Check for
Updates

Invited: Open-Source EDA Tools and IP,
A View from the Trenches

Elad Alon, Krste Asanovi¢, Jonathan Bachrach, Borivoje Nikoli¢
{elad krste,jrb,bora}@berkeley.edu
Electrical Engineering and Computer Sciences Department, University of California, Berkeley

ABSTRACT

We describe our experience developing and promoting a set of
open-source tools and IP over the last 9 years, including the Chisel
hardware construction language, the Rocket Chip SoC generator,
and the BAG analog layout generator.

KEYWORDS

open-source CAD, open-source hardware, Chisel, RISC-V

ACM Reference Format:

Elad Alon, Krste Asanovi¢, Jonathan Bachrach, Borivoje Nikoli¢. 2019. In-
vited: Open-Source EDA Tools and IP, A View from the Trenches. In Pro-
ceedings of ACM Design Automation Conference (DAC ’19). ACM, New York,
NY, USA, 3 pages. https://doi.org/https://doi.org/10.1145/3316781.332348110.
1145/1122445.1122456

1 INTRODUCTION

The Berkeley EECS Department has a long history in open-source
EDA tools, dating back to the original SPICE distribution in 1972.
In this paper, we provide a retrospective and update on a recent set
of interconnected projects at Berkeley that have contributed to the
recent surge of interest in open-source hardware.

Our original goal in creating the open RISC-V instruction set
architecture (ISA), the Chisel hardware construction language, the
Rocket Chip generator, and the Berkeley Analog Generator (BAG)
systems was to form the infrastructure for a series of research SoC
tapeouts. The tools were primarily developed for our own use, but
over time as they matured they have been distributed and adopted in
a wider community. Each of these contributions is taking a different
path to external adoption as we describe below.

2 RISC-VISA

Modern Systems-on-Chip (SoCs) are heavily dependent on general-
purpose or specialized software running on a collection of general-
purpose or specialized processing cores. Building a simple processor
pipeline is relatively easy, to the point that this forms a common
project in many undergraduate courses. However, building and
maintaining the software required to run on that processor is con-
siderably more time consuming.

In many earlier processor research projects, we had used variants
of existing proprietary ISAs to allow use of existing software stacks.
However, as soon as we modified the ISA, we were faced with

This work is licensed under a Creative Commons Attribution International 4.0 License.

DAC ’19, June, 2019, San Francisco, CA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6725-7/19/06. .

DOI: 10.1145/3316781.3323481

rebuilding the software stack while still having to deal with the
peculiarities of the proprietary ISA. We also could not open-source
our designs due to IP issues. In 2010, as part of a new research
project focused on application-specific accelerators, we began the
design of RISC-V as a simple but efficient ISA that was easy-to-
extend with custom acceleration extensions. We also wanted a
processor base architecture that was free of IP entanglements, so
we could share our designs.

The primary drawback of building a clean-slate ISA was that
we had to port all the software. Although we initially thought the
ISA design would only take one summer, the ISA evolved over
the next four years informed by a string of tapeouts and ports of
the compiler and operating system. We made the ISA specification
available as a techreport, and made the gcc compiler and Linux
ports available from our website, as well as an open-source RTL
core written in Chisel and wrapped inside the Rocket Chip SoC
generator.

Despite little effort on our part to publicize what we were do-
ing, we soon had external users trying out the ISA and sending
comments, and so we decided to make a concerted effort to engage
with industry in the summer of 2014 at the Hot Chips conference.
We were very surprised at the level of interest in our core and ISA,
and so we followed up with an open RISC-V workshop in January
2015. The workshop sold out with over 40 companies attending. A
common request from industry attendees was that the ISA needed a
home outside of the University to help assure it would be long-lived
and stable, so we incorporated the non-profit RISC-V Foundation
as a long-term home for the RISC-V specification.

Since that time, RISC-V has become a global phenomonen, with
over 140 companies and organizations joining the Foundation, in-
cluding many of the major semiconductor companies. Nvidia is
using home-grown RISC-V cores on all their future GPUs, while
Western Digital has announced that all their future products would
be based on RISC-V. Many other major companies have RISC-V
projects underway around the world. There are at least half a dozen
commercial RISC-V core providers and many open-source cores.

