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Abstract 

Collective action has been examined to expedite search 
in optimization problems [2]. Collective memory has 
been applied to learning in multiagent systems [4]. We 
integrate the simplicity of collective action with the pat- 
tern detection of collective memory to significantly im- 
prove both the gathering and processing of knowledge. 
We augment  dis t r ibuted search in genetic programming 
based systems with collective memory. Four models of 
collective memory search are defined based on the inter- 
action of the search agents and the process agents which 
manipulate the collective memory. We implement one 
of the collective memory search models and show how it 
facilitates "scaling up" a problem domain. A Passive- 
Active model, in which the gathered results are collated. 
is employed by the process agents to piece together the 
solution from the parts collected by the search agents. 

1 INTRODUCTION 
A computat ional  agent society can exhibit collective be- 
havior in two dimensions: action and memory. Col- 
lective action is defined as the complex interaction that 
arises out of the sum of simpler actions by the agents. 
These simpler  actions reflect a computational  bound on 
either the reasoning power or memory storage of the 
individual agent. Such bounds are caused by the com- 
binatorial explosion found in either search or optimiza- 
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tion of the class of NP complete problems [3]. Collective 
memory is defined as the combined knowledge gained by 
the interaction of the agents with both themselves and 
their environment.  We combine the raw power of collect- 
ive action with the expressiveness of collective memory 
to enhance a dis tr ibuted search process. 

Our collective memory search is more than just  the 
integration of the action and memory aspects of earlier 
research. It differs from the collective action research of 
Dorigo et al., [2] in that agents need not communicate  
and a central agent can process the gathered knowledge. 
It differs from the collective memory  research of Garland 
and Alterman [4] in that agents need not learn via the 
collective memory, agents need neither interact nor com- 
mtmicate, and the memory is centralized. The  integra- 
tion of action and memory leads to a dis t r ibuted society 
of search agents which interact via collective memory;  
allowing for either agent commtmicat ion or for a cent- 
ralized search of the gathered "knowledge. We consider 
simple computational  search agents, which are chromo- 
somes in a genetic programming (GP) [10] population. 

Genetic algorithms (GA) [8] are a class of dis t r ibuted 
search algorithms inspired by biological evolutionary ad- 
aptation. GP is an off-shoot of GA's ,  and is typically 
used in the automatic induction of programs. Both GA 
and GP represent search strategies in a population of 
chromosomes. Each chromosome in the population can 
be searching different parts of the search space or fitness 
landscape. Each chromosome can be considered to be a 
behavioral strategy to control an agent [7] and are con- 
sidered to be autonomous in the sense that they do not 
typically interact to find a solution. They also implicitly 
cooperative since the more fit chromosomes of generat ion 
G, are more likely to contr ibute genetic material  to the 
chromosomes in generation G,+l .  Each chromosome is 
evaluated by a fitness function, which maps the chromo- 
some representation into a given problem domain. The 
evaluation of one chromosome typically is independent 
of all others. A notable exception arises in gene t ic -based  
machine learning (GBML) systems: both rules and rule- 
sets must be maintained. In the "*Iichigan approach" 
each chromosome is a rule and the population as a whole 
is the ruleset. In the "Pit t  approach" each chromosome 
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is a ruleset,  being comprised of multiple rules [1]. 
We investigate the addition of collective memory to 

G P - b a s e d  learning systems. We allow the explicit re- 
use of knowledge from one generation to the next. Vv'e 
show how the knowledge retr ieved by the agents can be 
integrated to form a whole greater than the parts. 

The rest of the paper  is organized as follows: Section 2 
defines the four models of collective memory. Section 3 
is an overview of the basics of genet ic-based computa-  
tional search systems. Section 4 reveals how collective 
memory can be utilized to improve search in a clique 
detection domain. Section 5 presents some experiments 
in implementing collective memory to scale up the the 
clique detector.  Section 6 discusses some of the ramifica- 
tions and drawbacks of collective memory within genetic 
programming.  Section 7 concludes our discourse on the 
applicability of collective memory in dis tr ibuted search. 
Section 8 examines further avenues of research in utiliz- 
ing collective memory in dis t r ibuted search. 

