
C o l l e c t i v e M e m o r y Search

Thomas Haynes
Department of Mathematical & Computer Sciences

600 South College Ave.
The University of Tulsa
Tulsa, OK 74104-:3189

e-maih haynes@euler.mcs.utulsa.edu

KEYWORDS
Genetic Programming
Collective Adaptat ion
Distr ibuted Search

Abstract

Collective action has been examined to expedite search
in optimization problems [2]. Collective memory has
been applied to learning in multiagent systems [4]. We
integrate the simplicity of collective action with the pat-
tern detection of collective memory to significantly im-
prove both the gathering and processing of knowledge.
We augment dis t r ibuted search in genetic programming
based systems with collective memory. Four models of
collective memory search are defined based on the inter-
action of the search agents and the process agents which
manipulate the collective memory. We implement one
of the collective memory search models and show how it
facilitates "scaling up" a problem domain. A Passive-
Active model, in which the gathered results are collated.
is employed by the process agents to piece together the
solution from the parts collected by the search agents.

1 INTRODUCTION
A computat ional agent society can exhibit collective be-
havior in two dimensions: action and memory. Col-
lective action is defined as the complex interaction that
arises out of the sum of simpler actions by the agents.
These simpler actions reflect a computational bound on
either the reasoning power or memory storage of the
individual agent. Such bounds are caused by the com-
binatorial explosion found in either search or optimiza-

Permission to make digital or hard copies of part or all of this work for
crsonal o r classroom use is granted without tee provided that copies are not
rode o r distributed lbr profit or commercial advantage and that copies bear
~is notice and the lhll citation on the first page. Copyrights for components
fthis work owned by others than ACM must be honored. Abstracting with
redit is permitted. To cop5' otherwise, to republish, to post on servers or to
:distribute to lists, requires prior specific permission and/or a fee."
: 1997 ACM 0-89791-850-9 97 0002 3.50

217

tion of the class of NP complete problems [3]. Collective
memory is defined as the combined knowledge gained by
the interaction of the agents with both themselves and
their environment. We combine the raw power of collect-
ive action with the expressiveness of collective memory
to enhance a dis tr ibuted search process.

Our collective memory search is more than just the
integration of the action and memory aspects of earlier
research. It differs from the collective action research of
Dorigo et al., [2] in that agents need not communicate
and a central agent can process the gathered knowledge.
It differs from the collective memory research of Garland
and Alterman [4] in that agents need not learn via the
collective memory, agents need neither interact nor com-
mtmicate, and the memory is centralized. The integra-
tion of action and memory leads to a dis t r ibuted society
of search agents which interact via collective memory;
allowing for either agent commtmicat ion or for a cent-
ralized search of the gathered "knowledge. We consider
simple computational search agents, which are chromo-
somes in a genetic programming (GP) [10] population.

Genetic algorithms (GA) [8] are a class of dis t r ibuted
search algorithms inspired by biological evolutionary ad-
aptation. GP is an off-shoot of GA's , and is typically
used in the automatic induction of programs. Both GA
and GP represent search strategies in a population of
chromosomes. Each chromosome in the population can
be searching different parts of the search space or fitness
landscape. Each chromosome can be considered to be a
behavioral strategy to control an agent [7] and are con-
sidered to be autonomous in the sense that they do not
typically interact to find a solution. They also implicitly
cooperative since the more fit chromosomes of generat ion
G, are more likely to contr ibute genetic material to the
chromosomes in generation G,+l . Each chromosome is
evaluated by a fitness function, which maps the chromo-
some representation into a given problem domain. The
evaluation of one chromosome typically is independent
of all others. A notable exception arises in gene t ic -based
machine learning (GBML) systems: both rules and rule-
sets must be maintained. In the "*Iichigan approach"
each chromosome is a rule and the population as a whole
is the ruleset. In the "Pit t approach" each chromosome

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331697.331743&domain=pdf&date_stamp=1997-04-01

is a ruleset, being comprised of multiple rules [1].
We investigate the addition of collective memory to

G P - b a s e d learning systems. We allow the explicit re-
use of knowledge from one generation to the next. Vv'e
show how the knowledge retr ieved by the agents can be
integrated to form a whole greater than the parts.

