
DESIGN CONCEPTS FOR MATRICES AND LATTICES IN I_iDIA

Patr ick Theobald
TH Darmstad t

FB 20 - lmformatik
Lehrstuhl Prof. Buchmaam

Alexanderstr . 10
D-64283 Darms tad t

Germany

theobald@cdc.informatik. th-darmst adt .de

Susanne Wetzel Werner Backes
Universitgt des Saaxlandes

FB 14 - lmformatik
Postfach 15 11 50

D-66041 Saarbriicken
Germany

{wetzel,wbackes} @cs.uni-sb .de

.:d~:

Keywords: Matrix Concept, Lattice Concept, Template
Modules, Template Kernel

ABSTRACT

In this paper we present a new template class concept for
matrices and lattices. In the design we have focussed on
the efficiency of single as well as sequences of operations.
In order to get concise and efficient programming code we
present a new technique based on template mechanisms and
suitable inheritance structures.

1 I N T R O D U C T I O N

In many fields in mathematics and computer science, com-
putations on matrices and lattices have various applications,
e.g. in class group theory, cryptography, combinatorial op-
timization and scientific computing. Most of those appli-
cations are extremely time consuming and therefore require
efficient implementations of the underlying data-types and
basic operations. In general, many applications do not call
only one but a sequence of lattice and matrix operations.

Through the design and the implementation of a new
object-oriented concept for matrix and lattice operations in
LiDIA 1 [4] we take into account the efficiency of a single al-
gorithm as well as a sequence of different operations. Other
computer algebra systems are typically single-algorithm-
oriented which stands in contrast to our approach.

In [iDIA we collect specific information in each step of an
operation sequence which is subsequently used in the next
step of the on-going computation. In order to achieve ihe
maximal efficiency, this concept obviously requires the im-
plementation of several variations of the same algorithm.
Using conventional programming methods would result in a
large amount of duplicated code. In this paper we present
a new concept solving the problem by combining template

tL iDIA is a Library for Computa t iona l Number Theory which is
being developed by the LiDIA Group at the Ins t i tu te of Prof. Dr. J.
Buchmann at the UniversitS.t des Sa.arlandes/TH Darmstad t

"'Permission to make digital or hard copies of part or all of this work tbr
personal or classroom use is granted without fee provided that copies are not
made or distributed tbr profit or commercial advantage and that copies bear
this notice ,'rod the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a tee."
¢3 1997 ACM 0-89791-850-9 97 0002 3.50

532

mechanisms with suitable inheritance structures. Our im-
plementation is very efficient (for single algorithms as well
as operation sequences), flexible, extendible and results in
concise programmlng code which is easy to maintain.

In the following we first describe the inheritance struc-
ture of the template matrix and lattice classes (section 2.1).
Subsequently (section 3), we present a new programmlng
technique using so-called template modules and kernels for
implementing the classes efficiently. On the basis of run-
ning timings (section 4) of LiDIA in comparison with other
computer algebra systems we show the efficiency of our new
concept.

2 STRUCTURE OF THE MATRIX AND LATTICE
CLASSES IN LiDIA

In this section we will describe the structure of the matrix
and lattice classes of the C + + library [iDIA [4] and present
the advantages of our design concept. The basic two con-
cepts are the application of inheritance to template struc-
tures and the use of bit fields for coding structure informa-
tion, storage information and other high level information.
By means of the first technique we can support matrices
and lattices over different types. In addition, we achieve a
gradation of the functions of the classes depending on the
operations of the used template type. The second concept
allows us to ensure that fast single operations also imply the
efficiency of applications calling a sequence of operations.

2.1 Inheritance Structure and Bit Fields

The inheritance structure of the template matrix and lattice
classes in LiDIA 1.3 is shown in figure 1.

The basis of our matrix classes consists of the two classes
dense .ma t r ix and spaxse_taatr ix which are invisible for the
user. For efficiency reasons, these classes are no virtual base
classes [2, 13]. In these classes we define the data structure
for sparse and dense matrices (see figure 2) which is ex-
plained by some examples in figure 3. As shown in figures
2 and 3 it is possible to create a matrix with dense, sparse
or even a mixed representation by combining the dense and
sparse data structure elements.

Bit fields such as storage.mode, s t r u c t t t r o ~ o d e ,
£nfo_mode and prLut_mode which are defined in the class
sparse_mat r ix store specific matrix information which is
extensively used by the derived classes. The bit fields can

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331697.332344&domain=pdf&date_stamp=1997-04-01

I

I

l
. . _ Template Sm~ture

" derived from

Figure 1: Inheritance Structure

\
dcv.se_maa-ix<T>

valu¢ array of tYl~ T

sparsc_matrix.d'>

\

~ I I - I

I - I

index array

I ftrst sparse column

first sparse row

Figure 2: Dense/Sparse Data Structure

directly be set by the user or manipulated by the imple-
mented algorithms.

• storage.=ode: In this field we keep the information
on the representation of the matrix (sparse, dense or
mixed) as weU as the information on whether the ma-
trix is stored column or row-oriented. The advantage
of this bit field is obvious since for each high level func-
tion the best representation can be chosen individually.
This way we can ensure the most efficient computation
for each function. Fast conversion routines build the
connection between the different representations and
orientations.

• s t r u c t u r , =ode: The idea of this bit field is to use
information about the distribution of the entries in
the matrix in order to achieve a major speed-up. For
example, we code the information whether a matrix
has diagonal or triangular structure etc.

• info_fode: With this field we provide special informa-
tion on the matrix e.g. whether the columns or rows

7 4 ~

l ~

VN

7 4 mixed
0 8 ttprts~tati0a

Figure 3: Example

are linearly independent or whether this is a special
kind of matrix e.g. Gram matrix.

