
ar
X

iv
:1

90
5.

04
37

6v
1 

 [
cs

.D
C

] 
 2

 M
ay

 2
01

9

Enabling Practical Processing in and near Memory
for Data-Intensive Computing

Onur Mutlua ,b Saugata Ghoseb Juan Gómez-Lunaa Rachata Ausavarungnirunb

aETH Zürich bCarnegie Mellon University

ABSTRACT

Modern computing systems suffer from the dichotomy between

computation on one side, which is performed only in the proces-

sor (and accelerators), and data storage/movement on the other,

which all other parts of the system are dedicated to. Due to this

dichotomy, data moves a lot in order for the system to perform

computation on it. Unfortunately, data movement is extremely ex-

pensive in terms of energy and latency, much more so than com-

putation. As a result, a large fraction of system energy is spent and

performance is lost solely on moving data in a modern computing

system.

In this work, we re-examine the idea of reducing data move-

ment by performing Processing in Memory (PIM). PIM places com-

putation mechanisms in or near where the data is stored (i.e., in-

side the memory chips, in the logic layer of 3D-stacked logic and

DRAM, or in the memory controllers), so that data movement be-

tween the computation units andmemory is reduced or eliminated.

While the idea of PIM is not new, we examine two new approaches

to enabling PIM: 1) exploiting analog properties of DRAM to per-

form massively-parallel operations in memory, and 2) exploiting

3D-stacked memory technology design to provide high bandwidth

to in-memory logic. We conclude by discussing work on solving

key challenges to the practical adoption of PIM.

1 INTRODUCTION

Main memory, built using Dynamic Random Access Memory

(DRAM), is a major component in nearly all computing systems,

including servers, cloud platforms, mobile/embedded devices, and

sensors. Across these systems, the data working set sizes of appli-

cations are rapidly growing, while the need for fast analysis of such

data is increasing. Thus,mainmemory is becoming an increasingly

significant bottleneck across a wide variety of computing systems

and applications [9, 38, 71, 75]. The bottleneck has worsened in re-

cent years, as it has become increasingly difficult to efficiently scale

memory capacity, energy, cost, and performance across technology

generations [41, 48, 49, 63, 64, 68, 69, 71, 72, 75], as evidenced by

the RowHammer problem [48, 72, 74] in recent DRAM chips.

A major reason for the main memory bottleneck is the high en-

ergy and latency associated with data movement. In today’s com-

puters, to perform any operation on data, the processor must re-

trieve the data from main memory. This requires the memory con-

troller to issue commands to a DRAM module across a relatively

slow and power-hungry off-chip bus (known as the memory chan-

nel). The DRAM module sends the requested data across the mem-

ory channel, after which the data is placed in the caches and regis-

ters. The CPU can perform computation on the data once the data

is in its registers. Data movement from the DRAM to the CPU in-

curs long latency and consumes significant energy [3, 4, 9, 29, 30].

These costs are often exacerbated by the fact that much of the data

brought into the caches is not reused by the CPU [82, 84], providing

little benefit in return for the high latency and energy cost.

The cost of data movement is a fundamental issue with the

processor-centric nature of contemporary computer systems. The

CPU is considered the master in the system, and computation is

performed only in the processor (and accelerators). In contrast,

data storage and communication units, including the main mem-

ory, are treated as unintelligent workers that are incapable of com-

putation. As a result of this processor-centric design paradigm,

data moves a lot in the system between the computation units

and communication/storage units so that computation can be done

on it. With the increasingly data-centric nature of contemporary

and emerging applications, the processor-centric design paradigm

leads to great inefficiency in performance, energy and cost: for ex-

ample, most of the real estate within a single compute node is

already dedicated to handling data movement and storage (e.g.,

large caches, memory controllers, interconnects, and main mem-

ory), and our recent work shows that 62% of the entire system en-

ergy of a mobile device is spent on data movement between the

processor and thememory hierarchy for widely-used mobile work-

loads [9].