The rest of the paper is organized as follows: Section 2
defines the four models of collective memory. Section 3
is an overview of the basics of genet ic-based computa-
tional search systems. Section 4 reveals how collective
memory can be utilized to improve search in a clique
detection domain. Section 5 presents some experiments
in implementing collective memory to scale up the the
clique detector. Section 6 discusses some of the ramifica-
tions and drawbacks of collective memory within genetic
programming. Section 7 concludes our discourse on the
applicability of collective memory in dis tr ibuted search.
Section 8 examines further avenues of research in utiliz-
ing collective memory in dis t r ibuted search.

2 C O L L E C T I V E M E M O R Y

Garland and Al terman present a dis tr ibuted collective
memory in their research; agents manipulate their own
slice of the collective memory [4]. We present a central-
ized collective memory, which is a knowledge repository,
not local to the agents. As agents gather knowledge,
they deposit it. into the collective memory. Agents can
have read, write, and delete privileges. The write action
cannot overwrite.

We define:

S e a r c h a g e n t s as those agents which retrieve know-
ledge from the search space. They have write priv-
ileges, do not have delete privileges, and may or
may not have read privileges.

C o l l e c t i v e m e m o r y as an area where the raw inform-
ation re t r ieved by the search agents can be stored.

P r o c e s s a g e n t s as those agents which collate and pro-
cess the collective memory. They can have com-
binations of the different privileges. For example.
collation is a composi t ion of read 1, read 2, delete
1, delete 2, integrate 1 and 2 into A, and write A.

Process agents cannot directly manipulate the search
space; they must direct the search agents in order to
sense and manipulate the search space. The search
agents can neither manipulate the collective memory nor
direct other search agents. Furthermore, a search agent
cannot direct itself: once it has been assigned a task,
it continues executing it mltil redirected by a process
agent.

The interactions of both the process and search agents
with the collective memory form two orthogonal dimen-
sions of access. Both dimensions can take on one of
two discrete values: passive and active. Passive agents
do not retr ieve knowledge from the collective memory,
while active agents can retr ieve knowledge. We ref-
erence a tuple in these dimensions by lnteractivitg-

Processing, where [nteractivity denotes the state of the
search agents and Processing denotes the state of the
process agents.

The four models of collective memory are:

A c t i v e - P a s s i v e The collective memory is interactively
accessed by the independent search agents. They
gather knowledge and deposit it into the collect-
ive memory. Before a new search is started, or
even during the search process, a search agent can
retrieve and utilize knowledge from the collective
memory to guide and shape the search.

A c t i v e - A c t i v e The collective memory is interactively
accessed by the independent search agents. By
manipulating the memory, the process agents can
guide the search agents.

P a s s i v e - P a s s i v e This form of collective memory is ac-
tually no collective memory at all.

P a s s i v e - A c t i v e The collective memory does not inter-
act with the search agents. They still gather and
deposit knowledge into the collective memory, but
they cannot retr ieve knowledge from it. The col-
lective memory is a repository from which process
agents can manipulate the knowledge.

We explore the addit ion of both Act ive-Passive and
Passive-Active collective memory to a society of search
agents represented by GP chromosomes. We examine
the coordination of knowledge of loosely-coupled, het-
erogeneous, and initially simple agents. The agents can
adapt during the search process, eventually becoming
quite complex.

3 G E N E T I C
P R O G R A M M I N G

Genetic programming is a machine learning technique
used in the automatic induction of compute r pro-
grains It0]. A GP system is primarily' compr ised of three
main parts:

• a population of chromosomes

• a chromosome evaluator

• a selection and recombination mechanism.

