vehicle to reach
its destination.

• Planning takes the prediction and routing outputs to plan a
safe and collision-free trajectory for the vehicle to take.

• Control, based on the output of these modules, generates con-
trol commands such as accelerating, braking, and steering.

• Finally, theCAN Busmodule passes all the control commands
to the vehicle hardware and also provides some information
back to the AD system.

The perception module, which includes object detection and
tracking, is known to have very high complexity and computing
performance requirements, besides representing a large fraction of
the overall Apollo’s execution time [5].

For camera-based object detection, Apollo employs YOLO [10],
the state-of-the-art object detection algorithm used in a variety of
domains. The Convolutional Neural Network inference for object
detection is the most computationally intensive function as it re-
quires to perform a huge amount of computations to process at
several frames per second. Note that the use of deep learning in
the past few years has significantly increased the resulting algo-
rithm accuracy in a variety of areas including computer vision and,
therefore, nowadays Deep Neural Networks are considered the ref-
erence approach in such domains. The provided functionalities are
implemented using low-level GPU accelerated libraries specifically
optimized for certain GPUs like the ones from NVIDIA, used in this
study. Figure 2 presents a taxonomy of the modules and libraries
used in the object detection module of Apollo.

3 SOFTWARE SAFETY GUIDELINES
Part 6 of ISO 26262 specifies the requirements for software de-
velopment. ISO 26262 covers software’s: (a) safety requirements
specification, (b) architectural design, (c) unit design, and imple-
mentation, (d) unit testing, (e) integration and testing, and (f) safety
requirements verification. In this work, we focus on a subset of
them. In particular, we cover different aspects of (b), (c), (d), and (e).
We present first those aspects for which we can report quantitative
(instead of qualitative) results.

3.1 Software Architectural Design
ISO 26262 specifies coding and modeling guidelines for the product
development phase at the software level as shown in Table 1. ISO

Table 1: Modeling/coding guidelines (ISO26262_6 Table 1)
Criticality Level A B C D
1) Enforcement of low complexity ++ ++ ++ ++
2) Use language subsets ++ ++ ++ ++
3) Enforcement of strong typing ++ ++ ++ ++
4) Use defensive implementation techniques o + ++ ++
5) Use established design principles + + + ++
6) Use unambiguous graphical representation + ++ ++ ++
7) Use style guides + ++ ++ ++
8) Use naming conventions ++ ++ ++ ++

26262 uses the following notation to capture the extent to which
a particular technique is required under a certain ASIL: ++ highly
recommended; + recommended; and o ‘not required’. As it can be
seen, all elements are highly recommended for ASIL D, which is the
target ASIL we consider for the entire AD pipeline in Apollo, since
all modules affect the car motion. In the following, we provide and
discuss our analysis regarding each of the requirements of Table 1.

3.1.1 Enforcement of low complexity. We have analyzed the source
code of the different software modules using the Lizard cyclomatic
complexity analysis tool [3]. It measures the number of independent
paths in a target source. For instance, a program with a single if
statement has a cyclomatic complexity of two and a program with
two nested if conditions result in complexity of three.

The crosses and diamonds in Figure 3 respectively show the total
number of lines of code (LOC) and the number of functions in each
module. Note that the entire Apollo framework is composed of
more than 220k LOC, which means that it has a considerable size
and this analysis is not trivial. All modules are in the order of tens
of thousands of LOC and hundreds or even thousands of functions.

The bars in Figure 3 show the number of functions in different
modules of Apollo with a cyclomatic complexity over a given value.
While no exact cyclomatic complexity limit fits all domains, in
critical systems, it is especially delicate since increasing complex-
ity impacts the already costly verification activities. As reference
ranges we use: 1-10 (low); 11-20 (moderate); 21-50 (risky); and >50
(unstable). We can see that, in general, the degree of complexity
of the code is high. Modules have in the order of dozens of func-
tions with moderate or higher complexity, amounting 554 for the
entire Apollo framework. Such high code complexity challenges
the functional verification of the code as well as its timing analysis
(e.g., worst-case execution time and response time) estimation.

Figure 3: Complexity, number of LOC, and the number of
functions in Apollo Modules.

Observation 1. AD frameworks present a high complexity in
terms of cyclomatic complexity. From Observation 1, it follows that
significant redesign and recoding is needed in AD frameworks to
reach low complexity levels as expected in high-integrity software
functionality. This is mandatory to reduce verification costs and
facilitate timing (WCET) estimation.

Figure 4: CUDA code in object detection module.