The huge overhead of data movement in modern systems along

with technology advances that enable better integration of mem-

ory and logic have recently prompted the re-examination of an old

idea that we will generally call Processing in Memory (PIM). The

key idea is to place computation mechanisms in or near where the

data is stored (i.e., inside thememory chips, in the logic layer of 3D-

stacked DRAM, in the memory controllers, or inside large caches),

so that data movement between where the computation is done

and where the data is stored is reduced or eliminated, compared to

contemporary processor-centric systems.

The idea of PIM has been around for at least four decades [1, 16–

18, 24, 42–44, 52, 70, 78, 79, 85, 95, 96]. However, past efforts were

not widely adopted for various reasons, including 1) the difficulty

of integrating processing elements with DRAM, 2) the lack of criti-

cal memory-related scaling challenges that current technology and

applications face today, and 3) that the data movement bottleneck

was not as critical to system cost, energy and performance as it is

today.We believe it is crucial to re-examine PIM todaywith a fresh

perspective (i.e., with novel approaches and ideas), by exploiting

new memory technologies, with realistic workloads and systems,

and with a mindset to ease adoption and feasibility.

In this paper, we explore two new approaches to enabling PIM in

modern systems. The first approach onlyminimally changes mem-

ory chips to perform simple yet powerful common operations that

the chip is inherently efficient at performing [12, 13, 15, 22, 23,

60, 73, 87–93]. Such solutions take advantage of the existing mem-

ory design to perform bulk operations (i.e., operations on an entire

http://arxiv.org/abs/1905.04376v1


row of DRAM cells), such as bulk copy, data initialization, and bit-

wise operations [13, 88–91]. The second approach enables PIM in

a more general-purpose manner by taking advantage of emerging

3D-stacked memory technologies [3–5, 8–11, 14, 19–21, 26, 27, 31–

33, 45–47, 59, 65, 66, 76, 80, 81, 97, 102, 104]. 3D-stacked memory

chips have much greater internal bandwidth than is available ex-

ternally on thememory channel [58], and many such chip architec-

tures (e.g., Hybrid Memory Cube [34, 35], High-Bandwidth Mem-

ory [37, 58]) include a logic layer where designers can add some

processing logic (e.g., accelerators, simple cores, reconfigurable

logic) that can take advantage of this high internal bandwidth.

Regardless of the approach taken to PIM, there are key practical

adoption challenges that system architects and programmers must

address to enable the widespread adoption of PIM across the com-

puting landscape and in different domains of workloads. We also

briefly discuss these challenges in this paper, along with references

to some existing work that addresses these challenges.

2 MINIMALLY CHANGING MEMORY CHIPS

Minimal modifications in existing memory chips can enable sim-

ple yet powerful computation capability inside the chip. These

modifications take advantage of the existing interconnects in and

analog operational behavior of conventional memory chips, e.g.,

DRAM architectures, without the need for a logic layer and usu-

ally without the need for logic processing elements. As a result,

the overheads imposed on the memory chip are low. There are a

number of mechanisms that use this approach to take advantage

of the high internal bandwidth available within each memory cell

array [12, 13, 87–91, 93]. We briefly describe one such design, Am-

bit, which enables in-DRAM bulk bitwise operations [88, 90, 91],

by building on RowClone, which enables fast and energy-efficient

in-DRAM data movement [13, 89].

Ambit: In-DRAM Bulk Bitwise Operations. Many applica-

tions use bulk bitwise operations [51, 99] (i.e., bitwise operations

on large bit vectors), such as bitmap indices, bitwise scan accel-

eration [62] for databases, accelerated document filtering for web

search [25], DNA sequence alignment [6, 7, 47, 100], encryption

algorithms [28, 98], graph processing, and networking [99]. Ac-

celerating bulk bitwise operations can thus significantly boost the

performance and energy efficiency of a wide range of applications.

