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ABSTRACT
Loop pipelining is an important optimization in high-level synthesis

to enable high-throughput pipelined execution of loop iterations.

However, current pipeline scheduling approach relies on fundamen-

tally inexact heuristics based on ad hoc priority functions and lacks

guarantee on achieving the best throughput. To address this shortcom-

ing, we propose a scheduling algorithm based on system of integer

difference constraints (SDC) and Boolean satisfiability (SAT) to ex-

actly handle various pipeline scheduling constraints. Our techniques

take advantage of conflict-driven learning and problem-specific spe-

cialization to optimally yet efficiently derive pipelining solutions. Ex-

periments demonstrate that our approach achieves notable speedup

in comparison to integer linear programming based techniques.

1 INTRODUCTION
As loops abound in high-level software programs, loop pipelining

is an important optimization in high-level synthesis (HLS) because

it allows different iterations of a loop to be overlapped during exe-

cution in a pipelined parallel fashion. Typically enabled by modulo

scheduling [5], loop pipelining creates a static schedule for a single

loop iteration so that the same schedule can be repeated at a constant

initiation interval (II). Because II dictates the achieved throughput of

the pipeline, minimizing the II is considered the foremost objective

of pipeline scheduling.

While II determines the amount of parallelism, it is inherently

limited by inter-iteration dependence (i.e., recurrence) between op-

erations in different loop iterations. Figure 1(a) shows the data flow

graph (DFG) of a loop that we will referred to throughout this paper.

A static schedule for a single iteration is shown in bold in Figure 1(b).

Due to the inter-iteration load-after-store dependence (indicated by

the dashed arrow in Figure 1(a)) between v5 and v0, a subsequent
iteration must start at least two cycles after the current iteration as

shown in Figure 1(b). Any shorter II causes a dependence violation.

In addition to recurrence, II is also constrained by the available

number of resources. Because the schedule for different loop itera-

tions overlap in time, sufficient resources must be allocated to en-

able parallel execution of operations across iterations. As shown in

Figure 1(b), the pipeline execution with II=2 requires at least two

memory read ports. If the same schedule targets II=1, at least three
read ports are required due to the overlap among load operations.

Because modulo scheduling is not trivial in the presence of both

recurrence and resource constraints, there exist a set of heuristics to

efficiently solve the problem. For example, iterative modulo schedul-

ing [12] applies a list scheduling like heuristic with backtracking and
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Figure 1: An example modulo scheduling problem — (a) DFG
of the loop to be scheduled. (b) Static schedule for a single
iteration is shown in bold. Pipeline executes by repeating the
same static schedule with an II of 2 cycles.

has been adapted for loop pipelining in HLS [3]. However, state-of-

the-art HLS tools typically employ the more versatile heuristic based

on system of integer difference constraints (SDC) to naturally handle

operation chaining and various hardware-specific constraints [4, 15].

SDC-based modulo scheduling is rooted in a linear programming

formulation and can globally optimize over constraints that can be

represented in the integer difference form, including both intra- and

inter-iteration dependences. Notably however, resource constraints

cannot be exactly modeled within an SDC formulation. As a result,

SDC-based modulo scheduling resorts to incremental scheduling

of resource-constrained operations on top of SDC to heuristically

legalize the schedule under resource constraints. Because resource

constraints are not handled exactly, SDC-based modulo scheduling

lacks guarantee on achieving the optimal II.

To address this problem, we propose a modulo scheduling for-

mulation that couples SDC with Boolean satisfiability (SAT) to ex-

actly handle both timing and resource constraints for HLS pipelining.

Similar to unpipelined scheduling with joint SDC and SAT [8], our

proposed approach exploits the efficiency of SDC while leveraging

the scalability of SAT to quickly prune away infeasible schedule space

and derive an optimal modulo schedule. However, modulo scheduling

requires a modified SDC and SAT formulation (Section 3) and calls

for a different problem-specific specialization technique (Section 4).

Our specific contributions are as follows:

(1) We propose a joint SDC and SAT formulation to exactly encode

both resource and timing constraints for HLS pipelining.

(2) We develop an optimal algorithm based on conflict-driven learn-

ing to efficiently solve the modulo scheduling problem.

(3) We leverage problem-specific specialization to reduce the problem

size and further achieve improved scalability.