3.1.2 Use of language subsets. In this work, we focus onMISRA [8],
the guideline for the use of the C language in vehicle-based software,
which stipulates 143 rules (MISRA C:2012). Since AD applications
are not programmed targeting any critical market in particular,
they naturally do not adhere to MISRA C.

Observation 2. The CPU part of AD frameworks is not pro-
grammed according to any safety-related guideline. In our view,
it is possible with moderate effort to change the code to adhere to
a language subset like MISRA C.

More interestingly, we found that for the GPU code there is no
standard (language subset) defined to simplify the safety assessment.
It follows that there are no tools to assess whether a particular code
sample adheres to it.

Observation 3. No guideline or language subset exist for GPU
code to facilitate code safety assessment in critical systems.

In this line, we assessed whether some of the features required
for CPU code according to MISRA C apply to GPU (CUDA) code.
Similar to [14], our analysis shows that CUDA programming heav-
ily builds on the use of pointers and dynamic memory allocation,
while ISO 26262 highly recommends not to use dynamic objects
or variables. As an illustrative example, Figure 4 shows an excerpt
of object detection function scale_bias_gpu that has a typical
CUDA program structure. As shown, output and biases point-
ers are respectively used to access dynamically created arrays of
floating-point data containing layer outputs and biases. Note that
CUDAmemory allocations, cudaMalloc, transfer the data to the de-
vice memory. Operations to copy the data back from device memory
are not shown in this code excerpt. Hence, CUDA programs build
on pointers as an indispensable feature to allow the programmer to
allocate and maintain two separate sets of pointers explicitly, one
for the host memory and one for the device memory.

Observation 4. CUDA code intrinsically uses features not recom-
mended in ISO 26262 (e.g., use of pointers and dynamic memory).

Unlike Observation 2 that can be handled with relatively small
effort, Observations 3 and 4 carry deeper changes. In particular,
the use of GPU programming languages that are more friendly to
certification imposes significant code modifications. In this line,
alternative initiatives like the Brook Auto GPU programming lan-
guage [14] help in simplifying certification: in the same way that
MISRA C constraints C, Brook Auto defines a subset of the Brook
stream-programming language rules that are certification friendly,
without limiting the expressiveness of the language. For instance,
Brook Auto does not expose pointers to the programmer, and takes
care of those tasks automatically, reducing the possibility of human
errors. Furthermore, Brook Auto achieves competitive performance
results in low-level GPU languages [14].

Figure 5: Coverage achieved for object detection (YOLO)

3.1.3 Enforcement of strong typing. While there is no single defini-
tion of “strong typing”, C and C++ languages are generally agreed
as “less strongly typed” than some other languages due to their sup-
port for implicit and explicit casting. In Apollo, we have observed
more than 1,400 explicit castings, which confronts the requirements
of the ISO 26262 standard.

Observation 5. Most of the AD frameworks and modules are
programmed in C or C++, requiring the programmer to identify and
resolve any type of castings in the code.

3.1.4 Use of defensive implementation techniques. Defensive imple-
mentation improves software and source code in many aspects. For
instance, the software must behave predictably despite unexpected
inputs or user inputs. This requires that all the functions should
check the validity of their input parameters before using them. Fur-
thermore, all the callers of a function should handle all possible
return values from the called function. Our analysis of the source
code of Apollo shows that defensive programming techniques are
not used.

Observation 6. AD frameworks do not implement defensive pro-
gramming techniques. However, with limited effort, this feature can
be added to the code.

3.1.5 Use of established design principles. This category is very
broad, but many design principles are related to properties that are
statically checkable. For example, design guidelines may impose
restrictions on the use of global variables, or exception handling.
Although the code properly uses C++ exception handling in most
of the cases, we observe the use of global variables frequently. Their
use impacts functional validation and testing since it becomes more
challenging determining value ranges.

Observation 7. AD software uses global variables. This requires
changing the code to eliminate them or more complex argumentation
to support their use and correct behavior.

3.1.6 Use unambiguous graphical representation. Since all the AD
frameworks are written in C/C++, this requirement is not applicable.

3.1.7 Use style guides. Style guides typically cover topics such as
code layout, capitalization, comments, and white space. For Apollo
source code, we used a style guide tool to process the code, and it
verifies that the proper coding style is very well achieved.

Observation 8. AD software follows style guides. In particular,
Apollo software adopted the Google C++ style guide, and contribu-
tors have to validate their code using defined style checkers.

Figure 6: Statement and branch coverage for a CUDA code
modified to be run in the CPU.

3.1.8 Use naming conventions. According to several coding guide-
lines including Google C++ guidelines, the names of all types,
classes, structs, type aliases, enums, and type template parame-
ters should have the same naming convention. The Apollo code
adheres to all these properties.