We have recently proposed a new Accelerator-in-Memory for

bulk Bitwise operations (Ambit) [88, 90, 91]. Unlike prior ap-

proaches, Ambit uses the analog operation of existing DRAM tech-

nology to perform bulk bitwise operations. Ambit has two com-

ponents. The first component, Ambit–AND–OR, implements a

new operation called triple-row activation, where the memory con-

troller simultaneously activates three rows. Triple-row activation

uses the charge sharing principles that govern the operation of

the DRAM array to perform a bitwise AND or OR on two rows of

data, by controlling the initial value on the third row. The second

component, Ambit–NOT, takes advantage of the two inverters that

are connected to each sense amplifier in a DRAM subarray, as the

voltage level of one of the inverters represents the negated logical

value of the cell. The Ambit design adds a special row to the DRAM

array to capture this negated value. One possible implementation

of the special row [91] is a row of dual-contact cells (a 2-transistor

1-capacitor cell [39, 67]), each connected to both inverters inside

a sense amplifier. Even in the presence of process variation (see

[91]), Ambit can reliably perform AND, OR, and NOT operations

completely using DRAM technology, making it functionally (i.e.,

Boolean logic) complete.

Ambit provides promising performance and energy improve-

ments. Averaged across seven commonly-used bulk bitwise oper-

ations (NOT, AND, OR, NAND, NOR, XOR, XNOR), Ambit with 8

DRAM banks improves bulk bitwise operation throughput by 44×

compared to an Intel Skylake processor [36], and 32× compared

to the NVIDIA GTX 745 GPU [77]. Compared to DDR3 DRAM,

Ambit reduces energy consumption by 35× on average. When in-

tegrated directly into the HMC 2.0 device, which has many more

banks, Ambit improves operation throughput by 9.7× compared

to processing in the logic layer of HMC 2.0. Our work evaluates

the end-to-end benefits of Ambit on real database queries using

Bitmap indices and the BitWeaving database [62], showing query

latency reductions of 2X to 12X, with larger benefits for larger data

set sizes.

A number of Ambit-like bitwise operation substrates have been

proposed in recent years, making use of emerging resistive mem-

ory technologies, e.g., phase-change memory (PCM) [55–57, 83,

101, 103], SRAM, or specialized DRAM. These substrates can per-

form bulk bitwise operations in a special DRAM array augmented

with computational circuitry [60] and in PCM [61]. Similar sub-

strates can perform simple arithmetic operations in SRAM [2, 40]

and arithmetic and logical operations in memristors [53, 54, 94].

Resistive memory technologies are amenable to in-place updates,

and can thus incorporate Ambit-like operationswith even less data

movement than DRAM. Thus, we believe it is extremely important

to continue exploring low-cost Ambit-like substrates, as well as

more sophisticated computational substrates, for all types of mem-

ory technologies, old and new.

3 PIM USING 3D-STACKED MEMORY

Several works propose to place some form of processing logic (typ-

ically accelerators, simple cores, or reconfigurable logic) inside

the logic layer of 3D-stacked memory [58]. This PIM processing

logic, which we also refer to as PIM cores, can execute portions

of applications (from individual instructions to functions) or en-

tire threads and applications, depending on the design of the archi-

tecture. The PIM cores connect to the memory stacks that are on

top of them using vertical through-silicon vias [58], which provide

high-bandwidth and low-latency access to data. In this section, we

discuss examples of how systems can make use of relatively sim-

ple PIM cores to avoid data movement and thus obtain significant

performance and energy improvements for a variety of application

domains.

Tesseract: Graph Processing. A popular modern application

is large-scale graph processing/analytics. Graph processing has

broad applicability and use inmany domains, from social networks

to machine learning, from data analytics to bioinformatics. Graph

analysis workloads put large pressure on memory bandwidth due

to 1) frequent random memory accesses across large memory re-

gions (leading to limited cache efficiency and unnecessary data

2



transfer on the memory bus) and 2) small amount of computa-

tion per data item fetched from memory (leading to limited abil-

ity to hide long memory latencies and exercising the memory en-

ergy bottleneck). These two characteristics make it very challeng-

ing to scale up such workloads despite their inherent parallelism,

especially with conventional architectures based on large on-chip

caches and relatively scarce off-chip memory bandwidth for ran-

dom access.

