
Memory-Bound Proof-of-Work Acceleration for Blockchain
Applications

Kun Wu†‡§, Guohao Dai†‡, Xing Hu§, Shuangchen Li§, Xinfeng Xie§, Yu Wang†‡, Yuan Xie§

† Department of Electronic Engineering, Tsinghua University
‡ Beijing National Research Center for Information Science and Technology (BNRist)

§ Department of Electrical and Computer Engineering, University of California, Santa Barbara
yu-wang@tsinghua.edu.cn,yuanxie@ece.ucsb.edu

ABSTRACT
Blockchain applications have shown huge potential in various do-
mains. Proof of Work (PoW) is the key procedure in blockchain
applications, which exhibits the memory-bound characteristic and
hinders the performance improvement of blockchain accelerators.
In order to mitigate the “memory wall” and improve the perfor-
mance of memory-hard PoW accelerators, using Ethash as an exam-
ple, we optimize the memory architecture from two perspectives:
1) Hiding memory latency. We propose specialized context switch
design to overcome the uncertain cycles of repetitive memory re-
quests. 2) Increasing memory bandwidth utilization. We introduce
on-chip memory that stores a portion of the Ethash directed acyclic
graph (DAG) for larger effective memory bandwidth, and further
propose adopting embedded NOR flash to fulfill the role. Then, we
conduct extensive experiments to explore the design space of our
optimized memory architecture for Ethash, including number of
hash cores, on-chip/off-chip memory technologies and specifica-
tions. Based on the design space exploration, we finally provide the
guidance for designing the memory-bound PoW accelerator. The
experiment results show that our optimized designs achieve 8.7%
– 55% higher hash rate and 17% – 120% higher hash rate per Joule
compared with the baseline design in different configurations.

1 INTRODUCTION
Blockchain has drawn great attentions from both academic and in-
dustry, due to its unique features of decentralization and anonymity
and the potential of wide adoptions for various fields, such as finan-
cial services, voting, and Internet-of-Things (IoT) [25]. Walmart has
been working with IBM on applying blockchain technology to the
food supply chain, which can significantly reduce the time of track-
ing from several days to 2.2 seconds, compared with conventional
mixed digital and paper-based methods.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317862

Cryptocurrencies [10, 22] are one of the most widespread used
applications of the blockchain. Mainstream cryptocurrencies (e.g.,
Bitcoin, Ethereum, etc.) have shown the potential to become the fu-
ture currency due to their unique decentralized secure transaction
processings. The core component within cryptocurrencies is the
Proof of Work (PoW) mechanism. The PoW is the original consen-
sus algorithm in a Blockchain network, which is used to confirm
transactions and produce new blocks. Compared with traditional
consensus algorithms, the PoW is more robust against premedi-
tated attack. Conventional consensus algorithms, represented by
Paxos [14], can only tolerate at most 1/3 faulty nodes [5] in a multi-
node system, while the PoW tolerates at most 1/2 faulty nodes.
This endows the PoW a superior characteristic when designing dis-
tributed systems. Consequently, PoW accelerator (i.e., coin miner)
has emerged to speed up the coin founding or transaction with
lower cost (power) driven by significant financial rewards.

Ethereum is one of the most popular mainstream cryptocurren-
cies [10]. It is a more advanced design that offers fast transaction
and fixes many significant pitfalls of other cryptocurrencies like
Bitcoin. Ethash is the PoW mechanism used in Ethereum, which
is essentially a memory-hard hash function. The key idea of the
Ethereum is adopting a memory-hard PoW (compute-hard in Bit-
coin) to effectively deter the ASIC miners. In Bitcoin, compute-hard
PoW significantly benefits ASIC miners compared with general
purpose GPU [28], since compute resources are easy to scale up in
the ASIC design. However, the performance of the memory-hard
PoW depends on the off-chip DRAM bandwidth rather than com-
pute resources on the chip, which is then referred to as hitting the
“memory wall”. As a result, an ASIC chip cannot outperform GPU
when providing the same off-chip DRAM setup, making the ASIC
design less attractive.