In implementing the system for a new problem domain,
the designer must encode function and terminal sets,
which will comprise the elements or genes of the chro-
mosome, and implement a function which can evaluate
the fitness, or applicability', of a chromosome in the do-
main.

Chromosomes are typically represented as parse
trees. The interior nodes are functions and the leaf
nodes are terminals. The first populat ion of chromo-
somes is randomly generated. Each chromosome is then
evaluated against a domain specific fitness function. The

2 !8

next generation is comprised of the offspring of the cur-
rent generation: parents are randomly selected in pro-
port ion to their fitness evaluation. Thus, more fit chro-
mosomes are likely to contribute genetic material to suc-
cessive generations. This generational process is then
repeated until either a preset number of generations has
passed or the population converges.

Two considerations for designing the function and ter-
nfinal sets are closure and su f f i c iencg . Closure states
that all functions must be able to handle all inputs, i.e.,
division can handle a 0 denominator. Sufficiency re-
quires that the domain be solvable with the given func-
tion and terminal sets. One ramification of closure is
that all functions, function arguments, and terminals
have just one typality. Hence, closure means any ele-
ment can be a child node in a parse tree for any other
element without having conflicting data types.

Montana claims that closure is a serious limitation
to genetic programming. He introduces a variant of
GP in strongly typed genetic programming (STGP) , in
which variables, constants, arguments, and returned val-
ues can be of any type [11]. The only restriction is that
the data type for each element be specified beforehand.
This causes the initialization process and the various ge-
netic operations to only construct syntactically correct
trees. It has been shown that S T G P can significantly re-
duce the search space [7. 11]. The S T G P variant mainly
restricts the construction and reproduction of chromo-
somes: the basic algori thm is GP.

4 CLIQUE D E T E C T I O N

I'Ve have used clique detection as a benchmark for im-
proving learning in GP systems [5, 6]. A collection of
cliques in a graph can be represented as a list of a list
of nodes which, in turn. can be represented by a tree
structure. Given a graph G = (I , E) a clique of G is a
complete subgraph of G. We denote a clique by the set
of vertices in the complete subgraph. Our goal is to find
all cliques of G. Since the subgraph of G induced by any
subset of the vertices of a complete subgraph of G is also
complete, it is sufficient to find all maximal complete
subgraphs of G. A ma.'dmal complete subgraph of G is a
maximal clique. Each chromosome in a S T G P pool will
represent sets of candidate maximal cliques. The func-
tion and terminal sets are F = { E x t C o n , I n t C o n } and
T = { i # n o d e s } . E x t C o n "separates" two candid-
ate maximal cliques, while I n t C o n "'joins" two candid-
ate cliques to create a larger candidate.

The fitness evaluation rewards for clique size and re-
wards for the number of cliques in the tree. To gather
the maximal complete subgraphs, the reward for size is
greater than that for numbers. We also ensure that we
do not reward for a clique either being in the tree twice
oi being subsumed by aamther clique. The first falsely
inflates the fitness of the individual, while the second
invalidates the goals of tile problem. The algorithm for
the fitness evaluation is:

2!9

• Parse the chromosome into a sequence of candidate
maximal cliques, each represented by an ordered
list of vertex labels.

• Throw away any duplicate candidate maximal
cliques and any candidate maximal cliques that are
subsumed by other candidate maximal cliques.

• Throw away any candidate maximal cliques that
are not complete subgraphs.

The fitness formula is
c

F = a c + E ' 3 " ' ,
, = t

where c = # of valid candidate maximal cliques and
n, = # nodes in clique C,. Both c~ and/3 are configurable
by the user. 'fl has to be large enough so that a large
clique contributes more to the fitness of one chromosome
than a collection of proper subcliques contributes to the
fitness of a different chromosome.

F igu re 1: Example I0 node graph.