To overcome the limitations of conventional architectures, we

design Tesseract, a programmable PIM accelerator for large-scale

graph processing [3]. Tesseract consists of 1) simple in-order PIM

cores that exploit the high memory bandwidth available in the

logic layer of 3D-stacked memory, where each core manipulates

data only on the memory partition it is assigned to control, 2) an

efficient communication interface that allows a PIM core to re-

quest computation on data elements that reside in the memory

partition controlled by another core, and 3) a message-passing

based programming interface, similar to how modern distributed

systems are programmed, which enables remote function calls on

data that resides in each memory partition. Tesseract moves func-

tions to data rather than moving data elements across different

memory partitions and cores. Our comprehensive evaluations us-

ing five state-of-the-art graph processing workloads with large

graphs show that Tesseract improves average system performance

by 13.8× and reduces average system energy by 87% over a state-

of-the-art conventional system.

ConsumerWorkloads.Apopular domain of computing is con-

sumer devices, including smartphones, tablets, web-based comput-

ers (e.g., Chromebooks), and wearable devices. In such devices, en-

ergy efficiency is a first-class concern due to the limited battery ca-

pacity and the stringent thermal power budget. We find that data

movement is a major contributor to energy (and execution time)

in modern consumer devices: across four popular workloads (de-

scribed next), 62.7% of the total system energy, on average, is spent

on data movement across the memory hierarchy [9].

We comprehensively analyze the energy and performance im-

pact of data movement for several widely-used Google consumer

workloads [9]: 1) the Chrome web browser, 2) TensorFlow Mobile

(Google’s machine learning framework), 3) the VP9 video playback

engine, and 4) the VP9 video capture engine. We find that offload-

ing key functions (called target functions) of these workloads to

PIM logic greatly reduces data movement. However, consumer de-

vices are extremely stringent in terms of the extra area and energy

they can accommodate. As a result, it is important to identify what

kind of PIM logic can both 1) maximize energy efficiency and 2) be

implemented at minimum possible area and energy costs.

We find that many of the target functions for PIM in con-

sumer workloads are comprised of simple operations (e.g., mem-

copy/memset, basic arithmetic and bitwise operations), and can be

implemented easily in the logic layer using either 1) a small low-

power general-purpose core or 2) small fixed-function accelerators.

Our analysis shows that the area of a PIM core and a PIM acceler-

ator take up no more than 9.4% and 35.4%, respectively, of the area

available for PIM logic in anHMC-like [35] 3D-stackedmemory ar-

chitecture. Both the PIM core and PIM accelerator eliminate a large

amount of data movement, and thereby significantly reduce total

system energy (by an average of 55.4% across all the workloads)

and execution time (by an average of 54.2%).

4 ENABLING PIM ADOPTION

Pushing computation from the CPU into memory introduces new

challenges for system architects and programmers to overcome.

Many of these challenges must be addressed for PIM to be adopted

in a wide variety of systems of workloads, without placing a heavy

burden on most programmers [22, 73] These challenges include

1) how to easily program PIM systems (with good programming

model, library, compiler and tools support) [4, 32]; 2) how to de-

sign runtime systems and system software that can take advan-

tage of PIM (e.g., runtime scheduling of code on PIM logic, data

mapping) [4, 9, 32, 80]; 3) how to efficiently enable coherence be-

tween PIM logic and CPU/accelerator cores that operate on shared

data [4, 10, 11]; 4) how to efficiently enable virtual memory support

on the PIM logic [33]; 5) how to design high-performance data

structures for PIM whose performance is better than concurrent

data structures on multi-core machines [65]; 6) how to accurately

assess the benefits and shortcomings of PIM using realistic work-

load suites, rigorous analysis methodologies, and accurate and flex-

ible simulation infrastructures [50, 86].