2 PRELIMINARIES
A typical HLS tool employs a software compiler (e.g., LLVM, GCC)

to compile the input software program into a control data flow graph

(CDFG). Within this CDFG, subgraphs corresponding to loops to

be pipelined are extracted for modulo scheduling, while the rest are

synthesized with unpipelined scheduling techniques [6]. In this paper,

we focus on the following HLS modulo scheduling problem:
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Given: (1) A loop represented by a CDFG with intra- and inter-

iteration dependences. (2) A set of scheduling constraints which may

include resource, latency, and relative timing constraints.

Objective:Generate amodulo schedule thatminimizes the II while

satisfying all given constraints.

Each operation in the CDFG is associated with a value that indi-

cates the combinational delay of the operation. These delays are used

to chain operations into the same cycle based on the target clock pe-

riod of the problem. In Figure 1(a), we label the combinational delays

for the four distinct types of operations in the graph. These delays are

used during scheduling to satisfy the clock period constraint denoted

in Figure 1(b). Unlike intra-iteration dependence edge, each inter-

iteration dependence edge is associated with a distance indicating the

number of loop iterations between the occurrences of the dependent

operations. In Figure 1(a), the inter-iteration dependence edge in dash

has a distance of 1 indicating that v0 of the next iteration depends

on v5 of the current iteration.
In addition, the problem consists of resource constraints in the

form of a resource model containing a set of different resource types

(e.g., memory port, floating point multiplier). There exist a finite

number of resources of each type in the resource model. If an opera-

tion requires any resource from the resource model to execute, we

call this operation a resource-constrained operation. For example, the

schedule in Figure 1(b) is derived based on a resource constraint of

two memory read ports (as indicated), which allows at most two load

operations in each cycle.

A modulo scheduling solution assigns each operation i to a time
step ti which indicates the cycle at which the operation executes. Due

to the modulo nature of the scheduling from overlapping different

iterations, each time step ti corresponds to a (modulo) time slot si ,
where si = ti%I I . For the bolded schedule in Figure 1(b), store oper-

ation v5 is scheduled in the third time step (t5 = 2) with no other

operations. However, it is assigned to the first time slot (s5 = 0) along

with loads from v1 and v2 and addition from v3. While there can be

as many time steps as needed, there can be at most II time slots. A

modulo reservation table (MRT) indicates the number of each type of

resource used by all operations scheduled in each time slot. A feasible

modulo scheduling solution requires an MRT in which no resource

is oversubscribed in any time slot.

Because modulo scheduling is generally NP-hard under both re-

source and recurrence constraints, many heuristics such as itera-

tive modulo scheduling [12] have been proposed to quickly derive

a solution with a small II. There also exist enumeration-based ap-

proaches [1] to exactly solve the problem. Given the state of the field,

we focus on describing the best known heuristic and exact modulo

scheduling techniques in Sections 2.1 and 2.2.

2.1 SDC-based Formulation
In general, SDC-based scheduling [7] declares a variable ti to de-

note the clock cycle (time step) at which operation i in the CDFG is

scheduled. Timing constraints, such as dependence and cycle time

constraints, can then be represented exactly as the differences of

these variables. To handle data dependence for modulo scheduling in

particular, SDC creates the following difference constraint

ti − tj ≤ I I · Disti j − Li j (1)

where Li j is the minimum latency between operation i and j, and
Disti j is the distance of the dependence. To schedule the DFG in Fig-

ure 1(a), for example, we impose the constraint t0 − t4 ≤ 0 to honor

the intra-iteration dependence between v0 and v4. This ensures that
v4 is scheduled no earlier than v0. Note that an intra-iteration de-

pendence corresponds to a dependence distance Disti j = 0 in the

constraint in Eq. (1). Similar constraints are constructed for other

intra-iteration data dependence edges. For the inter-iteration depen-

dence in Figure 1(a), we impose the constraint t5−t0 ≤ I I−1, where I I
is the II currently being targeted. Intuitively, this constraint imposes

a deadline for the schedule time of v5 relative to the schedule time

of v0 beyond which v5 from the current iteration will not execute

in-time to produce results needed by v0 of the following iteration.
To honor the target clock period Tclk , SDC identifies the max-

imum critical combinational delay D(ccp(vi ,vj )) between pairs of

operations vi and vj and impose the difference constraint in Eq. (2)

to ensure pairs of operations whose critical delay exceeds the target

clock period are scheduled in different cycles.

ti − tj ≤ −1 ∀ (vi ,vj ) ϶ D(ccp(vi ,vj )) > Tclk (2)