Despite the “memory wall” challenge, there are still some ac-
celerators that have emerged in addition to the well-adopted GPU
approaches for the Ethash [9]. Taking Bitmain E3 as an example,
it leverages the 16-I/O DRAM component [7] and single rank per
channel for achieving high off-chip bandwidth with fewest possible
number of DRAM components (14.9GB/s × 8 Channels = 119.2GB/s
for 32 × 1Gb DRAM components [30]), and hence provides much
higher bandwidth (performance) per cost ratio. The success of this
miner design inspires this work. It shows the potential benefits
of the memory system optimization on such accelerators, while
leaving the on-chip memory and a large design space yet to explore.

https://doi.org/10.1145/3316781.3317862
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3316781.3317862&domain=pdf&date_stamp=2019-06-02

In this work, aiming to mitigate the “memory wall” challenge
for Ethash, we explore the optimizations and design space of both
the on-chip and off-chip memory architecture design. To this end,
we first present a performance analysis for the Ethash accelerator.
Based on the analysis, we then propose two techniques to improve
effective bandwidth and hide latency, specifically the on-chip mem-
ory and the context switch. We further investigate the benefits of
adopting the embedded NOR flash memory as on-chip memory. We
finally conduct a comprehensive design space exploration for the
various on-chip memory designs and off-chip DRAM choices. Our
specific contributions are listed as follows.
• We propose a hardware performance evaluation for the memory-

hard Ethash from measured throughput on available hardware
platforms, followed by insightful performance analysis.

• We introduce two architectural optimization techniques to miti-
gate the “memory wall” problem, i.e., context switch for hiding
memory latency and on-chip memory for additional bandwidth.
We further evaluate adopting NOR flash as on-chip memory.

• We extensively evaluate possible design options. We consider a
wide range of possible on-chip memory and off-chip protocol
options. In showcase configurations, our methodology offers
design that reaches 8.7% – 55% better hash rate and 17% – 120%
better hash rate per Joule compared with the baseline design.

2 BACKGROUND AND MOTIVATION
This section describes the background and characteristics of Ethash.

2.1 Ethash as a Memory Hard Proof of Work
The key characteristic of Ethereum is its adoption of memory-hard
Proof of Work. The procedure of Ethereum’s Proof of Work, named
as Ethash, adds random memory access requests to each primal
operation. The addresses of these memory requests are computed
depending on the immediate result just before the memory access
instruction. The randomness of addresses makes it hard to exploit
data parallelism during execution, which deteriorates the memory
wall issue and hinders the computation speed. Therefore, Ethereum
ASIC miners are effectively deterred. The data in memory is named
as DAG for its generation method.

Memory-hard PoW is indispensable to the PoW family. In ad-
dition to Ethash, memory-hard PoW also includes Cuckoo Cycle,
Itsuku, etc. [4, 29] Noteworthy, some cryptocurrencies descendant
to Bitcoin also adopt memory-hard PoW mechanism. For example.
Litecoin adopts Scrypt [24] as its PoW. But the basic idea of these
memory-hard PoWs is the same as Ethash. In summary, memory-
hard PoW is broadly used because of its characteristics of decentral-
ization. In this work, we use the Ethash as a case study to analyze
the micro-architecture characteristics and the potential acceleration
towards memory-hard PoW mechanisms.

2.2 Ethash Algorithm Description
The Ethash procedure is to find an acceptable nonce for block
creation. To this end, it concurrently runs many Ethash_search
threads, each trialing with a unique nonce . Once an acceptable
nonce is found, i.e. the corresponding Ethash_search yields a hash
value smaller than the threshold set forth in the network target,
Ethash stops.

SHA3_512 Mix Compress SHA3_256

compute
intensive
(in place)

data
 intensive

mem_i:=fetch(dsprsd_i)

data
dependencymix:=fnv(mix,mem_i)

Repeat 64 times

i
th

 iteration

Step 1 Mem. Request

Step 2 Apply Data

... ...
...

...

Main Memory

ith

Processor
Memory

Figure 1: Ethash_search Algorithm Flow.

Each Ethash_search is made up of four stages: SHA3, Mix, Compress,
and SHA3 again. (Figure 1) Because of dependencies, parallelism
can rarely be exploited among the stages and within each stage in
a single Ethash_search.

1). SHA3 as the first and last stage uses the standard Secure Hash
Algorithm. They perform a series of dependent integer operations
that cannot be parallelized.

2).Mix repeats 64 times non-sequential and wide-spread mem-
ory addressing, fetching 128 bytes in each iteration. The memory
addresses are calculated by fnv (Fowler-Noll-Vo hash function, a
bitwise primitive). Because of its dispersion properties, fnv pro-
duces pseudo-randomized and non-predictable addresses, ruling
out caching and prefetching for Mix. Ethash_search is highlighted
by the intensive random memory access during Mix. The large
amount of memory accesses in Mix constitute the memory working
volume of Ethash. In addition, the loop-carried dependency in Mix
precludes loop-level parallelism. Therefore, the Mix stage takes up
the most of the execution time.