We believe these challenges provide exciting cross-layer re-

search opportunities. Fundamentally solving the data movement

problem requires a paradigm shift to a data-centric computing sys-

tem design, where computation happens in or near memory, with

minimal data movement. We argue that research enabled towards

such a paradigm shift would be very useful for both PIM as well as

other potential ideas that can reduce data movement.

ACKNOWLEDGMENTS

We thank members of the SAFARI Research Group and collabora-

tors at Carnegie Mellon, ETH Zurich, and other universities, who

have contributed to the various works we describe in this paper.

Thanks also to our research group’s industrial sponsors over the

past ten years, especially Alibaba, Google, Huawei, Intel, Microsoft,

NVIDIA, Samsung, and VMware. This work was also partially sup-

ported by the Semiconductor Research Corporation and NSF.

REFERENCES
[1] A. Acharya et al. 1998. Active Disks: Programming Model, Algorithms and

Evaluation. In ASPLOS.
[2] S. Aga et al. 2017. Compute Caches. In HPCA.
[3] J. Ahn et al. 2015. A Scalable Processing-in-Memory Accelerator for Parallel

Graph Processing. In ISCA.
[4] J. Ahn et al. 2015. PIM-Enabled Instructions: A Low-Overhead, Locality-Aware

Processing-in-Memory Architecture. In ISCA.
[5] B. Akin et al. 2015. Data Reorganization in Memory Using 3D-Stacked DRAM.

In ISCA.
[6] M. Alser et al. Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence

Alignment. Bioinformatics (2019).
[7] M. Alser et al. GateKeeper: A New Hardware Architecture for Accelerating

Pre-Alignment in DNA Short Read Mapping. Bioinformatics (2017).
[8] O. O. Babarinsa et al. 2015. JAFAR: Near-Data Processing for Databases. In

SIGMOD.
[9] A. Boroumand et al. 2018. Google Workloads for Consumer Devices:Mitigating

Data Movement Bottlenecks. In ASPLOS.
[10] A. Boroumand et al. 2019. CoNDA: Enabling Efficient Near-Data Accelerator

Communication by Optimizing Data Movement. In ISCA.
[11] A. Boroumand et al. LazyPIM: An Efficient Cache Coherence Mechanism for

Processing-in-Memory. CAL (2016).
[12] K. K. Chang. 2017. Understanding and Improving the Latency of DRAM-Based

Memory Systems. Ph.D. Dissertation. Carnegie Mellon Univ.

3



[13] K. K. Chang et al. 2016. Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM. In HPCA.

[14] P. Chi et al. 2016. PRIME: A Novel Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-Based Main Memory. In ISCA.

[15] Q. Deng et al. 2018. DrAcc: a DRAM Based Accelerator for Accurate CNN
Inference. In DAC.

[16] J. Draper et al. 2002. TheArchitecture of the DIVA Processing-in-MemoryChip.
In SC.

[17] D. Elliott et al. Computational RAM: Implementing Processors inMemory. IEEE
Design & Test (1999).

[18] D. G. Elliott et al. 1992. Computational RAM: A Memory-SIMD Hybrid and Its
Application to DSP. In CICC.

[19] A. Farmahini-Farahani et al. 2015. NDA: Near-DRAM Acceleration Architec-
ture Leveraging Commodity DRAM Devices and Standard Memory Modules.
In HPCA.

[20] M. Gao et al. 2015. Practical Near-Data Processing for In-Memory Analytics
Frameworks. In PACT.

[21] M. Gao et al. 2016. HRL: Efficient and Flexible Reconfigurable Logic for Near-
Data Processing. In HPCA.