For our example in Figure 1(a), we impose t2 − t5 ≤ −1 to separate

v2 and v5 into different cycles because the critical combinational

path from v2 to v5 exceeds the target clock period of 5ns. Similar

constraints are imposed between v0 and v5 as well as v1 and v5.
While timing constraints can be handled naturally in SDC, resource

constraints are difficult to represent even heuristically because the

non-linearity of the MRT requires that operations using the same

resource must not only be scheduled in different time steps but also in

different time slots. As a result, simple partial ordering constraints in

the form of ti − tj ≤ −1 used to produce resource-abiding schedules

in unpipelined SDC scheduling [7] fail to honor the complete set of

resource constraints in the case of modulo scheduling. To handle

resource constraints, SDC-based modulo scheduling [4, 15] rely on

stepwise legalization of the non-resource-constrained SDC schedule

against the MRT to heuristically derive a solution, resulting in no

guarantee on optimality.

2.2 ILP-based Formulation
In place of heuristics, integer linear programming (ILP) can be ap-

plied to exactly model the modulo scheduling problem. Eichenberger

and Davidson [9] leverages binary variable ai,r to indicate whether

operation i is scheduled in time slot r in order to encode the modulo

schedule. Timing and resource can then be constrained with this

variable. Oppermann et al. [11] improves upon the resource handling

capability of Eichenberger and Davidson by using binary variables to

represent resource and time slot overlap instead of the actual modulo

schedule. In particular, they propose to use binary overlap variable

ϵi j to denote whether operation i’s resource instance index is strictly
less than j’s index, and µi j to denote whether operation i is executed
in a time slot strictly earlier than the time slot of j . These binary vari-

ables are in turn constrained with resource index variable ri , which
denotes the index of resource instance used by operation i , and time

slot variable si , which denotes the modulo time slot of operation i , as
in Eichenberger and Davidson. Given these constraints on the consis-

tency of variables ϵi j , µi j , ri , and si , resource constraints are satisfied
by ensuring that every pair of operations (i, j) use difference resource
instances, or are scheduled at different time slots as followed:

ϵi j + ϵji + µi j + µ ji ≥ 1 (3)

Even though the ILP formulations handle all constraints exactly

and can return a schedule that satisfies a specific II given enough

time, ILP is in general NP-hard and difficult to scale. ILP also requires

significantly more variables than SDC for encoding the same problem

and is too general to exploit problem-specific properties.

3 JOINT SDC AND SAT FORMULATION
Given the tradeoff between scalability and quality in the comparison

between SDC and ILP in Section 2, we propose amodulo scheduling al-

gorithm that integrates SDC and SAT to exactly handle various types

of constraints and optimally solve the modulo scheduling problem.

Borrowing the idea of unpipelined scheduling with joint SDC and
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Figure 2: Overall structure of our modulo scheduler.

SAT [8], our proposed formulation leverages SDC to naturally handle

timing constraints and SAT to exactly encode resource constraints.

As shown in the high-level diagram in Figure 2, our modulo sched-

uler is composed of a conflict-based SAT solver coupled with a graph-

based SDC solver in a conflict-driven learning loop. On the left, we

have a SAT solver that takes advantage of conflict-based search (de-

tailed in Section 3.1) to propose, what we referred to as, modulo or-

derings that satisfy resource constraints imposed by the MRT. These

modulo orderings are converted into difference constraints in SDC

and inserted into the SDC problem. On the right, we have an SDC

solver that takes advantage of graph-based traversal (detailed in

Section 3.2) to check the feasibility of the modulo orderings. Any

infeasibility is encoded as a conflict clause in SAT and added to the

SAT problem. Given the practical scalability of SAT and the efficiency

of SDC, our solver iterates between SAT and SDC (described in Sec-

tion 3.3) until a feasible solution is found or proven to be non-existent.

3.1 Resource Constraints in SAT
To handle resource constraints, we declare binding variable Bik to

denote whether operation i is bound to resource instance k . Bik is

true if operation i is bound to resource instance k . By constraining the
binding variables with the SAT clause

∑
k Bik = 1 ∀i , we can ensure

that each resource-constrained operation is assigned to exactly one

resource instance and that no resource is oversubscribed. With the

binding variables, it follows that sharing variable Ri j can be derived

to denote whether operation i is sharing the same resource instance

with operation j as followed:

Ri j =
∨
k ∈Tp

(Bik ∧ Bjk ) (4)

where Tp denotes resource instances of type p. Ri j is true if both

operations i and j are bound to the same resource instance.