Compared to earlier open architecture projects, RISC-V focused
on the ISA specification rather than on a particular incarnation of
the ISA. One attribute of successful open-source projects is that
they provide a complex component that can be developed and
maintained by the community and reused and adapted for many
different projects. By focusing on the ISA specification, we enable
the most complex component in today’s SoCs—the software—to be
reused across many different projects using many different core
designs. An open specification also makes possible open-source
cores, but we feel the software ecosystem building up around the
RISC-V standard is really the major achievement of the RISC-V

https://doi.org/https://doi.org/10.1145/3316781.332348110.1145/1122445.1122456
https://doi.org/https://doi.org/10.1145/3316781.332348110.1145/1122445.1122456
https://doi.org/https://doi.org/10.1145/3316781.332348110.1145/1122445.1122456
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3316781.3323481&domain=pdf&date_stamp=2019-06-02

standard. Anyone can build a RISC-V core and take advantage of
the software base.

3 CHISEL AND FIRRTL

Chisel was designed to be a hardware construction language, not
a high-level synthesis (HLS) language, and the project began in
2010 alongside but separate from the RISC-V ISA project. The goal
was to allow hardware designers to retain complete control of the
microarchitecture of a unit but with much higher-level program-
ming constructs to allow the microarchitecture to be expressed as
a parameterized generator. Another goal was to support a unified
environment for both architectural simulation and chip fabrication,
as we had been discouraged by the lack of accuracy in traditional
architectural simulations, and the need to rebuild a chip design in
a hardware language after performing architectural design space
exploration.

The first Chisel versions were monolithic combinations of the
frontend design language, the intermediate representation and
transforms, and the backend output generators. In 2016, we com-
pletely rewrote Chisel as Chisel 3, an open compiler that specifies
an intermediate representation FIRRTL (for Flexible Intermediate
Representation for RTL), and allows users to write their own FIR-
RTL passes. By layering Chisel in this way, we created an ecosystem
allowing more front ends, tools, backends and passes. We have also
recently completed a Verilog front-end allowing users to convert
Verilog designs into FIRRTL. Now that Chisel 3 was in place, con-
siderable work went into making Chisel handle more real-world
designs. Multiple clock domains and resets, and asynchronous reset
blocks, were added. Black box support was expanded, permitting
better parameterization of external Verilog IP blocks.

We learned the hard way that any design methodology is only
as good as the slowest phase. We had countless people say that
improving the speed of writing RTL is all well and good, but what
about simulation, verification or physical design? Now that we had
an open compiler with an intermediate representation, we could
produce a large array of invaluable tools and facilities for users. In
particular, we used the new infrastructure to produce innovations
in simulation, testing, verification, and physical design.

From the beginning, we understood the importance of fast and ac-
curate simulation. In simulation during design debugging, the most
important factor is the wall-clock time needed to reach simulation
cycle n, including simulator compile and build times. For different
n, different simulation strategies are appropriate. Simulation speed
and compile time are often in conflict. Having an IR allowed us to
create a FIRRTL interpreter, called Treadle, that trades runtime for
compile time allowing for nearly interactive simulations for low
cycle counts.

The original Chisel had a C++ backend that produced fast two-
state simulation, but that was dropped in favor of a Verilog-only
output to reduce maintenance effort, and to simplify verification
by providing only a single output instance to be verified. We then
spent effort to speed up Verilog simulation using the Verilator open-
source simulator.

Larger simulation cycle counts often mandate use of FPGAs.
Unfortunately, obtaining cycle-accurate system simulations on an

FPGA is quite a daunting task. One task that is particularly oner-
ous is creating a cycle-accurate DRAM model. To make this more
approachable, we created a token-based simulation framework,
MIDAS, and synthesizable RTL DRAM model based on a timing
model. The simulation framework along with FIRRTL allows one
to transform the base RTL into RTL that passes tokens on external
signal lines and into a form compatible with an RTL timing model.