Observation 9. AD software adheres to the properties of coding
guidelines. Apollo software uses a very well-structured implemen-
tation, and all coding guidelines are followed.

3.2 Software Unit Testing: CPU Code Coverage
Software unit testing is an important requirement in ISO 26262.
In this section, we focus on metrics of code coverage that provide
evidence of correct execution by showing that different parts of the
program have been sufficiently exercised by the tests.

For the CPU code, we focus on standard statement, branch, and
Modified Condition/Decision (MC/DC) coverage metrics. In partic-
ular, we run several real-scenario tests and use Rapita System’s
RapiCover commercial tool [12] to measure the object detection
code coverage in the Apollo’s Object Detection module.

In Figure 5, the X-axis list the files in the different modules of
YOLO. Each file covers all the functions implemented in it. In our
experiments, we excluded all those functions that were not called.
Despite that, statement, branch, and MC/DC coverage are very low.
Average coverage is 83%, 75% and 61% for statement, branch and
MC/DC respectively, and as low as 19%, 37% and 10% respectively
for individual files.

While ISO 26262 does not specify a particular coverage figure, its
parent standard, IEC61508 (Functional Safety of Electrical/Electron-
ic/Programmable Electronic Safety-Related Systems) recommends
100% coverage for all metrics. In ISO 26262, either branch or code
statement are highly recommended (‘++’) for all ASIL.

Observation 10. Code coverage for AD software is low with avail-
able tests. Thus, additional test cases are required to reachmuch higher
coverage (preferably 100% coverage).

3.3 Software Unit Testing: GPU Code Coverage
For GPU code we make the following observations:

Observation 11. Tool support in the real-time domain to measure
code coverage of GPU code is very limited.

To our knowledge, no code coverage qualified tool exists to
analyze GPU code coverage. Since GPU code of AD software is as
critical as CPU code – ASIL-D fail-operational for fully autonomous
cars – and hence, requires undergoing the same analysis and testing,
automated tools to measure GPU code coverage are needed.

In order to provide some GPU code coverage numbers, we modi-
fied the code in such a way that it runs in the CPU or emulates the
CUDA API in the CPU. While this approach is not applicable for

Figure 7: Performance of Apollo’s object detection using
open-source CUDA libraries in comparison with closed-
source libraries implementation.

safety considerations as one the arguments is that code coverage
needs to be performed on a representative target and compiler,
we use it to get some figures on GPU code coverage. In particular,
we used cuda4cpu [1] and applied it to 2D and 3D stencil compu-
tation GPU kernels, as a representative of the open-source code.
On the resulting code, we applied code coverage tools obtaining
the branch and statement coverage figures shown in Figure 6. The
reported values show that full code coverage is not achieved either
for statements or branches.

3.3.1 Other challenges. Other elements that can hamper carrying
out testing in an efficient manner include the use of closed-source
libraries.

Observation 12. Heterogeneous AD software makes extensive
use of performance-optimized closed-source CUDA libraries, which
hampers assessing compliance against ISO 26262.

As it can be seen in Figure 2, AD software, or the high-level DNN-
related libraries it uses, make use of low-level libraries optimized
to run certain functions in the GPU. The latter, for competitiveness
reasons, are only offered in closed-source form by the chip vendor.
These libraries include:

• cuDNN. NVIDIACUDADeepNeural NetworkGPU-accelerated
library of primitives for deep neural networks.

• cuBLAS. Implementation of BLAS (Basic Linear Algebra Sub-
programs) on top of the NVIDIA CUDA runtime.

• TensorRT. NVIDIA TensorRT high-performance deep learn-
ing inference optimizer and runtime that delivers low latency
and high-throughput for deep learning inference.

Regarding certification, having closed-source libraries require
their owners to go through the certification process and adapt their
libraries to fit ISO 26262 requirements. While in theory library users
can use black-box testing, this however, has severe implications for
ISO 26262 applicability and, in its current form, it is not satisfactory.

Alternatives include the adoption by suppliers of a ‘safety culture’
based on openness or make that library users deploy state-of-the-
art open-source libraries. In this work, we advocate for the latter
option. However, in order to make it attractive, used open-source
libraries must provide competitive performance with respect to
well-known closed-source libraries.