Pipeline scheduling prohibits two operations i and j that share the
same instance of resource from being scheduled in the same modulo

time slot. In other words, ti − tj , kII ∀ k ∈ Z, which translate

to a disjunctive set of constraints kII < ti − tj < (k + 1)I I and
kII < tj − ti < (k + 1)I I . Therefore, we introduce modulo ordering

variables Oi→j,k to represent these constraints as follows:

Oi→j,k = True 7→ (k − 1)I I < si − sj < kII ∀ k ∈ Z (5)

Oi→j,k = False 7→ ∅ (6)

As shown in Eq. (5), assigning Oi→j,k to true maps to the difference

constraint where operation i must be scheduled in an earlier cycle

than j. Furthermore, their distance must be greater than kII and less

than (k + 1)I I cycles, which means that they are separated apart by k
II-intervals. As shown in Eq. (6), assigningOi→j,k to false maps to an

empty set of constraints, indicating that it is not necessary to impose

any partial ordering between operations i and j because the particular
resource binding does not require any partial ordering. Note that k
can be bounded by the length of any non-modulo schedule or the
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Figure 3: SDC constraints and corresponding SDC constraint
graph — (a) Timing constraints in SDC. (b) SDC constraint graph.

lengths of recurrence cycles. Here we use T to denote the bounded

space of k . Ultimately, Oi→j is derived from modulo orderings as:

Oi→j =
∑
k ∈T

Oi→j,k ≤ 1 (7)

As shown in Eq. (7), Oi→j is true if operation i is scheduled before j,
and they are not in the same time slot.

Given the mapping between SAT and SDC, the following clauses

are included to connect the the sharing variables with the modulo

ordering variables:

Ri j → (Oi→j ∨O j→i ) (8)

¬(Oi→j ∧O j→i ) (9)

Eq. (8) indicates that if operations i and j share the same resource

instance, operation i must be scheduled either in an earlier cycle or in

a later cycle than operation j, but certainly not in the same time slot.

Eq. (9) ensures that operation i cannot be simultaneously scheduled

both in an earlier cycle and later cycle than j.

3.2 Timing Constraints in SDC
Timing constraints in SDC can be conveniently represented using

a constraint graph in which each variable maps to a node and each

constraint maps to an edge in the graph. Figure 3(a) shows the set

of intra-iteration dependence, inter-iteration dependence, and cycle

time constraints in SDC form for our example. These constraints

map to the nodes and edges in the constraint graph in Figure 3(b).

For each constraint in the integer difference form ti − tj ≤ Ci j , the
constraint graph includes an edge of weight Ci j from node j to i . For
clarity, note that we have omitted the weights for zero-weight edges.

With this graph-based representation, we can easily derive a feasi-

ble schedule, either as soon as possible (ASAP) or as late as possible

(ALAP) schedule, by solving a single source shortest path problem.

In addition, we can conveniently detect infeasibility of the difference

constraints by the presence of negative cycle in the graph. For exam-

ple, adding the SDC constraint t0−t2 ≤ −1 to the system in Figure 3(a)

induces the dashed edge from t2 to t0 in Figure 4, creating a negative

cycle (shown in bold) that indicates the system is infeasible.

3.3 Conflict-Driven Learning
As shown in Figure 2, SAT and SDC work closely in a loop to handle

both resource and timing constraints exactly and efficiently. For each

iteration, SAT makes a proposal of modulo orderings that satisfy

resource constraints in Eq. (4), (7), (8), and (9) by determining a sat-

isfiable assignment for the modulo ordering variables Oi→j,k . SDC
constraints used to enforce resource constraints are created based

on the mapping in Eq. (5) and appended to the SDC graph. SDC

checks the feasibility of the updated graph and returns any feasible

solution as the schedule if the graph is feasible. If the graph is in-

feasible, SDC instead returns the modulo ordering edges involved
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in the negative cycle that causes the infeasibility. The infeasibility

is encoded as conflict clause and appended to the SAT problem. In

future iterations, SAT will no longer propose any modulo ordering

that violates any previously added conflicts. The solver iterates until

a feasible solution is found or the SAT search space is exhausted.

While there may be multiple feasible solutions, our solver returns

the earliest encountered feasible schedule.