3). Compress contracts the 1024-bit input into 256 bits through
three iterations of fnv bitwise primitives. Bit parallelism can be
exploited in this stage.

3 PERFORMANCE ANALYSIS OF ETHASH
This section conducts performance analysis of Ethash by applying
the roofline model and the analytical model.

Throughput is the most important performance metric in Ethash,
similar to the hash-rate in Bitcoin. Therefore we use it as our eval-
uation metric of performance and it is measured as the number of
Ethash_search threads completed in an unit time.
Roofline Model. First, we evaluate the Ethash performance based
on the roofline model. Roofline model provides the upper bound to
the performance of the application. It is made up by a horizontal
and a diagonal roof, meaning the application is compute bound and
memory bandwidth bound, respectively. At the ridge point, i.e., the
point where horizontal and diagonal roof meet, the system exactly
saturates both its compute units and memory bandwidth, so that
the compuation and memory demands are balanced.

Figure 2 shows the Ethash roofline model on several general pur-
pose platforms. The original operational points on each platform
are marked with ▲. Reducing off-chip memory accesses increases
the Ethash throughput: It increases along the slope on the roofline.
At the ridge point, off-chip memory access is reduced to zero. This
indicates that the Ethash throughput is bottlenecked by the mem-
ory access, consolidating the memory bandwidth as the severe
bottleneck to Ethash on general purpose platforms.

Therefore, the acceleration by utilizing memory architecture
design would be beneficial. To propose the architecture techniques
for accelerator design, we quantitatively analyze the performance
in the further step.

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1 1

M
il

li
o

n
H

a
sh

/S
ec

o
n

d

Hash/Byte

E5-2698 v4 264GB i5 6600 8GB

1050 Ti Titan XP

Figure 2: Ethash Roofline. Samples are marked on roofline.

Performance Analysis. We analyze the impact of each design
factors on the Ethash performance in this section.

Since the hash core is an in-order core, the average execution
time of single Ethash_search thread can be described as,

T = Time(Com) +Time(Mem) (1)

whereTime(Com) is the execution time of computation andTime(Mem)

is the memory access time.
For the computation time, we have:

Time(Com) = O
(
NOP,hash/NPE

)
(2)

where the NOP,hash is the total number of operations involved
in performing a single Ethash_search execution and NPE is the
number of the Processing Element.

For the memory access time, we have:

Time(Mem) ∈

[
NOP,mem

BW
,NOP,mem · Latmem

]
(3)

where the NOP,mem is the total number of memory operation vol-
ume for one hash operation. The Latmem is the latency for one
memory access. When the architecture design perfectly hides the
memory latency, memory access is bottlenecked by bandwidth.
When the architecture poorly exploits the memory level paral-
lelism, thememory access is bottlenecked bymemory access latency.
Therefore, to reduce the memory access overhead, we should 1) de-
sign an architecture for larger memory level parallelism to
hide the long memory access latency; and 2) provide a larger
effective memory bandwidth.

The Ethash throughput can be described as follows:

Ethashthrouдhput =
NPE · Nthread

T
(4)

where Nthread is the number of hardware threads for supporting
context switch. As noted in Section 2.2, it is hard to exploit par-
allelism inside the Ethash_search thread. But it is feasible to en-
able concurrency among the Ethash_search threads. Increasing
hardware parallelism formore threads improves the Ethash
throughput.

In summary, we observe that several architecture optimizations
can be made to increase the Ethash throughput during performance
analysis: 1) hiding the latency with more parallelism; and 2) in-
creasing the memory bandwidth. Therefore, we make architecture
optimization as described in the following section.

4 ARCHITECTURE OPTIMIZATION
4.1 Hiding Latency with Context Switch
As analyzed in Section 3, the ideal throughput of the Ethash accel-
erator is bottlenecked by its memory bandwidth. However, when
parallelism is insufficiently exploited, the throughput is further
bottlenecked by the latency.

Context switch is one of the most important techniques to exploit
the inter-thread parallelism. It suspends the active thread when the
latter is awaiting the fulfillment of memory request so that some
stand-by thread whose data are ready can proceed.