A big goal was addressing the hardware verification challenge.
We needed to support cover points, assertions, and print statements
in the emitted Verilog code to connect with commercial verification
tools. We also needed to keep readable source names in the emitted
Verilog to allow us to map bug finds to Chisel source code. The orig-
inal academic version relied on backend gate synthesis to clean up
emitted Verilog, but more recently a circuit-optimization pass was
added to Chisel before Verilog emission. This optimization helps
with both simulation speed and with verification code coverage.

Recently, we have begun transferring successful ideas from soft-
ware testing to hardware verification. Our recent work ported a
software feedback-guided fuzz testing, called AFL, to hardware, a
system we call RFUZZ. It effectively puts the timing critical statis-
tics gathering code into hardware so that the fuzzing can happen
at MHz speeds. We do this by transforming the resulting FIRRTL
into RTL augmented with statistics-gathering hardware.

One of the remaining tall poles in the design loop tent is phys-
ical design. We were finding that we had very little reuse of our
physical design scripts from tape out to tape out, across different
EDA tools and different nodes at different foundries. We have de-
veloped a mechanism for connecting RTL design to physical design
by programmatically annotating the FIRRTL code and abstracting
the physical design artifacts into a reusable framework.

We had always imagined Chisel supporting a layering of domain-
specific languages. In 2017, we created a variant of Chisel for digital
signal processing called ChiselDSP. ChiselDSP provides a produc-
tive path from math to circuits, starting with a straightforward
translation of equations to RTL with floating-point unit, to RTL with
fixed-point arithmetic, and ultimately high-performance pipeline
RTL implementations. ChiselDSP includes support for complex
numbers and interval types.

Over many years of trying to explain what we were doing,
we came around to explaining our techniques as “reuse”. People
could understand that reuse would save time. By writing highly
parametrized generators in a full-powered programming language,
users could apply them to a wider range of use cases. We then went
on to extend reuse to compiler passes and to the scripting of physi-
cal design as well. Finally, by structuring our designs around best
software practices, we could create a powerful library of reusable
hardware components.

Despite, feeling that we were largely successful in attaining rad-
ically better reuse, we did learn that there is a sizable adoption
challenge based on hardware designers having less software ex-
perience and being uncomfortable with powerful programming
languages. Organizing design into hardware generators was some-
times challenging for designers to understand. We taught many
boot camps and found that users really needed to start from very
basic structural descriptions while seeing equivalent Verilog. After
many attempts we ended up writing a progression of examples
in order of difficulty as Jupyter notebooks using our fast FIRRTL

simulator. Ultimately, we feel that hardware-focused EEs are going
to need to take more software-focused CS courses in order to take
advantage of the full power of Chisel and BAG.

In the fall of 2018, we held our first Chisel Community Confer-
ence. We had over 100 participants and a packed technical program
along with a day of tutorials and deep dives. We’re looking to turn
this conference into a yearly affair and to hold Chisel conferences
in other countries with a large number of Chisel and Rocket Chip
generator users. At the conference, Google revealed they had used
Chisel for the design of their Edge TPU. Intel Research has been
exploring Chisel and contributing to the Chisel repo. There has
been considerable interest in China around Chisel, partly driven
by the interest in Rocket Chip, and the second Chisel Community
Conference will be held in China.

4 THE ROCKET CHIP GENERATOR

The first version of RISC-V, Raven-1, was written in Verilog, but
after Chisel became usable in 2011, the RISC-V core developers
switched to Chisel, and provided significant feedback and code
updates to the Chisel code base.

Over time, the processor code base evolved into a full SoC en-
vironment including the processor cores. Developed at Berkeley,
the Rocket Chip generator included an in-order processor core
“Rocket” (named after the first functioning steam locomotive), a
cache-coherent interconnect “TileLink”, coherent caches, and I/O
devices.

The Rocket Chip generator provides a very powerful set of RISC-
V processor building blocks. One of the most impressive uses of
Chisel (and Rocket Chip generator) was an out-of-order processor
generator called BOOM. In BOOM, out-of-order processors could
be created by simply combining functional blocks and sizing the
datapath. The entire control path would then be automatically syn-
thesized from this high description. The original BOOM was written
in only around 10k lines by reusing the rest of the Rocket Chip
generator. This is a striking demonstration of the reuse possible in
Chisel and showcases the power of hardware generators written in
high-level programming languages.