2 C O L L E C T I V E  M E M O R Y  

Garland and Al terman present  a dis tr ibuted collective 
memory in their research; agents manipulate their own 
slice of the collective memory [4]. We present a central- 
ized collective memory, which is a knowledge repository, 
not local to the agents. As agents gather knowledge, 
they deposit  it. into the collective memory. Agents can 
have read, write, and delete privileges. The write action 
cannot  overwrite.  

We define: 

S e a r c h  a g e n t s  as those agents which retrieve know- 
ledge from the search space. They have write priv- 
ileges, do not have delete privileges, and may or 
may not have read privileges. 

C o l l e c t i v e  m e m o r y  as an area where the raw inform- 
ation re t r ieved by the search agents can be stored. 

P r o c e s s  a g e n t s  as those agents which collate and pro- 
cess the collective memory. They can have com- 
binations of the different privileges. For example. 
collation is a composi t ion of read 1, read 2, delete 
1, delete 2, integrate 1 and 2 into A, and write A. 

Process agents cannot  directly manipulate the search 
space; they must direct the search agents in order to 
sense and manipulate the search space. The search 
agents can neither manipulate  the collective memory nor 
direct other search agents. Furthermore,  a search agent 
cannot  direct itself: once it has been assigned a task, 
it continues executing it mltil redirected by a process 
agent. 

The interactions of both the process and search agents 
with the collective memory form two orthogonal dimen- 
sions of access. Both dimensions can take on one of 
two discrete values: passive and active. Passive agents 
do not retr ieve knowledge from the collective memory, 
while active agents can retr ieve knowledge. We ref- 
erence a tuple in these dimensions by lnteractivitg- 

Processing, where [nteractivity denotes the state of the 
search agents and Processing denotes the state of the 
process agents. 

The four models of collective memory are: 

A c t i v e - P a s s i v e  The collective memory is interactively 
accessed by the independent search agents. They 
gather knowledge and deposit  it into the collect- 
ive memory. Before a new search is started,  or 
even during the search process, a search agent can 
retrieve and utilize knowledge from the collective 
memory to guide and shape the search. 

A c t i v e - A c t i v e  The collective memory is interactively 
accessed by the independent search agents. By 
manipulating the memory, the process agents can 
guide the search agents. 

P a s s i v e - P a s s i v e  This  form of collective memory  is ac- 
tually no collective memory  at all. 

P a s s i v e - A c t i v e  The collective memory  does not  inter- 
act with the search agents. They still gather and 
deposit  knowledge into the collective memory, but  
they cannot retr ieve knowledge from it. The  col- 
lective memory is a repository from which process 
agents can manipulate the knowledge. 

We explore the addit ion of both Act ive-Passive and 
Passive-Active collective memory to a society of search 
agents represented by GP  chromosomes.  We examine 
the coordination of knowledge of loosely-coupled, het- 
erogeneous, and initially simple agents. The  agents can 
adapt  during the search process, eventually becoming 
quite complex. 

3 G E N E T I C  
P R O G R A M M I N G  

Genetic programming is a machine learning technique 
used in the automatic induction of compute r  pro- 
grains It0]. A GP system is primarily' compr ised  of three 
main parts: 

• a population of chromosomes 

• a chromosome evaluator 

• a selection and recombination mechanism. 

In implementing the system for a new problem domain, 
the designer must encode function and terminal  sets, 
which will comprise the elements or genes of the chro- 
mosome, and implement  a function which can evaluate 
the fitness, or applicability', of a chromosome in the do- 
main. 

Chromosomes  are typically represented as parse 
trees. The interior nodes are functions and the leaf 
nodes are terminals. The  first populat ion of chromo- 
somes is randomly generated.  Each chromosome is then 
evaluated against a domain specific fitness function. The  
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next generation is comprised  of the offspring of the cur- 
rent generation: parents  are randomly selected in pro- 
port ion to their fitness evaluation. Thus, more fit chro- 
mosomes are likely to contribute genetic material to suc- 
cessive generations. This  generational process is then 
repeated until either a preset number of generations has 
passed or the population converges. 