In our design, context switch is enabled to hide the severe mem-
ory latency in the Mixmodule. As shown in Figure 1, each iteration
in the Mix requests memory for once and computes, depending
upon the requested data, the new in-place data and the address to
request in the next iteration. The data and address calculation can
be performed within one cycle, while waiting for memory takes for
way longer time, severely slowing down the hash core. Therefore,
we introduce context switch for Mix. Other stage modules process
one thread until finish before processing other threads, if any.

The Mix module has the capability to hold two standing-by
threads. For each standing-by thread, it uses 1) a 128-byte SRAM to
store its in-place data, 2) a 128-byte SRAM to store the incoming
memory data, 3) a 32-bit register to store the memory address of
which it has issued a memory request, or is going to. To fully ex-
ploit the inter-thread parallelism, the Mix module will signal the
first SHA3 stage to initiate a new thread if the number of stand-by
threads Mix holds are lower than its capability. In the in-order hash
core, the three stages other than Mix have exact cycles because
they do not involve memory operations. Therefore it is predictable
whether initiating a new thread will cause hazard. As a result, the
Mix, equipped with some control logic, is able to signal thread ini-
tialization at the correct cycle. Threads are created and proceeded
if the corresponding stage module is idle and if overall storage will
not at any time exceed the capacity of the hash core.

4.2 Larger Bandwidth with On-Chip Memory
As analyzed in Section 3, the effective memory bandwidth is im-
portant to the Ethash throughput. Therefore, we adopt on-chip
memory for larger effective memory bandwidth. Modern chips nor-
mally involve on-chip memory to boost performance. For example.
Embedded DRAM (eDRAM) has been adopted in IBM Power8, Intel
Xeon Phi and Intel Graphic Cards. The on-chip memory capacity
can be as large as 64 – 256 MB [3, 11, 17].

Note that the overall effective bandwidth consists both the off-
chip effective bandwidth and on-chip counterpart,
BWEf f ,Overall = UTILOf f × BWOf f +UTILOn × BWOn (5)

where the utilization UTIL is the ratio of cycles when memory
units are servicing memory requests. Under-utilization of mem-
ory bandwidth, indicated by the low UTIL, ultimately hinders the
Ethash throughput (Equation 3).

On Chip

Hash

Core

Mem

Unit

Mem

Unit

Hash

Core

Hash

Core

...

...
Mem

Ctrl N

...
...

External

Memory N

Mem

Ctrl 1

External

Memory 1

Figure 3: General Design Abstraction in our Work.

In summary, we introduce our architecture as shown in Figure 3.
The overall effective bandwidth is contributed by on-chip memory
(Mem Unit) and external one. The external memory is accessed via
corresponding Memory Controllers. For on-chip memory, SRAM,
eDRAM and NOR flash (discussed in Section 4.3) are considered.
For external memory, DDR4, GDDR5, HBM2 are considered.

4.3 Introducing the Embedded NOR Flash
Embedded NOR flash is a mature memory technology that is byte-
addressable and very dense (8F 2 [23] vs. 140 F 2 of SRAM [8]). The
downside of NOR flash is that (1) it is difficult to integrate with
CMOS beyond 45nm; (2) the write operation takes significant long
latency and energy; (3) the write endurance is as low as 105 [19].
Due to these drawbacks, embedded NOR flash is typically used as
Read Only Memory (ROM), but rarely as data buffer.

However,wefind that the embeddedNORflash technology
would be a perfect match for the Ethash accelerator. First, the
fast byte-addressable access and high density meet Ethash accelera-
tor’s requirement for the on-chip memory (see Section 4.2). Second,
previous research [12] has shown that using old technology like
65nm provides higher cost efficiency and lower Total Cost of Own-
ership (TCO) in the data center. With the old technology node being
used, integrating NOR flash is not a problem anymore. Third, the
high cost of NOR flash’s write operation does not bother the Ethash
application. The on-chip memory only stores the DAG data, which
is refreshed about every 121 hours [9]. Fourth, NOR flash’s write
endurance is not a problem due to the extremely slow DAG data
refreshing rate. Given 105 endurance [19], the Ethash accelerator
with such NOR flash can continuously work for 138 years.

Though other emerging memory technologies, such as embed-
dedMRAM and ReRAM, can potentially provide better performance
than NOR flash, they are not widely available for either large ca-
pacity or low cost. Therefore, they are not considered in this paper.

5 DESIGN SPACE EXPLORATION
In this section, we conduct experiments and design space explo-
rations (DSE) for our memory optimization. We break down the
problem of finding the optimal design into four questions. We
present design guidelines for these questions, followed by full DSE
results.