Figure 1 is a ten node graph we have used in our
previous research to test the clique detection system.
There are exactly t0 cliques: C = {{0,3,4}, {0,1,4},
{1,4.5}. {1,2,5}, {2,5,6}, {3,4,7}, {4,7,8}, {4,5.8},
{5, 8.9}, {5, 6, 9} }. An example chromosome for the 10
node graph is presented in Figure 2. It has five can-
didate cliques, and the only cliques are # 2 and #5 :
C = {{4,8, 7}, {5, 6}}. The others are eliminated be-
cause they violate at least one of the rules: # 4 contains
duplicate nodes, i.e. node 7 is repeated; # 3 is subsumed
by #2 : and, # t is not completely connected.

This example graph exhibits nice regularities which
allows for the efficient comparison of results across dif-
ferent test runs. We have utilized these regularities to
identify and enumerate the building blocks, i.e., the con-
nected components [5]. We repaired chromosomes by
stripping out all invalid candidate cliques. We invest-
igated various rates of re turn of repaired chromosomes
into the population. We found that by duplicating the
coding segments (A coding segment is the material in
tile chromosome which contributes, either positively or
negatively, to the evaluation of the chromosome. In this
domain, the coding segments correspond to that mater-
ial which was not s t r ipped out.) we could significantly
improve the search process.

F i g u r e 2: S-expression for 10 node graph.

If a chromosome contained no valid candidate cliques,
we tr ied a repair s trategy of injecting the set of all valid
cliques found to date. We found that such a repair
s trategy led to premature convergence in a non-opt imal
section of the search space. It appears that the Active-
Passive collective memory technique has failed to aid
in the search process. We find if we instead adopt a
Passive-Active collective memory technique in this do-
main, the search process is greatly facilitated.

With the Passive-Active collective memory we do
not repair chromosomes which have no valid candid-
ate cliques. Instead we gather candidate cliques in the
collective memory, removing duplicates and candidates
subsumed by larger candidates. In Figure 3 we present
a comparison of three search techniques for clique de-
tection (For all of our experiments, we set o = 10 and
,3 = 9 [6].). The noteworthy parameters for the S T G P
system were a max of 600 generations (Even if we find
the optimal solution, we let the search continue on until

t h e maxiinum number of generations had passed.) and
a populat ion size of 2000. Each curve shown in Figure 3
is an average of I0 different runs. Each of the meth-
ods extends the previous methods. The first method
(R0) is a S T G P system modified with the type inherit-
ance presented in [6]. Chromosomes are repaired dur-
ing the fitness evaluation, but they are not re turned into
the population. The second search method (R10QT) re-
places the original chromosome with the repaired one
with a probabili ty of 0.1. The coding segment is du-
plicated seven times during the replacement process.
The third method (PACM) adds Passive-Active collect-
ire memor.v to piece together the set of all cliques.

The average generation to discover the optimal solu-
tion is 354 for R0, 56 for R10QT, mad 8 for PACM.
On the average. PACM is 7 times more efficient than
RI0Q7 and 44¼ times more efficient than R0. Finalh'
if we investigate how much the repair process is assist-
ing the Passive-Collective memory, we see in Figure 4
that the addit ion of the duplication of coding segments
repair is not. significant. The PACMR10Q7 curve cor-
responds to the PACM curve in Figure 3, while the
P A C M R 0 curve represents a Passive-Active collective

memory which does not use the repair process.

/ /,~n~ "Vv
7000 .PACM j/R10Q 7 /~ R0

o= J / /
5OOO]

I
/ !

, o / f f
311011 /

/ /

I / ' /

o ! , r
0 100 200 300 400

Gen~ab~
500 ~o

F igure 3: Comparison of best fitness per generation for
no repair of chromosomes (R0), duplication of coding seg-
ments repair of chromosomes with a 10% return rate and
7 duplicates (R10Q7), and Passive-Active collective memory
(PACM), which utilizes R10Q7 to drive the search agents.