Figure 4 illustrates a single iteration of the conflict-driven learning

process with our target II=2. In this iteration, assume that SAT

proposes a modulo ordering that assigns variable O0→2,0 to true,

which enforces that operation 0 is scheduled before 2, and that the

two operations are less than one II apart. The two corresponding

SDC constraints are shown on the left. SDC then adds the edges (in

dash) corresponding to these constraints to the graph and detects a

negative cycle (in bold) that involves one of the two newly added

edges. The involvement of this edge in the negative cycle results in the

conflict clause on the left, which prevents any modulo ordering with

operation 0 scheduled before 2 and within one II apart. SAT will then

continue onto the next iteration with a different proposal that satisfies

resource constraints but does not involve this previously infeasible

edge. As you can see, SAT learns from previously infeasible edges in

each iteration to prune the search space. We leverage negative cycle

to keep the generated SAT conflict clauses as short as possible because

shorter conflicts are able to prune out more of the search space in SAT

and result in faster convergence of the solver. If the search space is

completely pruned out before finding a feasible solution, the problem

is infeasible for the particular II. Otherwise, the problem is feasible

where the shortest path solution serves as the feasible schedule.

3.4 Optimization
While we take advantage of conflict-driven learning to derive a mod-

ulo schedule that satisfies a particular II, we optimize for the best

II by starting with a lower bound value for the II and incrementing

it one at a time until the II is feasible or an upper bound value has

been reached. Because this is a conventional optimization technique

typically employed by HLS tools [3, 6], our conflict-driven learning

algorithm is generally applicable regardless of the approach used to

establish such upper and lower bounds on II.

4 GRAPH-BASED PROBLEM REDUCTION
In general, the graph to be modulo scheduled can be partitioned into

acyclic and cyclic subgraphs. The acyclic subgraphs contain only

forward edges, while the cyclic subgraphs contain backward edges

in addition forward edges. Because resource constraints essentially

delay the execution of resource-constrained operations, resource

constraints may cause violation with timing constraints imposed by

backward edges. Due to the interaction between backward edges

and resource constraints, exactly scheduling the cyclic subgraphs in

the presence of resource constraints constitutes the “hard” aspect

of the modulo scheduling problem. Subgraphs that are acyclic or

not constrained by resource can be scheduled efficiently and exactly

with heuristics. Based on this observation, we propose to further

ld1

ld2 +3

ld0

st5 +4

ld1

ld2 +3

ld0

st5 +4

ld

+ 

ld
ld

+

v1

v3

v4

v2

v0

stv5

[1]

ld1

ld2 +3

ld0

st5 +4

ld0

st5 +4

C
y
c
le

s

II=2

II=2

i=0

i=1

i=2

C

Relative Schedule 

for component C

t=0

t=1

t=0

t=1

t=2

t=3

(a) (b)

Figure 5: Illustration of graph-based problem reduction — (a)
C is a complex component that is scheduled first. (b) Final schedule.

accelerate the performance of exact modulo scheduler by reducing

the complexity of the exact modulo scheduling problem to that of

exactly scheduling the cyclic resource-constrained subgraphs.

To enable graph reduction, we rely on the strongly connected com-

ponent (SCC) algorithm [14] to partition the graph into cyclic and

acyclic components. This results in a directed acyclic graph (DAG)

of the SCCs of the input graph. Some SCCs form a trivial subgraph
consisting of only a single node, while others form a non-trivial sub-
graph consisting of multiple nodes. Those with multiple nodes must

be cyclic. We refer to cyclic SCCs with resource-constrained nodes

as complex subgraphs and cyclic SCCs with no resource-constrained

nodes as basic subgraphs. In Figure 5(a), component C is a complex

subgraph because it contains resource-constrained memory opera-

tion. Otherwise, it would have been categorized as a basic subgraph.

Because they are single nodes,v1,v2, andv3 each constitutes a trivial

subgraph regardless of whether they are resource-constrained.

We combine all basic subgraphs without connections between

them into a basic supergraph. This basic supergraph can be solved

exactly with SDC-based modulo scheduling because there is no re-

source constraint. The scheduling solution of this basic supergraph

will satisfy all timing constraints imposed by the edges within the

supergraph. Similarly, we combine all complex subgraphs without

connections in between into a complex supergraph. However, due to
the interaction between timing constraints (from backward edges)

and resource constraints, this complex supergraph must be solved

with an exact technique such as our proposed joint SDC and SAT

modulo scheduling algorithm detailed in Section 3. The solution of

the complex supergraph will satisfy all timing constraints imposed

by edges in the supergraph as well as the resource constraints of the

modulo scheduling problem. Regardless of basic or complex super-

graph, the schedule generated serves as a relative schedule that we can
use later to commit the final schedule. Operations satisfy the relative

schedule as long as the relative time positions at which operations

execute remain unchanged. For example, the relative schedule in

Figure 5(a) is satisfied as long as the store and addition operations

are executed one cycle after the load operation.