Two considerations for designing the function and ter- 
nfinal sets are closure  and su f f i c iencg .  Closure states 
that all functions must be able to handle all inputs, i.e., 
division can handle a 0 denominator.  Sufficiency re- 
quires that the domain be solvable with the given func- 
tion and terminal sets. One ramification of closure is 
that all functions, function arguments, and terminals 
have just  one typality. Hence, closure means any ele- 
ment can be a child node in a parse tree for any other 
element without having conflicting data types. 

Montana claims that closure is a serious limitation 
to genetic programming.  He introduces a variant of 
GP in strongly typed genetic programming (STGP) ,  in 
which variables, constants, arguments, and returned val- 
ues can be of any type [11]. The  only restriction is that 
the data type for each element be specified beforehand. 
This  causes the initialization process and the various ge- 
netic operations to only construct  syntactically correct 
trees. It has been shown that S T G P  can significantly re- 
duce the search space [7. 11]. The S T G P  variant mainly 
restricts  the construction and reproduction of chromo- 
somes: the basic algori thm is GP. 

4 CLIQUE D E T E C T I O N  

I'Ve have used clique detection as a benchmark for im- 
proving learning in GP systems [5, 6]. A collection of 
cliques in a graph can be represented as a list of a list 
of nodes which, in turn. can be represented by a tree 
structure.  Given a graph G = ( I ,  E) a clique of G is a 
complete subgraph of G. We denote a clique by the set 
of vertices in the complete subgraph. Our goal is to find 
all cliques of G. Since the subgraph of G induced by any 
subset of the vertices of a complete subgraph of G is also 
complete,  it is sufficient to find all maximal complete 
subgraphs of G. A ma.'dmal complete subgraph of G is a 
maximal clique. Each chromosome in a S T G P  pool will 
represent  sets of candidate maximal cliques. The func- 
tion and terminal  sets are F = { E x t C o n ,  I n t C o n }  and 
T = { i  . . . . .  # n o d e s } .  E x t C o n  "separates" two candid- 
ate maximal cliques, while I n t C o n  "'joins" two candid- 
ate cliques to create a larger candidate. 

The  fitness evaluation rewards for clique size and re- 
wards for the number of cliques in the tree. To gather 
the maximal complete subgraphs, the reward for size is 
greater  than that for numbers. We also ensure that we 
do not reward for a clique either being in the tree twice 
oi  being subsumed by aamther clique. The first falsely 
inflates the fitness of the individual, while the second 
invalidates the goals of tile problem. The algorithm for 
the fitness evaluation is: 
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• Parse the chromosome into a sequence of candidate 
maximal cliques, each represented by an ordered 
list of vertex labels. 

• Throw away any duplicate candidate maximal 
cliques and any candidate maximal cliques that are 
subsumed by other candidate maximal cliques. 

• Throw away any candidate maximal cliques that 
are not complete subgraphs. 

The fitness formula is 
c 

F = a c +  E ' 3 " ' ,  
, = t  

where c = # of valid candidate maximal cliques and 
n, = # nodes in clique C,. Both c~ and/3 are configurable 
by the user. 'fl has to be large enough so that a large 
clique contributes more to the fitness of one chromosome 
than a collection of proper subcliques contributes to the 
fitness of a different chromosome. 

F igu re  1: Example I0 node graph. 

Figure 1 is a ten node graph we have used in our 
previous research to test the clique detection system. 
There are exactly t0 cliques: C = {{0,3,4},  {0,1,4},  
{1,4.5}. {1,2,5}, {2,5,6},  {3,4,7},  {4,7,8},  {4,5.8},  
{5, 8.9}, {5, 6, 9} }. An example chromosome for the 10 
node graph is presented in Figure 2. It has five can- 
didate cliques, and the only cliques are # 2  and #5 :  
C = {{4,8, 7}, {5, 6}}. The others are eliminated be- 
cause they violate at least one of the rules: # 4  contains 
duplicate nodes, i.e. node 7 is repeated; # 3  is subsumed 
by #2 :  and, # t  is not completely connected. 