5.1 Experiment Setup
Table 1 summarizes the design knobs considered in our DSE. To
evaluate the circuit parameters (including delay, area, and energy),

Table 1: Design knob summary and their setups

Knobs Options Delay/Area/Power setup
Hash core counts synthesis [27] and McPat [15]

On-chip memory capacity, width NVSim [6] and CACTI [21]
Mem. technology SRAM, eDRAM, NOR with device configs. [18]
Technology node 14nm, 45nm FreePDK [16, 26]
Off-Chip DRAM DDR4, GDDR5, HBM2 Spec. [1, 2, 20], close page

for the hash core part, we use frond-end synthesis of the Ver-
ilog based on an open-source SHA3 implementation [13] with
FreePDK [16, 26] and 740MHz; for the memory controller IP core,
we use McPAT [15]; for the on-chip memory part, we use NVSim [6]
and CACTI [21] ; for the DRAM part, we use standard parameters.
To evaluate the Ethash runtime performance, we developed an
event-driven performance simulator, which is validated by the pro-
filing results on GPU (shown in Figure 2).

5.2 Necessity of the Context Switch
Figure 4 shows the proposed context switch technique significantly
improves the performance. The figure shows the performance re-
sults with various number of hash core setting. First, it shows that
more hash cores does not always bring higher performance, due to
the memory-bound nature mentioned in Section 3. Second, without
context switch (the blue roof), 31 more hash cores are needed to
achieve the peak performance, since it is bound by memory latency
even before it is bound by memory bandwidth. On the contrary,
context switch (the orange roof) achieves the peak performance
with the minimal possible number of hash cores.

0
2
4
6
8

10
12
14
16
18

0 20 40 60 80 100

M
ill

io
n

H
as

h/
se

co
nd

#Hash Cores

without context switch
with context switch

comp-bound bandwidth-bound

bandwidth-boundlatency-boundcomp-bound

latency hidden by
context switch

Figure 4: The impact of context switch and hash core num-
ber on Ethash performance (GDDR5, w/o on-chip memory).

The hardware overhead of the context switch includes an extra
SHA3 (keccak) module, SRAM buffers, and controllers. The area
and power overhead of context switch for a single hash core are
listed in Table 2. Though the overhead is noticeable for a single
core, we show 57.4% and 61.7% saving for chip-level area and power,
respectively. This is because with context switch less hash cores
are required to reach the peak performance.
5.3 Overall Impact of the On-Chip Memory
Figure 5 shows how the on-chip memory improves the performance
and energy efficiency of the Ethash accelerator. The line with the
right y-axis shows the hash rate without the on-chip memory for
various off-chip DRAM setting. The bars then show that the on-
chip memory (with the optimal setting) can offer up to 8.7% – 55%

Table 2: Context switch (CS) overhead for single core and
total savings for a chip.

Core Area Power

Single Core
w/o. CS

1
.172mm2

36.5%
160mW

51.6%
w/ CS .261mm2 220mW

Whole Chip w/o. CS 57 9.81mm2
-57.4%

9.16W
-61.7%

w/ peak perf. w/ CS 16 4.17mm2 3.51W

higher performance and 17% – 120% improvement for energy effi-
ciency, respectively. In addition, we further conclude two design
insights: (1) On-chip memory is more effective for accelerators with
small DRAM bandwidth; (2) On-chip memory is more attractive for
improving energy efficiency than for improving performance.

0E+0
2E+7
4E+7
6E+7
8E+7
1E+8
1E+8

1.0

1.5

2.0

2.5

H
as

h
Ra

te

no
rm

 to
 w

/ o
n-

ch
ip

Hash Rate Hash Rate/J
Hash Rate

Figure 5: On-chip memory’s impact on performance and
energy efficiency varies with different DRAM choices. (w/
256MB on-chip memory .

5.4 Impact of the On-Chip Memory Capacity
We take a closer look at the impact of the on-chip memory from the
point of view of the capacity. Figure 6(a) shows the performance (y-
axis) and total area (x-axis, including DRAM) with various on-chip
memory capacity settings. The two orange dots show the results
without any on-chip memory, with one of them as a single node and
the other as a dual-node. This represents the scale-out solution. All
the other data points show the results of increasing on-chipmemory
to the single node, representing the scale-up solution. First, we can
conclude that larger on-chip memory provides better performance for
the scale-up solution. Second, the scale-up on-chip memory solution
fails to provide better area efficiency (perf/mm2), compared with the
scale-out solution. The larger the on-chip memory is, the worse the
area efficiency becomes. However, it provides extra design points
for fine-tuning in addition to the coarse-grained scale-up solution.