Case Study. In AD software, including Apollo, the perception
module is the main module that extensively uses DNN-related
libraries. Object detection algorithms can be implemented using ei-
ther cuBLAS or cuDNN closed-source libraries. The latter library
is specifically designed for deep neural networks and can use
NVIDIA’s tensor cores. Therefore, depending on the capabilities of

(a) CUTLASS vs cuBLAS (b) ISAAC vs cuDNN
Figure 8: Relative performance of open-source CUDA li-
braries compared to closed-source CUDA libraries in variety
of widely-used applications and kernels.

the target architecture on which Apollo will run, one of these two
libraries can be selected by the programmer.

For the sake of generality, we take both implementations into
account. Then, we implement and run Apollo’s object detection
module using NVIDIA’s CUTLASS [9], an open-source collection of
CUDAC++ template abstractions for implementing high-performance
matrix-multiplication, and ISAAC [13], an input-aware auto-tuning
framework and code-generator for compute-bound HPC kernels.

As Figure 7 shows, the implementations based on CUTLASS and
ISAAC provide competitive performance in comparison to cuBLAS
and cuDNN, which are the libraries used in the baseline. Also note
that the same operations run on the CPU cores using highly opti-
mized libraries (ATLAS and OpenBLAS) with two orders of magnitude
higher execution time, which demonstrates the inability of CPUs
for such compute-intensive workloads.

As another set of illustrative examples, we compare different
general matrix multiplication (GEMM) kernels, widely use in YOLO,
implementations using cuBLAS and CUTLASS. In order to construct
device-wide GEMM kernels, CUTLASS primitives exhibit perfor-
mance comparable to cuBLAS for scalar GEMM computations as
Figure 8(a) shows.

Similarly, we compare the performance of convolution kernel im-
plementations using cuDNN and ISAAC for a variety of domains. As
shown in Figure 8(b), ISAAC provides very competitive performance
in comparison with cuDNN for a variety of workloads. We can see
that open-source libraries can provide comparable performance.

3.4 Software Modeling and Coding Guidelines
Software architectural design, early in the product design phase,
provides a design that realizes the software safety requirements.
Table 2 itemizes particular requirements for architectural design.

Table 2: Architectural design (ISO26262_6 Table 3)
Criticality Level A B C D
1) Hierarchical structure of SW components ++ ++ ++ ++
2) Restricted size of software components ++ ++ ++ ++
3) Restricted size of interfaces + + + +
4) High cohesion in each software component + ++ ++ ++
5) Restricted coupling between SW components + ++ ++ ++
6) Appropriate scheduling properties ++ ++ ++ ++
7) Restricted use of interrupts + + + ++

3.4.1 Hierarchical structure of SW components. In ISO 26262, de-
sign begins at top level components, which are broken down further
to reach the lowest unit of implementation. For instance, the lowest
units for software are the functions. To satisfy this requirement,
there are several commercial and open-source software tools that

provide a hierarchical structure and dependencies across software
components.

3.4.2 Other architectural design parameters. The rest of the items
in Table 2 can be measured using existing tools and metrics and
assessed against specific thresholds. For instance, a limit for the
size of software components is not explicitly specified in the stan-
dard. Main modules of Apollo have from 5k to 60k lines of code.
Provided that a module should be limited to a maximum size, it can
be reorganized or redesigned to stay below the maximum size.

Observation 13. AD frameworks do not comply with many of the
principles for software architectural design defined by ISO 26262 such
as the restricted size of components and interfaces. In our view, AD
software can be made compliant with these ISO 26262 principles,
although with non-negligible effort.

3.5 Software Unit Design and Implementation
Software unit design and implementation build on several guide-
lines to ensure features such as simplicity, correct order of execution,
consistency of interfaces, and data/control flows as presented in
Table 3. Our analysis of Apollo’s AD software shows that many
guidelines are not followed:

Table 3: SW unit design & implement. (ISO26262_6 Table 8)
Criticality Level A B C D
1) One entry and one exit point in functions ++ ++ ++ ++
2) No dynamic objects or variables, or else + ++ ++ ++
online test during their creation
3) Initialization of variables ++ ++ ++ ++
4) No multiple use of variable names + ++ ++ ++
5) Avoid global variables or justify usage + + ++ ++
6) Limited use of pointers o + + ++
7) No implicit type conversions + ++ ++ ++
8) No hidden data flow or control flow + ++ ++ ++
9) No unconditional jumps ++ ++ ++ ++
10) No recursions + + ++ ++

(1) Functions have several entries and exit points (e.g. 41% of the
functions in the object detection module).

(2) Most data structures are allocated dynamically. Since the
input data parameters, like the size of the networks and images, are
unknown statically, the corresponding data structures are allocated
dynamically. As discussed in the previous section, CUDA builds on
the use of pointers and dynamic memory.