This  example graph exhibits nice regularities which 
allows for the efficient comparison of results across dif- 
ferent test runs. We have utilized these regularities to 
identify and enumerate the building blocks, i.e., the con- 
nected components  [5]. We repaired chromosomes by 
stripping out all invalid candidate cliques. We invest- 
igated various rates of re turn of repaired chromosomes 
into the population. We found that by duplicating the 
coding segments (A coding segment is the material  in 
tile chromosome which contributes,  either positively or 
negatively, to the evaluation of the chromosome. In this 
domain, the coding segments correspond to that mater- 
ial which was not s t r ipped out.) we could significantly 
improve the search process. 



F i g u r e  2: S-expression for 10 node graph. 

If a chromosome contained no valid candidate cliques, 
we tr ied a repair s trategy of injecting the set of all valid 
cliques found to date. We found that such a repair 
s trategy led to premature  convergence in a non-opt imal  
section of the search space. It appears that the Active- 
Passive collective memory technique has failed to aid 
in the search process. We find if we instead adopt a 
Passive-Active collective memory technique in this do- 
main, the search process is greatly facilitated. 

With the Passive-Active collective memory we do 
not repair chromosomes which have no valid candid- 
ate cliques. Instead we gather candidate cliques in the 
collective memory, removing duplicates and candidates 
subsumed by larger candidates. In Figure 3 we present 
a comparison of three search techniques for clique de- 
tection (For all of our experiments,  we set o = 10 and 
,3 = 9 [6].). The  noteworthy parameters  for the S T G P  
system were a max of 600 generations (Even if we find 
the optimal solution, we let the search continue on until 

t h e  maxiinum number of generations had passed.) and 
a populat ion size of 2000. Each curve shown in Figure 3 
is an average of I0 different runs. Each of the meth- 
ods extends the previous methods. The first method 
(R0) is a S T G P  system modified with the type inherit- 
ance presented in [6]. Chromosomes  are repaired dur- 
ing the fitness evaluation, but they are not  re turned into 
the population. The  second search method (R10QT) re- 
places the original chromosome with the repaired one 
with a probabili ty of 0.1. The  coding segment is du- 
plicated seven times during the replacement process. 
The  third method (PACM) adds Passive-Active collect- 
ire memor.v to piece together the set of all cliques. 

The  average generation to discover the optimal solu- 
tion is 354 for R0, 56 for R10QT, mad 8 for PACM. 
On the average. PACM is 7 times more efficient than 
RI0Q7  and 44¼ times more efficient than R0. Finalh'  
if we investigate how much the repair process is assist- 
ing the Passive-Collective memory, we see in Figure 4 
that the addit ion of the duplication of coding segments 
repair is not. significant. The  PACMR10Q7 curve cor- 
responds to the PACM curve in Figure 3, while the 
P A C M R 0  curve represents  a Passive-Active collective 

memory which does not use the repair process. 
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F igure  3: Comparison of best fitness per generation for 
no repair of chromosomes (R0), duplication of coding seg- 
ments repair of chromosomes with a 10% return rate and 
7 duplicates (R10Q7), and Passive-Active collective memory 
(PACM), which utilizes R10Q7 to drive the search agents. 

5 E X P E R I M E N T S  

The addit ion of Passive-Active collective memory  to the 
search technique significantly improves the efficiency 
of the search process. We want to leverage that im- 
provement to allow clique detection in more realistic 
graphs. The  ten node graph we use to i l lustrate the 
clique detection is contr ived and thus facilitates the 
search process, i.e. a known optimal solution e.'dsts. 
The search for the optimal solution for this graph is not 
trivial with either plain GP or S T G P  systems. In the 
Second DIMACS Challenge [9] random graphs were gen- 
erated as tests for the maximum clique detection prob- 
lem ( f tp : / /d imacs . ru tge r s . edu /pub /cha l l enge) .  While 
the duplication of coding segments  repair process is able 
to search such graphs, the plain S T G P  system will pre- 
maturely converge. 
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F i g u r e  4: Comparison of best fitness per generation 
for Passive-Active collective memory (PACMR10QT}, which 
utilizes IRIOQ7 to drive the search agents, and Passive-Active 
collective memory (PACMR0), which utilizes no repair. 