5 E X P E R I M E N T S

The addit ion of Passive-Active collective memory to the
search technique significantly improves the efficiency
of the search process. We want to leverage that im-
provement to allow clique detection in more realistic
graphs. The ten node graph we use to i l lustrate the
clique detection is contr ived and thus facilitates the
search process, i.e. a known optimal solution e.'dsts.
The search for the optimal solution for this graph is not
trivial with either plain GP or S T G P systems. In the
Second DIMACS Challenge [9] random graphs were gen-
erated as tests for the maximum clique detection prob-
lem (f tp : / /d imacs . ru tge r s . edu /pub /cha l l enge) . While
the duplication of coding segments repair process is able
to search such graphs, the plain S T G P system will pre-
maturely converge.

220

65O0

60O0]~- 9 ~

,~o0 i/

5000 0

P A C M R I ~ 7 / ~ J

/
/ /

5 10 15 20
(3erqeration

F i g u r e 4: Comparison of best fitness per generation
for Passive-Active collective memory (PACMR10QT}, which
utilizes IRIOQ7 to drive the search agents, and Passive-Active
collective memory (PACMR0), which utilizes no repair.

A shortcoming of these graphs is the results presented
are for the maximal clique size found, if any, but no data
is presented for either the number and composition of all
cliques in the graph. Both finding the maximum and all
cliques in a graph are NP complete [3]. To utilize graphs
from the DIMACS repository to test the duplication of
coding segments repair process, we must implement an
algorithm to generate all of the cliques. A brute force al-
gori thm is to build candidate cliques in increasing levels
of size, k. Due to NP completeness [3], this algorithm
is not guaranteed to be able to find a solution. A viable
search heuristic is to detect cliques from the Passive-
Active collective memory.

We now examine the hamming6-4.clq dataset from
the DIMACS repository, which has 64 nodes, 704 edges,
and a maximum clique size of 4. From the brute force
algori thm, we know that there are 464 cliques, with a
maximum fitness of 1,597,424. We present the results, in
Figure 5. of testing both R10QT, i.e., replace the original
chronmsome with the repaired one with a probability of
0.1 and the coding segment is duplicated seven times
during the replacement process, and PACM, i.e., add
Passive-Active collective memory to piece together the
set of all cliques.

The addit ion of Passive-Active collective menmry is
significant in improving the search process. However,
the highest repor ted fitness of about 650,000 is unly
about 40~ of the maximum fitness. As the learning
curve has not stabilized at a plateau, we could allow the
search to continue for more generations. We could also
increase the population size. Both methods fail to ad-
dress our implicit desire to effectively search the space
in both minimal time and memory. A possible exten-
sion is bestow fm'ther computat ional effort to the pro-
cess agent{s). We could allow for these agents to try to
extend candidate cliques by either merging ones in the
collective memory or by utilizing the deterministic brute

force algorithm on a subset of the candidate cliques.

7ml]o0

, / PACM

500000 1

4000(]0

3OOOOO

2(10000 /

100000 /

0

/ j -

./
/

,/
/ '

/
/

/

RIOQ7

I I I I I
1 CO 200 300 400 500

Qeneration

Figure 5: Passive-Active collective memory search applied
to the hamming6-4 graph. In particular, comparison of best
fitness per generation for duplication of coding segments re-
pair of chromosomes with a 10% return rate and 7 duplicates
(IR10Q7), and Passive-Active collective memory (PACM),
which utilizes R10Q7 to drive the search agents.

6 D I S C U S S I O N

The models of collective memory search are effect-
ire if building blocks of the solution can be identi-
fied. In the clique detector domain, candidate cliques
form the building blocks. The identification of building
blocks in genetic programming is in general a difficult
task [5, 12, 13]. In part this is due to the domain de-
pendent nature of the alphabet: building block are easier
to find in GA chromosomes, but the typical string rep-
resentation is the binary alphabet and of fixed length.
As such, GA building blocks are at the s tructural level,
whilst GP building blocks are at the semantical level [5].
The repair of chromosome by duplication of coding seg-
ments strategy holds promise in automating the detec-
tion of building blocks [5]. If the system designer can
identify function nodes that allow for addit ion of non-
coding segments without changing the semantical mean-
ing of the chromosome, the detection of building blocks
can be automated.