To motivate our subsequent procedure in Algorithm 1 for commit-

ting the final schedule based on the relative schedules of basic and

complex supergraphs, we identify several interesting properties of

the different types of subgraphs. Due to space limitation, we provide

an informal proof of each property to illustrate the main ideas. Here

tG (i) denotes the schedule time of operation i in the relative schedule,

and t(i) denotes the schedule time in the committed schedule.

Property 1. Given any time step T and a relative schedule
{tG (i),∀i} of a basic subgraph G, committing every operation i to
time step t(i) = T + tG (i) satisfies all timing constraints imposed by G .



The relative time positions between operations remain the same in

the committed schedule {t(i),∀i} as in the original relative schedule

{tG (i),∀i} for G. Because the original relative schedule satisfies all
timing constraints imposed by G, the committed schedule must also

satisfy all timing constraints imposed by G.

Property 2. Given any time step T and a relative schedule
{tG (i),∀i} of a complex subgraph G, there exists an integer constant
δ : 0 ≤ δ < I I such that committing every operation i to time step
t(i) = T + tG (i) + δ satisfies all timing constraints of the subgraph as
well as the time slot assignment imposed by the relative schedule.

Assume that the operations are first committed as in Property 1.

If the time slot assignments are satisfied, we have obtained a com-

mitted schedule that satisfies both timing constraints and time slot

assignments. If the time slot assignments are not satisfied, we can

repeatedly increase the time steps of all operations simultaneously

by one cycle until the time slot assignments are satisfied. Due to the

modulo nature of the schedule, we must be able to find a schedule that

satisfies the time slot assignments within II cycles. Any schedule we
commit also satisfies the timing constraints of the subgraph because

we increase the time steps of all operations by the same constant

number of cycles δ and maintain their relative positions in time.

For example, if we would like to commit the relative schedule in

Figure 5(a) for T = 1, the load for v0 will be committed to t(0) = 1 if

δ = 0. This commits v0 to time slot 1, violating v0’s being scheduled

in time slot 0 in the relative schedule. Therefore, the entire relative

schedule must be delayed by one cycle to accommodate the time slot

assignments. With δ = 1,v0,v5, andv4 will be committed to t(0) = 2,

t(5) = 3, and t(4) = 3, where both timing constraints between these

operations and their time slot assignments are satisfied.

Property 3. Given any time stepT and that the complex supergraph
of the problem has been scheduled and committed to the MRT, the single
operation i in each trivial subgraphG can always be committed at some
time step t(i) : T ≤ t(i) < T + I I without violating resource constraints.

A trivial subgraph contains a single operation. If the operation

is not constrained by resource, committing it at any time step will

not violate resource constraints. If the operation is constrained by

resource, there must be some slot with available resource in the MRT

for the operation to be scheduled because enough II slots should have

been pre-allocated to satisfy resource constraints. Because a single

resource-constrained operation can be scheduled in any time slot in

the MRT, committing it will not violate any resource constraints.

In Figure 5, assume v0, v5, and v4 have been committed to slots

0, 1, and 1, respectively, after relatively scheduling the complex sub-

graph C . Further assume that v1 is then schedule to t(1) = 0, which

corresponds to slot 0. With these operations committed, all read port

resources in slot 0 of the MRT are subscribed. Because of this,v2 must

be committed to t(2) = 1 and slot 1 because slot 0’s read ports have

been fully subscribed. However, there must be available resource

in slot 1 for v2 because the minimum resource-constrained II of 2

requires at least two modulo time slots in the MRT, each with two

read ports available.

Based on the above properties, any operation i in subgraphs (re-

gardless of type) can always be scheduled at some time step t(i) ≥ T ,
given a reference timeT , without violating timing constraints within

the subgraphs or resource constraints of the modulo scheduling prob-

lem. Therefore, we can traverse the subgraphs (SCCs) in a topological

order (because the graph of SCCs form a DAG) and commit the op-

erations in each SCC to the earliest possible time step (i.e., ASAP).