A shortcoming of these graphs is the results presented 
are for the maximal clique size found, if any, but no data 
is presented for either the number and composition of all 
cliques in the graph. Both finding the maximum and all 
cliques in a graph are NP complete [3]. To utilize graphs 
from the DIMACS repository to test the duplication of 
coding segments repair process, we must implement an 
algorithm to generate all of the cliques. A brute force al- 
gori thm is to build candidate cliques in increasing levels 
of size, k. Due to NP completeness [3], this algorithm 
is not guaranteed to be able to find a solution. A viable 
search heuristic is to detect cliques from the Passive- 
Active collective memory. 

We now examine the hamming6-4.clq dataset from 
the DIMACS repository, which has 64 nodes, 704 edges, 
and a maximum clique size of 4. From the brute force 
algori thm, we know that there are 464 cliques, with a 
maximum fitness of 1,597,424. We present the results, in 
Figure 5. of testing both R10QT, i.e., replace the original 
chronmsome with the repaired one with a probability of 
0.1 and the coding segment is duplicated seven times 
during the replacement process, and PACM, i.e., add 
Passive-Active collective memory to piece together the 
set of all cliques. 

The addit ion of Passive-Active collective menmry is 
significant in improving the search process. However, 
the highest repor ted  fitness of about 650,000 is unly 
about  40~  of the maximum fitness. As the learning 
curve has not stabilized at a plateau, we could allow the 
search to continue for more generations. We could also 
increase the population size. Both methods fail to ad- 
dress our implicit desire to effectively search the space 
in both minimal time and memory. A possible exten- 
sion is bestow fm'ther computat ional  effort to the pro- 
cess agent{s). We could allow for these agents to try to 
extend candidate cliques by either merging ones in the 
collective memory or by utilizing the deterministic brute 

force algorithm on a subset of the candidate cliques. 
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Figure  5: Passive-Active collective memory search applied 
to the hamming6-4 graph. In particular, comparison of best 
fitness per generation for duplication of coding segments re- 
pair of chromosomes with a 10% return rate and 7 duplicates 
(IR10Q7), and Passive-Active collective memory (PACM), 
which utilizes R10Q7 to drive the search agents. 

6 D I S C U S S I O N  

The models of collective memory search are effect- 
ire if building blocks of the solution can be identi- 
fied. In the clique detector  domain, candidate cliques 
form the building blocks. The  identification of building 
blocks in genetic programming is in general a difficult 
task [5, 12, 13]. In part  this is due to the domain de- 
pendent nature of the alphabet:  building block are easier 
to find in GA chromosomes, but the typical string rep- 
resentation is the binary alphabet  and of fixed length. 
As such, GA building blocks are at the s tructural  level, 
whilst GP building blocks are at the semantical  level [5]. 
The repair of chromosome by duplication of coding seg- 
ments strategy holds promise in automating the detec- 
tion of building blocks [5]. If the system designer can 
identify function nodes that allow for addit ion of non- 
coding segments without changing the semantical  mean- 
ing of the chromosome, the detection of building blocks 
can be automated. 

7 C O N C L U S I O N S  

The collective memory search model is applicable in in- 
tegrating results from loosely-coupled agents. Simple 
search agents are effective in gathering knowledge. We 
caal increase the processing power of the search agents, 
but there might be physical or economical  restrictions 
on the processing capabilit ies of the search agents. If 
there are such restrictions on the search agents, we can 
allow complex process agents to collate and process the 
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raw data. We could also employ simple process agents, 
capitalizing on the reduced search space. 

We have shown collective memory can be used to 
augment distributed search. It can serve to be either 
a springboard from which further searches can be 
launched or as a central repository from which parts 
of the solution can be connected. We find the Passive- 
Active model significantly improves the search process. 
It also allowed scaling up in a problem domain, while 
our previous method failed to scale. 

8 Future Work 

In our current research, the Passive-Active model of col- 
lective memory search is applied to the clique detec- 
tion domain. The process agent in this domain just 
collates the knowledge, removing duplicates. There is 
scope to improve the process agent such that it explores 
the search space by seeing if the candidate cliques can 
be merged to form larger candidate cliques. While the 
process agent is active since it collates, it can become 
even more energetic by exploring the collective memory 
space. 
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