Moreover, Figure 6(b) shows the impact of the on-chip memory
capacity on energy, with the same settings as Figure 6(a). We con-
clude that scaling up with on-chip memory can significantly save
energy and hence improve energy efficiency, compared with that
of the multi-node scale-out solution. Furthermore, larger on-chip
memory offers better energy efficiency.

5.5 Impact of the On-Chip Memory Width
Figure 7 further answers how wide the on-chip memory’s read
port should be. In general, a wider on-chip memory provides larger
bandwidth while consuming more area and energy. From the per-
formance and energy efficiency result for various memory width
setting, we conclude that larger width on-chip memory is not neces-
sarily better, and there is a sweet spot to find (64 Byte in the case of
Figure 7). It again motivates our optimization for the DSE.

gddr5
hash core 36

media capacity (MB)single capacity (MB) filename num_finished_hash avg_hash_time hash_rate hash_per_mm2
eDRAM 192 96 C100663296.B128.P0.032.edram.log14640 5606.991 17834878.63 1328311
eDRAM 384 96 C100663296.B128.P0.032.edram.log14649 5233.188 19108812.42 810060.1
eDRAM 768 96 C100663296.B128.P0.032.edram.log14644 4482.979 22306595.5 507953.4
eDRAM 512 128 C134217728.B128.P0.032.edram.log14652 4979.567 20082067.56 713733.5
eDRAM 1024 128 C134217728.B128.P0.032.edram.log14642 3979.494 25128821.25 474046.5
eDRAM 256 64 C67108864.B128.P0.032.edram.log14642 5477.338 18257044.52 1132665
eDRAM 512 64 C67108864.B128.P0.032.edram.log14650 4977.197 20091631.55 693454.9
NOR flash 256 32 C32768.W512.sample_NORFLASH.log14652 5477.193 18257527.59 264621
NOR flash 128 64 C65536.W512.sample_NORFLASH.log14646 5727.905 17458391.49 417714.7
NOR flash 512 64 C65536.W512.sample_NORFLASH.log14648 5034.298 19863741.89 188641.3
SRAM 256 32 256MB SRAM on-chipC32768.W256.SRAM.log14642 5479.846 18248689.18 107330
SRAM 128 64 128MB SRAM on-chipC65536.W128.SRAM.log14646 5727.84 17458588.15 277481.2
SRAM 512 64 512MB SRAM on-chipC65536.W128.SRAM.log14650 4982.458 20070413.59 82976.7

BENCHMARK 14472 w/o on-chip 14472 5953.909 16795689.52 5145581
BENCHMARK 14472 14472 5953.909 33591379.05 5145581

5 10 15 20
(b) Energy (J)

256MB SRAM on-chip
128MB SRAM on-chip
512MB SRAM on-chip
w/o on-chip

scale-out

scale-up

1.5E+7
1.7E+7
1.9E+7
2.1E+7
2.3E+7
2.5E+7
2.7E+7
2.9E+7
3.1E+7
3.3E+7
3.5E+7

450 650 850 1050

H
as

h
Ra

te

(a) Area (mm2)

scale-out

scale-up

w/ multi-nodes

Figure 6: The impact of on-chip memory capacity (w/
GDDR5 and 36 hash cores).

0.0E+0

5.0E+4

1.0E+5

1.5E+5

2.0E+5

1.00

1.05

1.10

1.15

32 Bytes 64 Bytes 128 Bytes 256 Bytes

H
as

h
R

at
e

H
as

h
R

at
e/

J n
or

m
. t

o
w

/o
. o

n-
ch

ip
 m

em

perf./J perf.

Figure 7: The impact of on-chip memory width (w/ 256MB
on-chip memory, GDDR5, and 36 hash cores).