Dependence between subgraphs (manifested by forward edges) de-

termines the earliest time step for which operations in each subgraph

can be scheduled. If we consider this earliest time step as T in the

Algorithm 1 ExactModuloSchedulingWithGraphReduction(II)

1: Partition the graph into its SCCs

2: Compute relative schedule for basic supergraphs with SDC

3: Compute relative schedule for complex supergraphs with exact method

4: Update MRT for scheduled resource-constrained nodes

5: for each component in topologically sorted order of SCCs do
6: if component is a basic subgraph then
7: Schedule ASAP based on relative schedule

8: else if component is complex subgraph then
9: Schedule ASAP based on relative schedule while satisfying time slot assignment

10: else if component is single resource-constrained node then
11: Schedule ASAP at time slot with available resource

12: Update MRT for newly scheduled resource-constrained node

13: else
14: Schedule ASAP

15: end if
16: end for
17: if Any above step is infeasible then II is infeasible end if

previous properties, operations in the subgraph can be committed

based on those properties from this reference time step. Committing

subgraphs in topological order ensures that timing constraints be-

tween subgraphs, all of which must be forward edges, are also fully

satisfied. Our exact modulo scheduling algorithm with graph-based

problem reduction is listed in Algorithm 1.

In our algorithm, Line 7 commits operations in a basic subgraph to

the final schedule based on Property 1 to satisfy timing constraints,

while Line 9 commits operations in a complex subgraph to the final

schedule based on Property 2 to ensure that both timing and resource

constraints are honored. If the subgraph turns out to be a single

resource-constrained node, Line 11 commits the operation, based on

Property 3, to the earliest possible time step whose corresponding

time slot has available resource remaining in theMRT. If the subgraph

is a single node that is not constrained by resource, it can be scheduled

ASAP as shown in Line 14. Our algorithm is essentially an ASAP

scheduling scheme subject to resource availability and any prior

relative assignment of time steps (of basic and complex subgraphs)

and exact assignment of modulo time slots (of complex subgraphs).

Figure 5(b) shows the committed schedule for scheduling the graph in

Figure 5(a) with Algorithm 1. Note that our graph reduction technique

is generally applicable to any exact modulo scheduling techniques,

including ILP.

5 EXPERIMENTS
We implement our modulo scheduler in C++, interfaced with the

Lingeling SAT solver [2]. We execute our scheduler on an Intel Xeon

CPU running at 2.5GHz and evaluate it on a set of 350 benchmark

loops from popular HLS benchmark suites CHStone [10] and Mach-

Suite [13]. For experiment purpose, we further classify the bench-

marks into trivial, easy, and challenging benchmarks to better evaluate

the benefit of our proposed approach. In particular, trivial benchmarks

contain no complex component in the graph. Given our graph-based

problem reduction technique, these benchmarks do not require exact

modulo scheduling to be solved optimally. Therefore, they are not

included in our runtime evaluations to avoid skewing the results. For

the other benchmarks, we compare the runtimes of our joint SDC

and SAT scheduler, with and without graph reduction, against those

of state-of-the-art commercial ILP solver CPLEX running the best

known ILP-based modulo scheduling formulation [11] (described in

Section 2.2). For convenience, we use ILP and SDS+ to refer to the

two scheduling techniques, but qualify each technique with Default
or Reduced to indicate whether graph reduction has been applied.

Figure 6 summarizes the runtime speedup of SDS+ on easy bench-

marks, which contain complex subgraphs but can solved by Default

ILP in less than one second. Each bar represents the runtime speedup

against Default ILP for one benchmark. Benchmarks are ordered
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Figure 6: Runtime evaluation on easy loops — Default ILP’s run-

times are less than one second. Each color represents the additional

speedup achieved over the previous solver against Default ILP.

by increasing Default ILP runtime. Each color represents the addi-

tional speedup achieved over the previous solver configuration. For

example, black bar shows the runtime speedup of Reduced ILP over

Default ILP, while black and light gray together show the speedup of

Default SDS+ over Default ILP. Black, light gray, and gray together

indicate the speedup of Reduced SDS+ over Default ILP. Figure 6

shows that SDS+, with or without reduction, is consistently more

competitive than ILP, with or without reduction. While simply apply-

ing the graph-based reduction technique on ILP leads to some degree

of speedup, applying SDS+ achieves speedup that grows faster as the

difficulty of the problem increases. In addition, Reduced SDS+ can

achieve more than one order of magnitude speedup from Default ILP

for the most difficult cases in this plot.