Rocket Chip generator offers multiple types of customization.
Besides changing the generator parameters, it is possible to design
a new processor core and drop it into the tile, as was done with
BOOM. The standard Rocket custom coprocessor (RoCC) interface
provides a way to design decoupled coprocessors integrated in the
same tile as the core., with two decoupled interfaces connecting
coprocessors to the core and the L1 cache or outer memory system.
A custom open-source vector coprocessor, Hwacha, has been a
feature of several of our prototypes. Rocket Chip’s standard bus
interface, TileLink2, offers an opportunity for adding peripherals.

The Rocket Chip framework has been used to complete over 17
RISC-V SoC chip tapeouts at Berkeley, in fabrication technologies
ranging from IBM 45nm SOI to TSMC 16nm FinFET. Each chip
design had objectives of both demonstrating a new functionality,
and developing new tools.

Rocket Chip is now widely used outside of Berkeley, in both
academia and industry. The Rocket Chip repository is now main-
tained by SiFive, who contributed a substantial rewrite of TileLink

and a new parameter-negotiation framework, Diplomacy. The non-
profit lowRISC project is also using Rocket Chip to build a com-
pletely open-source SoC. Several Chinese startups are now selling
prototype silicon based on Rocket Chip cores. The BOOM core was
used as the basis of the Maxion out-of-order core developed by the
Esperanto chip startup.

5 BERKELEY ANALOG GENERATOR

Development of analog and mixed-signal (AMS) modules is an-
other time-consuming part of chip development, which consists of
iterative refinement of design specifications through layout itera-
tions and post-layout simulations. Changes in the target process
technology, which can be as small as a different variant of metal
stackup, often trigger a complete redesign. Building AMS gener-
ators, rather than instances of AMS blocks is our method for fos-
tering reuse across different chips and technologies. The Berkeley
Analog Generator (BAG2) is a Python-based framework for process-
portable development of analog generators. The specification-
to-verification framework encapsulates a schematic-generation
application-programing interface (API), a sizing routine (executed
through a design script) and two layout generation engines, Laygo
and XBase. The BAG2 framework has been used to generate a wide
range of interface blocks, including multi-Gb/s analog-to-digital
and digital-to-analog converters as well as high-speed serial inter-
faces.

6 CONCLUDING THOUGHTS

Reflecting on the success of this set of interconnected open-source
projects, we believe that providing solid but malleable components
in a reusable form is the key to adoption. Co-developing a com-
prehensive set of directly usable artifacts (RISC-V, Rocket Chip,
SerDes) along with the development tools (Chisel, FIRRTL, BAG)
as open-source has led to greater acceptance of the whole suite.
For example, it is unlikely the Chisel language would have seen
this level of interest without the Rocket Chip generator, which
provides a large amount of quality IP in Chisel form. Conversely,
the capabilities of the Rocket Chip generator derive from the use of
Chisel. Interest in RISC-V was initially driven by the investment we
had made in porting and upstreaming key open-source software to
RISC-V, and in providing open-source implementations of silicon-
proven Unix-capable RISC-V multicores in Rocket Chip. We also
have benefited from continual feedback and interaction with the
many industrial sponsors of this work over the years.

We continue to build on these frameworks and look forward to
many years of future development in collaboration with a growing
open-source hardware community.

ACKNOWLEDGMENTS

This research was funded in part by DoE Award DE-SC0003624, and
by Microsoft (Award #024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery (Award #DIG07-10227),
also by DARPA PERFECT Award HR0011-12-2-0016, ASPIRE Affili-
ates, ADEPT affiliates, BWRC members, TSMC, and ST Microelec-
tronics.

	Abstract
	1 Introduction
	2 RISC-V ISA
	3 Chisel and FIRRTL
	4 The Rocket Chip Generator
	5 Berkeley Analog Generator
	6 Concluding Thoughts
	Acknowledgments

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryList_V1
 qi2base