5.6 Impact of the On-Chip Memory Technology
Figure 8 answers the question of what on-chip memory technology
is preferred. In this figure, we compare the usage of SRAM and
eDRAMwith different off-chip DRAM settings regarding the energy
efficiency (normalized to the no on-chip memory baseline). Note
that each of them has the same number of hash cores, memory
capacity and width. We get non-trivial results, i.e., there is not an
overall winner. The choice between SRAM and eDRAM depends on
the off-chip DRAM choice. For example, when using one GDDR5,
eDRAM is 16.1% better than SRAM,whereas when usingHBM2 they
are almost the same. In addition, Figure 9 brings the embedded NOR

0.8

1.3

1.8

2.3

2.8

SRAM eDRAM

H
as

h
Ra

te
/J

no
rm

. t
o

w
/o

. o
n-

ch
ip

 m
em

Figure 8: SRAM vs. eDRAM on different DRAM settings (w/
256MB on-chip memory and 36 hash cores).
flash into the picture when using older technology node (45nm) for
cost-efficient accelerator design [12]. We show a case study under
the 2x GDDR5 setup, compared the area efficiency and energy
efficiency among SRAM, eDRAM, and NOR flash. We conclude that
NOR flash, usually overlooked, turns out to be the best on-chip mem-
ory choice under some DRAM setting, when using older technology
node for cost-efficient Ethash accelerator design.
5.7 Putting Them Together: An Extensive DSE
Putting all the design knobs together (on-chip memory capacity,
width, technology, off-chip DRAM choice, number of hash cores),

0.1748
0.1750
0.1752
0.1754
0.1756
0.1758
0.1760

1.00

1.02

1.04

1.06

1.08

1.10

SRAM eDRAM NOR flash

H
as

h
Ra

te
/m

m
2 n

or
m

to

 w
/o

 o
n-

ch
ip

 m
em

H
as

h
Ra

te
/J

no
rm

 to

w
/o

 o
n-

ch
ip

 m
em

perf./J perf./mm2

Figure 9: SRAM vs. eDRAM vs. NOR Flash at 45 nm (w/
256MB on-chip memory, HBM2, and 250 hash cores).

we show the large design space in Figure 10, which is not only large
but also widely distributed. This demonstrates the importance of
finding an optimal result. Our DSE framework not only captures
the difference of various design knob, but also provides a heuristic
method that searches the optimal results in a lexicographic order.
Given a DRAM setting, our DSE finds optimal results with 8.7% –
55% higher performance and 17% – 120% higher energy efficiency
(optimal results also shown in Figure 5).

0

1E+10

2E+10

3E+10

4E+10

5E+10

0.0E+00 2.0E+06 6.0E+06 8.0E+06

H
as

h
Ra

te
/J

4.0E+06
Hash Rate/mm2

design options
unoptimized baseline (DDR4 w/o on-chip)

Figure 10: Finding an optimal result in the huge design
space.

In addition, we point out that our DSE framework can be adopted
for further cost analysis given vendor-specific cost information. The
total cost of running Ethash contains (1) the accelerator chip, related
to the area information provided by DSE; (2) the DRAM, related to
the design choice in DSE; (3) the on-chip memory IP (eDRAM/NOR),
related to another design choice in DSE; (4) the electricity, related to
the energy consumption provide by DSE. Putting them all together,
users can optimize their design for best performance per dollar.

6 CONCLUSION
In this work, we explore the design space of Ethash accelerators.
We first conduct the performance analysis of Ethash accelerator
and introduce three memory architecture optimization techniques,
i.e. context switch, introduction of on-chip memory and embedded
NOR flash. Then we effectively explore the huge design space by
breaking it down into several questions. We find designs delivering
8.7% – 55% higher hash rate and 17% – 120% higher hash rate per
energy compared with the baseline design in different configura-
tions. Our optimization and design space exploration techniques
can be adopted for other memory-hard Proof of Work mechanism.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their helpful comments.

This work was supported by National Key Research and Devel-
opment Program of China (No. 2017YFA0207600), National Natural
Science Foundation of China (No. 61832007, 61622403, 61621091),
Beijing National Research Center for Information Science and Tech-
nology. This workwas supported in part by CRISP, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA, and NSF 1816833, 1500848, 1719160, and
1730309.

REFERENCES
[1] AMD 2015. High-Bandwidth Memory (HBM) reinventing memory technology.

(2015). Retrieved November 20, 2018 from www.amd.com
[2] Anton Shilov. 2016. GDDR5X Standard Finalized by JEDEC : New Graphics Mem-

ory up to 14 Gbps. (2016). RetrievedNovember 20, 2018 fromwww.anandtech.com
[3] John Cazes et al. 2016. Intel Knights Landing Hardware. (2016). Retrieved

November 20, 2018 from portal.xsede.org
[4] Fabien Coelho et al. 2017. Itsuku: a Memory-Hardened Proof-of-Work Scheme.