[22] S. Ghose et al. 2018. Enabling the Adoption of Processing-in-Memory: Chal-
lenges, Mechanisms, Future Research Directions. arXiv:1802.00320 [cs:AR].

[23] S. Ghose et al. 2019. The Processing-in-Memory Paradigm: Mechanisms to
Enable Adoption. In Beyond-CMOS Technologies for Next Generation Computer
Design.

[24] M. Gokhale et al. Processing in Memory: The Terasys Massively Parallel PIM
Array. IEEE Computer (1995).

[25] B. Goodwin et al. 2017. BitFunnel: Revisiting Signatures for Search. In SIGIR.
[26] B. Gu et al. 2016. Biscuit: A Framework for Near-Data Processing of Big Data

Workloads. In ISCA.
[27] Q. Guo et al. 2014. 3D-Stacked Memory-Side Acceleration: Accelerator and

System Design. InWoNDP.
[28] J.-W. Han et al. Optical Image Encryption Based on XOR Operations. SPIE OE

(1999).
[29] M. Hashemi et al. 2016. Accelerating Dependent Cache Misses with an En-

hanced Memory Controller. In ISCA.
[30] M. Hashemi et al. 2016. Continuous Runahead: Transparent Hardware Accel-

eration for Memory Intensive Workloads. In MICRO.
[31] S. M. Hassan et al. 2015. Near Data Processing: Impact and Optimization of 3D

Memory System Architecture on the Uncore. In MEMSYS.
[32] K. Hsieh et al. 2016. Transparent Offloading and Mapping (TOM): Enabling

Programmer-Transparent Near-Data Processing in GPU Systems. In ISCA.
[33] K. Hsieh et al. 2016. Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation. In ICCD.
[34] Hybrid Memory Cube Consortium. 2013. HMC Specification 1.1.
[35] Hybrid Memory Cube Consortium. 2014. HMC Specification 2.0.
[36] Intel Corp. 2018. 6th Generation Intel Core Processor Family Datasheet.
[37] JEDEC. 2013. High Bandwidth Memory (HBM) DRAM. Standard No. JESD235.
[38] S. Kanev et al. 2015. Profiling a Warehouse-Scale Computer. In ISCA.
[39] H. Kang et al. 2009. One-Transistor Type DRAM. US Patent 7701751.
[40] M. Kang et al. 2014. An Energy-Efficient VLSI Architecture for Pattern Recog-

nition via Deep Embedding of Computation in SRAM. In ICASSP.
[41] U. Kang et al. 2014. Co-Architecting Controllers and DRAM to Enhance DRAM

Process Scaling. In The Memory Forum.
[42] Y. Kang et al. 1999. FlexRAM: Toward an Advanced Intelligent Memory System.

In ICCD.
[43] S. Kaxiras et al. 1997. Distributed Vector Architecture: Beyond a Single Vector-

IRAM. In First Workshop on Mixing Logic and DRAM: Chips that Compute and
Remember.

[44] K. Keeton et al. A Case for Intelligent Disks (IDISKs). SIGMOD Rec. (1998).
[45] D. Kim et al. 2016. Neurocube: A Programmable Digital Neuromorphic Archi-

tecture with High-Density 3D Memory. In ISCA.
[46] G. Kim et al. 2017. Toward Standardized Near-Data Processing with Unre-

stricted Data Placement for GPUs. In SC.
[47] J. S. Kim et al. GRIM-Filter: Fast Seed Location Filtering in DNA ReadMapping

Using Processing-in-Memory Technologies. BMC Genomics (2018).
[48] Y. Kim et al. 2014. Flipping Bits in Memory Without Accessing Them: An

Experimental Study of DRAM Disturbance Errors. In ISCA.
[49] Y. Kim et al. 2012. A Case for Exploiting Subarray-Level Parallelism (SALP) in

DRAM. In ISCA.
[50] Y. Kim et al. Ramulator: A Fast and Extensible DRAM Simulator. CAL (2015).
[51] D. E. Knuth. 2009. The Art of Computer Programming, Volume 4 Fascicle 1:

Bitwise Tricks & Techniques; Binary Decision Diagrams.
[52] P.M. Kogge. 1994. EXECUBE–A NewArchitecture for ScaleableMPPs. In ICPP.
[53] S. Kvatinsky et al. MAGIC—Memristor-Aided Logic. IEEE TCAS II: Express

Briefs (2014).
[54] S. Kvatinsky et al. Memristor-Based Material Implication (IMPLY) Logic: De-

sign Principles and Methodologies. TVLSI (2014).

[55] B. C. Lee et al. 2009. Architecting Phase Change Memory as a Scalable DRAM
Alternative. In ISCA.

[56] B. C. Lee et al. Phase Change Memory Architecture and the Quest for Scalabil-
ity. CACM (2010).

[57] B. C. Lee et al. Phase-Change Technology and the Future of Main Memory.
IEEE Micro (2010).

[58] D. Lee et al. Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory
Bandwidth at Low Cost. TACO (2016).

[59] J. H. Lee et al. 2015. BSSync: Processing Near Memory for Machine Learning
Workloads with Bounded Staleness Consistency Models. In PACT.

[60] S. Li et al. 2017. DRISA: A DRAM-Based Reconfigurable In-Situ Accelerator. In
MICRO.

[61] S. Li et al. 2016. Pinatubo: A Processing-in-Memory Architecture for Bulk Bit-
wise Operations in Emerging Non-Volatile Memories. In DAC.

[62] Y. Li et al. 2013. BitWeaving: Fast Scans for Main Memory Data Processing. In
SIGMOD.

[63] J. Liu et al. 2013. An Experimental Study of Data Retention Behavior in Mod-
ern DRAM Devices: Implications for Retention Time Profiling Mechanisms. In
ISCA.

[64] J. Liu et al. 2012. RAIDR: Retention-Aware Intelligent DRAM Refresh. In ISCA.
[65] Z. Liu et al. 2017. Concurrent Data Structures for Near-Memory Computing.

In SPAA.
[66] G. H. Loh et al. 2013. A Processing in Memory Taxonomy and a Case for Study-

ing Fixed-Function PIM. InWoNDP.
[67] S.-L. Lu et al. 2015. Improving DRAM Latency with Dynamic Asymmetric Sub-

array. In MICRO.
[68] Y. Luo et al. 2017. Using ECC DRAM to Adaptively Increase Memory Capacity.

arXiv:1706.08870 [cs:AR].
[69] Y. Luo et al. 2014. Characterizing Application Memory Error Vulnerability to

Optimize Datacenter Cost via Heterogeneous-Reliability Memory. In DSN.
[70] K. Mai et al. 2000. Smart Memories: A Modular Reconfigurable Architecture.

In ISCA.
[71] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. IMW (2013).
[72] O. Mutlu. 2017. The RowHammer Problem and Other Issues We May Face as

Memory Becomes Denser. In DATE.
[73] O. Mutlu et al. Processing Data Where It Makes Sense: Enabling In-Memory

Computation. Microprocessors and Microsystems (2019).
[74] O. Mutlu et al. 2019. RowHammer: A Retrospective. In IEEE TCAD.
[75] O. Mutlu et al. Research Problems and Opportunities in Memory Systems. SU-

PERFRI (2014).
[76] L. Nai et al. 2017. GraphPIM: Enabling Instruction-Level PIM Offloading in

Graph Computing Frameworks. In HPCA.
[77] NVIDIA Corp. 2014. GeForce GTX 745 Specification.
[78] M. Oskin et al. 1998. Active Pages: A Computation Model for Intelligent Mem-

ory. In ISCA.
[79] D. Patterson et al. A Case for Intelligent RAM. IEEE Micro (1997).
[80] A. Pattnaik et al. 2016. Scheduling Techniques for GPU Architectures with