(3) Using static code analysis tools and compiler options, we
have identified several variables as uninitialized.

(4) The use of numerous libraries and namespaces complicates
analyzing that all the variables have unique names to minimize
programming mistakes. However, commercial custom code checks
are developed for this purpose.

(5) We identified the use of global variables (e.g. ≈900 in the
perception module). Although their use can be eliminated by modi-
fying the application, however, according to the standard, justified
usage of such variables may be permitted.

(6) The limited use of pointers has been already discussed.
(7) Type conversions have also been discussed in detail.
(8) Hidden data-control flow partially relates to code coverage

as already described.
(9) We have observed that AD frameworks use several uncon-

ditional jumps. However, by applying minor modifications to the
code, they can be eliminated.

(10) We have identified a few uses of recursive functions for well-
known purposes such as processing trees. However, in general, the
recursive code can be transformed into loop-base iterative code.

Observation 14. Apollo AD software does not comply with the
principles for unit design and implementation. While code can be
modified to cover most of these requirements, some of those require-
ments, however, require specific techniques as presented in [14]
for avoiding the use of pointers in GPU code and/or significant
modifications.

4 CONCLUSION
In this paper, we present our experience with the assessment of the
safety properties of an advanced, industrial GPU-accelerated AD
framework. We have identified complexities and missing features
in AD software to adhere to ISO 26262 principles for software (Part
6), and we have proposed different approaches to handle those
complexities and missing features. We have highlighted several
challenges for certification of GPU code according to the require-
ments of the ISO 26262 standard. Overall, our analysis contributes
to enabling the use of heterogeneous AD software to control high-
integrity vehicle functionalities by assessing the gaps between its
current implementation and the requirements for its certification.

ACKNOWLEDGMENT
This work has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 772773). This work
has also been partially supported by the Spanish Ministry of Econ-
omy and Competitiveness (MINECO) under grant TIN2015-65316-P
and the HiPEAC Network of Excellence. MINECO partially sup-
ported Jaume Abella under Ramon y Cajal postdoctoral fellowship
(RYC-2013-14717), and Leonidas Kosmidis under Juan de la Cierva-
Formación postdoctoral fellowship (FJCI-2017-34095).

REFERENCES
[1] 2014. cuda4cpu. Library and headers to make CUDA codes run seamlessly on

CPUs. https://github.com/javier-cabezas/cuda4cpu. (2014).
[2] 2016. Autoware. An open autonomous driving platform. https://github.com/

CPFL/Autoware/. (2016).
[3] 2017. Lizard. An extensible cyclomatic complexity analyzer for many imperative

programming languages including C/C++. https://github.com/terryyin/lizard.
(2017).

[4] 2017. Udacity. An Open Source Self-Driving Car. htps://www.udacity.com/
self-driving-car/. (2017).

[5] 2018. Apollo, an open autonomous driving platform. http://apollo.auto/. (2018).
[6] ARM. 2015. ARM Expects Vehicle Compute Performance to In-

crease 100x in Next Decade. https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.
php. (2015).

[7] S.-C. Lin et al. 2018. The Architectural Implications of Autonomous Driving:
Constraints and Acceleration. In ASPLOS.

[8] MISRA. 2013. Guidelines for the Use of the C Language in Critical Systems.
[9] NVIDIA. 2018. CUTLASS 1.1. https://github.com/NVIDIA/cutlass. (2018).
[10] J. Redmon et al. 2016. You Only Look Once: Unified, Real-Time Object Detection.

In CVPR.
[11] Amnon Shashua. 2018. The Responsibility Sensitive Safety (RSS) Formal

Model toward Safety Guarantees for Autonomous Vehicles. https://www.date-
conference.com/date18/keynotes. (2018).

[12] Rapita Systems. 2008. RapiCover. Low-overhead coverage analysis for critical
software. https://www.rapitasystems.com/products/rapicover.

[13] P. Tillet and D. Cox. 2017. Input-aware auto-tuning of compute-bound HPC
kernels. In SC.

[14] M. M. Trompouki and L. Kosmidis. 2018. Brook Auto: High-Level Certification-
Friendly Programming for GPU-powered Automotive Systems. In DAC 2018.

https://github.com/javier-cabezas/cuda4cpu
https://github.com/CPFL/Autoware/
https://github.com/CPFL/Autoware/
https://github.com/terryyin/lizard
htps://www.udacity.com/self-driving-car/
htps://www.udacity.com/self-driving-car/
http://apollo.auto/
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://github.com/NVIDIA/cutlass
https://www.rapitasystems.com/products/rapicover

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