7 C O N C L U S I O N S

The collective memory search model is applicable in in-
tegrating results from loosely-coupled agents. Simple
search agents are effective in gathering knowledge. We
caal increase the processing power of the search agents,
but there might be physical or economical restrictions
on the processing capabilit ies of the search agents. If
there are such restrictions on the search agents, we can
allow complex process agents to collate and process the

Z2!

raw data. We could also employ simple process agents,
capitalizing on the reduced search space.

We have shown collective memory can be used to
augment distributed search. It can serve to be either
a springboard from which further searches can be
launched or as a central repository from which parts
of the solution can be connected. We find the Passive-
Active model significantly improves the search process.
It also allowed scaling up in a problem domain, while
our previous method failed to scale.

8 Future Work

In our current research, the Passive-Active model of col-
lective memory search is applied to the clique detec-
tion domain. The process agent in this domain just
collates the knowledge, removing duplicates. There is
scope to improve the process agent such that it explores
the search space by seeing if the candidate cliques can
be merged to form larger candidate cliques. While the
process agent is active since it collates, it can become
even more energetic by exploring the collective memory
space.

References

[1] Kenneth A. DeJong. Genetic-algorithm-based
learning. In Y. Kodratoff and R. S. Michalski,
editors, Machine Learning, Volume [IL Morgan
I(aufmann, Los Alamos. CA, 1990.

[2] Marco Dorigo, Vittorio Maniezzo, and Alberto Col-
orni. The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Sys-
tems, Man. and Cybernetics Part B: Cybernetics,
26(1):29-41, 1996.

[3] Michael R. Garey and David S. Johnson. Com-
puters and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., San
Francisco, CA, 1979.

[4] Andrew Garland and Richard Aherman. Multia-
gent learning through collective memory. In Sandip
Sen, editor, Working Notes .for the .4.4,4[Sym-
posium on Adaptation, Co-evolution and Learning
in Multiagent Systems, pages 33-38. Stanford Uni-
versity, CA. March 1996.

[5] Thomas Haynes. Duplication of coding segments
in genetic programming. In Proceedings o.f the
Thirteenth ,Vational Conference on .4rtificial Intel-
ligence, Portland, OR, August 1996.

[6] Thomas Haynes, Dale Schoenefeld. and Roger
Wainwright. Type inheritance in strongly typed
genetic programming. [n Kenneth E. l,:innear, Jr.
and Peter J. Angeline. editors, Advances in Genetic
Programming 2, chapter 18. hiiT Press, 1996.

[7] Thomas Haynes, Roger Wainwright, Sandip Sen,
and Dale Schoenefeld. Strongly typed genetic pro-
gramming in evolving cooperation strategies. In
Larry Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms,
pages 271-278, San Francisco, CA, 1995. Morgan
Kaufmann Publishers, Inc.

[8] John H. Holland. Adpotation in Natural and Arti-
ficial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

[9] David S. Johnson and M. A. Trick. Cliques, color-
ing, and satisfiability: The second DIMACS chal-
lange. (to appear), 1993.

[10] John R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Natural Selection. MIT
Press, Cambridge, MA, 1992.

[11] David J. Montana. Strongly typed genetic pro-
gramming. Evolutionary Computation, 3(2):199-
230, 1995. {Also published as BBN Technical Re-
port #7866, Cambridge, MA, March 1994.).

[12] Una-May O'IReilly. An Analysis of Genetic Pro-
gramming. PhD thesis, Carelton University,
Ottawa-Carleton Institute for Computer Science,
Ottawa, Ontario, Canada, 22 September 1995.

[13] Justinian iRosca and Dana H. Ballard. Discovery
of subroutines in genetic programming. In P. An-
geline and I(. E. Kinnear, Jr., editors, Advances
in Genetic Programming 2, chapter 9. MIT Press,
Cambridge, MA, USA, 1996.

222