Processing-in-Memory Capabilities. In PACT.
[81] S. H. Pugsley et al. 2014. NDC: Analyzing the Impact of 3D-Stacked Mem-

ory+Logic Devices on MapReduce Workloads. In ISPASS.
[82] M. K. Qureshi et al. 2007. Adaptive Insertion Policies for High-Performance

Caching. In ISCA.
[83] M. K. Qureshi et al. 2009. Scalable High Performance Main Memory System

Using Phase-Change Memory Technology. In ISCA.
[84] M. K. Qureshi et al. 2007. Line Distillation: Increasing Cache Capacity by Fil-

tering Unused Words in Cache Lines. In HPCA.
[85] E. Riedel et al. 1998. Active Storage for Large-scaleDataMining andMultimedia

Applications. In VLDB.
[86] SAFARI ResearchGroup. 2015. Ramulator: A DRAMSimulator – GitHub Repos-

itory. https://github.com/CMU-SAFARI/ramulator/.
[87] V. Seshadri. 2016. Simple DRAM and Virtual Memory Abstractions to Enable

Highly Efficient Memory Systems. Ph.D. Dissertation. Carnegie Mellon Univ.
[88] V. Seshadri et al. Fast Bulk Bitwise AND and OR in DRAM. CAL (2015).
[89] V. Seshadri et al. 2013. RowClone: Fast and Energy-Efficient In-DRAM Bulk

Data Copy and Initialization. In MICRO.
[90] V. Seshadri et al. 2016. Buddy-RAM: Improving the Performance and Efficiency

of Bulk Bitwise Operations Using DRAM. arXiv:1611.09988 [cs:AR].
[91] V. Seshadri et al. 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Opera-

tions Using Commodity DRAM Technology. In MICRO.
[92] V. Seshadri et al. 2015. Gather-Scatter DRAM: In-DRAM Address Translation

to Improve the Spatial Locality of Non-Unit Strided Accesses. In MICRO.
[93] V. Seshadri et al. 2017. Simple Operations in Memory to Reduce Data Move-

ment. In Advances in Computers, Volume 106.
[94] A. Shafiee et al. 2016. ISAAC: A Convolutional Neural Network Accelerator

with In-Situ Analog Arithmetic in Crossbars. In ISCA.
[95] D. E. Shaw et al. The NON-VON Database Machine: A Brief Overview. IEEE

Database Eng. Bull. (1981).
[96] H. S. Stone. A Logic-in-Memory Computer. TC (1970).

4

https://github.com/CMU-SAFARI/ramulator/


[97] Z. Sura et al. 2015. Data Access Optimization in a Processing-in-Memory Sys-
tem. In CF.

[98] P. Tuyls et al. XOR-Based Visual Cryptography Schemes. Designs, Codes and
Cryptography (2005).

[99] H. S. Warren. 2012. Hacker’s Delight (2nd ed.). Addison-Wesley Professional.
[100] H. Xin et al. Shifted Hamming Distance: A Fast and Accurate SIMD-Friendly

Filter to Accelerate Alignment Verification in Read Mapping. Bioinformatics
(2015).

[101] H. Yoon et al. Efficient Data Mapping and Buffering Techniques for Multilevel
Cell Phase-Change Memories. ACM TACO (2014).

[102] D. P. Zhang et al. 2014. TOP-PIM: Throughput-Oriented Programmable Pro-
cessing in Memory. In HPDC.

[103] P. Zhou et al. 2009. A Durable and Energy Efficient Main Memory Using Phase
Change Memory Technology. In ISCA.

[104] Q. Zhu et al. 2013. Accelerating Sparse Matrix-Matrix Multiplication with 3D-
Stacked Logic-in-Memory Hardware. In HPEC.

5


	Abstract
	1 Introduction
	2 Minimally Changing Memory Chips
	3 PIM using 3D-Stacked Memory
	4 Enabling PIM Adoption
	References