Technical Report.
[5] Danny Dolev et al. 1986. Reaching approximate agreement in the presence of

faults. J. ACM 33, 3 (1986), 499–516.
[6] Xiangyu Dong et al. 2014. NVSim: A circuit-level performance, energy, and

area model for emerging non-volatile memory. Emerging Memory Technologies:
Design, Architecture, and Applications 9781441995, 7 (2014), 15–50.

[7] Elite Semiconductor Memory Technology 2017. M15T1G1664A Datasheet. (2017).
Retrieved November 20, 2018 from www.datasheetspdf.com

[8] Siddharth Gaba et al. 2014. Memristive devices for stochastic computing. ISCAS
8, 1 (2014), 2592–2595.

[9] Github 2017. Mining·ethereum/go-ethereum Wiki. (2017). Retrieved November
20, 2018 from www.github.com

[10] Github 2018. Ethereum: a Secure Decentralised Generalised Transaction Ledger.
(2018). Retrieved November 20, 2018 from ethereum.github.io

[11] Intel 2017. Intel HD Graphics P530 & Intel Iris Pro Graphics P580 Performance
Guide. (2017). Retrieved November 20, 2018 from www.intel.com

[12] Moein Khazraee et al. 2017. Moonwalk: NRE Optimization in ASIC Clouds or,
accelerators will use old silicon. ASPLOS (2017), 511–526.

[13] Kazuyuki Kobayashi et al. 2010. Evaluation of Hardware Performance for the
SHA-3 Candidates Using SASEBO-GII. Technical Report.

[14] Leslie Lamport. 1998. The Part-Time Parliament. TOCS 2, August (1998).
[15] Sheng Li et al. 2013. The McPAT Framework for Multicore and Manycore Archi-

tectures. ACM Transactions on Architecture and Code Optimization 10, 1 (2013).
[16] Mayler Martins et al. 2015. Open Cell Library in 15nm FreePDK Technology.

ISPD (2015), 171–178.
[17] Alex Mericas. 2014. Performance Characteristics of the POWER8 Processor.

(2014). Retrieved November 20, 2018 from www.hotchips.org
[18] Farnood Merrikh-Bayat et al. 2017. High-Performance Mixed-Signal Neurocom-

puting With Nanoscale Floating-Gate Memory Cell Arrays. IEEE Transactions on
Neural Networks and Learning Systems (2017).

[19] Micron 2004. NOR Flash Cycling Endurance andData Retention. (2004). Retrieved
November 20, 2018 from www.micron.com

[20] Micron 2017. Calculating Memory Power for DDR4 SDRAM. (2017). Retrieved
November 20, 2018 from www.micron.com

[21] Naveen Muralimanohar et al. 2009. CACTI 6.0: A Tool to Model Large Caches.
Technical Report.

[22] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).
Retrieved November 20, 2018 from www.bitcoin.org

[23] Taku Ogura et al. 2011. A fast rewritable 90nm 512Mb NOR "B4-Flash" memory
with 8F2 cell size. Symposium on VLSI Circuits - Digest of Technical Papers (2011).

[24] Colin Percival. 2009. Stronger key derivation via sequential memory-hard func-
tions. (2009). Retrieved November 20, 2018 from www.tarsnap.com

[25] Marc Pilkington. 2016. Blockchain Technology: Principles and Applications.
Research handbook on digital transformations (2016), 225.

[26] James E. Stine et al. 2007. FreePDK: An open-source variation-aware design kit.
IEEE International Conference on Microelectronic Systems Education (2007).

[27] Synopsis. 2005. Design Compiler User Guide. (2005). Retrieved November 20,
2018 from beethoven.ee.ncku.edu.tw/testlab/course/VLSIdesign_course

[28] Michael B. Taylor. 2013. Bitcoin and the age of bespoke silicon. CASES (2013).
[29] John Tromp. 2015. Cuckoo cycle: A memory bound graph-theoretic proof-of-

work. Lecture Notes in Computer Science 8976 (2015), 49–62.
[30] Youtube 2018. Bitmain Antminer E3 - Ethereum ASIC - Fist look and Tear down.

(2018). Retrieved November 20, 2018 from www.youtube.com

www.amd.com
www.anandtech.com
portal.xsede.org
www.datasheetspdf.com
www.github.com
ethereum.github.io
www.intel.com
www.hotchips.org
www.micron.com
www.micron.com
www.bitcoin.org
www.tarsnap.com
beethoven.ee.ncku.edu.tw/testlab/course/VLSIdesign_course
www.youtube.com

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