In Table 1, we evaluate the runtimes of more challenging loops,

which contain complex subgraphs and require more than one second

of ILP time. The loops are sorted by the total number of operations

before reduction. However, the exact relationship between various

metrics and speedup depends on the graph topology and the interac-

tion between resource-constrained nodes and cyclic subgraphs. SDC

and SAT complexity is determined by the number of operations in

accordance to Section 3. Overall, while Reduced ILP provides mar-

ginal speedup from Default ILP, SDS+ (with and without reduction)

is able to significantly widen the speedup gap for almost all the loops.

With graph reduction, Reduced SDS+ is especially competitive on

the more difficult loops like JPEG19 and ADPCM2, achieving over two

orders of magnitude of speedup. For JPEG23, Reduced ILP’s speedup

is noticeable because graph reduction decreases the total number of

operations by around 86% and the number of resource-constrained

operations by 50%. As a result, SDS+ gives no further benefit on top

of Reduced ILP in this case. On the other hand, Reduced ILP reaps

negligible benefit for JPEG87 because the graph contains a long re-

currence cycle that encapsulates all resource-constrained operations.

SDS+’s performance in this case shows that SDS+ is able to handle

constraints more efficiently. Noticeably, Reduced SDS+ is able to solve

ADPCM1 and DFSIN1 for which both ILP and Reduced ILP time out.

While runtime is not strictly proportional to node count, the ILP-

based formulations become difficult to solve as the total number of op-

erations increases beyond 400 or the number of resource-constrained

nodes goes beyond 50. In these cases, SDS+ demonstrates improved

scalability by combining the efficiency of SDC and SAT. Although the

ILP formulation by Oppermann et al. [11] used in our experiments has

demonstrated improved resource handling capability than previous

formulations, it is still more susceptible to scalability issues because

both timing and resource constraints are encoded as ILP constraints,

which are NP-hard to solve. Instead, SDS+ handles the timing aspect

of the problem using polynomial-time SDC and leaves the resource

aspect to SAT. In addition, our reduction technique can help prune out

nodes to further alleviate scalability issues. For JPEG19 and ADPCM2,
graph reduction helps ILP become manageable.

Benchmark #Ops Reduced Default Reduced Default Reduced
#Ops ILP ILP SDS+ SDS+

FFT_STRIDED2 84 / 18 24 / 18 4.29 1.11 (3.86x) 0.804 (5.33x) 0.091 (47.1x)

JPEG23 135 / 26 18 / 13 2.30 0.190 (12.1x) 0.294 (7.82x) 0.029 (79.3x)

JPEG18 175 / 23 114 / 23 8.60 3.03 (2.84x) 0.512 (16.7x) 0.529 (16.2x)

MD_GRID7 300 / 50 298 / 50 7.14 3.06 (2.33x) 0.285 (25.1x) 0.257 (27.8x)

JPEG87 380 / 37 370 / 37 7.13 6.71 (1.06x) 0.642 (11.1x) 0.361 (19.7x)

JPEG19 476 / 65 465 / 65 TO 397 (>2.27x) 3.41 (>264x) 2.35 (>383x)

JPEG17 942 / 93 615 / 68 156 96.1 (1.62x) 7.29 (21.4x) 6.93 (22.5x)

ADPCM2 710 / 114 295 / 80 TO 562 (>1.60x) TO 2.01 (>448x)

ADPCM1 777 / 108 466 / 102 TO TO 31.1 (>28.9x) 11.9 (>75.6x)

DFSIN1 2651 / 74 115 / 74 TO TO TO 606 (>10.0x)

Table 1: Runtime evaluation for more challenging loops —
#Ops shows the total number of operations and number of resource-

constrained operations before graph reduction. Reduced #Ops shows
the same numbers after graph reduction. TO indicates timeout after

15 minutes or 10x SDS+ runtime, whichever is greater.

6 CONCLUSIONS
Current pipelining approach relies on fundamentally inexact heuris-

tics with ad hoc priority functions that provide no guarantee on

achieving the best throughput. To address this problem, we propose

a new modulo scheduling algorithm that combines the efficiency

of SDC and scalability to SAT to exactly handle various pipelining

constraints. In addition, we identify problem-specific opportunity

to further accelerate the performance of our modulo scheduler. Our

work aims to improve the scalability of exact modulo scheduling and

redefine the tradeoff between scalability and quality.
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