• pr~nt .~ode: This bit field is the basis of all input
and output operations of the matrix classes. The in-
put /output format is chosen according to the bit field
(e.g. in Maple2/PARI [3]/ Mathematica3/LiDIA for-
mat).

The class b a s e _ a a t r i x is derived from the two classes
dense .mat r ix and spaxse_aat r ix . The idea of the class
base~aatrLx is, that a matrix can be interpreted as a 2-
dimensional array with a more advanced functionality. The
requirements on the used template type are rather small
The template type only has to have an assign-operator, an
input and output-operator as well as a swap function. In
general, the class base_matr ix provides access and structure
functions. We refer to the LiDIA-Manual [11] for a more
detailed description of the functionality~

In a second step the class r ing_mat r ix is derived from
the class baao2aat r ix . This class gives the LiDIA user the
possibility to create matrices over rings. Consequently, there
are more restrictions to the used template type. In addition
to the requirements of the class base_matr ix this class de-
mands the operators +, - and * as well as a member func-
tion called one() (returning the one element of the ring) and
a member function called zero() (returning the zero element
of the abelian group). At the moment this class only offers
simple matrix operations over rings. For the future we plan
to implement further high-level matrix functions operating
over arbitrary rings.

By a third derivation step we obtain the class
f i e l d . m a t r i x . With this class it is possible to instantiate
and work with matrices over fields. In addition to the re-
quirements for the class rLag2aatr ix , the template type has
to have a / operator. At the moment this class also offers
only simple matrix operations over fields.

Based on the described hierarchy it is now possible to
derive the following high-level classes:

2 M a p l e is a t r a d e m a r k o f W a t e r l o o M a p l e S o f t w a r e

S M a t h e m a t i c a is a t r a d e m a r k o f W o l f r a m f t e s e a r c h Inc .

533

• b i g i n t . m a t r i x - a class for doing linear algebra over
7Z. This class offers functions for computing deter-
minants, the Hermite normal form, the Smith normal
form etc. [7].

• b i g f l o a t . m a t r i x - a class for doing matr ix operations
over b ig f loa t a (in work).

• bigmod_matrix - a class providing modular matrix op-
erations, e.g. computing the kernel modulo n [11].

• b i g i n t l a t t i c e and b i g f l o a t . l a t t i c e - classes
whose functionality comprises latt ice algorithms for
computing reduced latt ice bases (e.g. Schnorr-Euchner
algorithm [10, 12]), computing relations from a given
generating system (e.g. Buchmann-Kessler algorithm
[5]), handling Gram matrices as well as computing
shortest and closest vectors [1, 7, 8].

3 TEMPLATE MODULES AND KERNELS

In the classes described in the previous section, many vari-
ations of the same basic algorithm have to be implemented
depending on the various information stored in the bit fields.
In general, the differences are rather small and the diversity
would normally result in a large amount of programming
code. One approach to solve that problem is applying the
well-known C-technique of using function pointers [9]. The
gained variability is tremendous but might imply a major
loss of efficiency [14]. It seems that one only has the choice
between a large and efficient or a small but slower code ba-
sis. Fortunately, there is a third way comprising the ad-
vantages of both techniques. In the following we will de-
scribe this new technique on the basis of the latt ice classes
b i g f l o a t . l a t t i c e and bigint_lattice [II].

A lattice is an additive discrete subgroup of the 1~" and
can be determined by a basis, a generating system, a Gram
matr ix or a quadrat ic form [7]. Since matrices are a com-
mon representation for lattices, the lattice classes in LiDIA
are derived from the matr ix classes (see figure 1). In each of
the classes b i g i n t . l a t t ; i c e and b i g f l o a t . l a t t i c e we have
summarized the lat t ice algorithms for latt ice bases, gener-
ating systems as well as Gram matrices. In earlier versions
of LiDIA we had a class distinction between bases and gen-
erating systems. This approach was turned down because
there was no real practical use for the class diversity.

As already mentioned before, the latt ice classes in LiDIA
offer algorithms for computing reduced latt ice bases, com-
puting relations from generating systems, handling Gram
matrices etc. [5, 7, 10, 12]. For most algorithms the classes
do not only contain an implementation of the original algo-
ri thm but also comprise several variations (e.g. using differ-
ent scalar products) : In order to keep the code basis small
but very efficient and variable, we have developed a new
concept which we will describe in the following subsections.

3.1 Template Module: Vector Operations

As an example, we will now focus on the Schnorr-Euchner
algorithm [12] for motivating and explaining the various de-
sign decisions. The Schnorr-Euchner algorithm for comput-
ing a reduced latt ice basis or relations from a generating sys-
tem can be applied to b ig in l : as well as b i g f l o a t lattices.
The necessary approximations within the algorithm can be
done by using doub les , xdoub le s (floating point ar i thmetic
with double+double precision) or b i g f l o a ' c s . This diversity
would normally imply the implementation and maintenance

of six algorithms (later on referred to as versions), i.e. pro-
riding n variations of the original algorithms would result
in the tremendous amount of 6 * n algorithms. The dif-
ferences between those six algorithms are rather small and
essentially result from vector operations over different types.
Therefore we have implemented template vector classes as
shown in figure 4.

p_vector<T> 1

p_vector_SP<T> I

>- I vector_op<E,A>

> I vector._op_SP<E,A> I

, derived from

>- used by

Figure 4: Template Module: Vector Operations

The class p_vector<T> (see figure 4) comprises vector
operations working on pointers of the specified template
type T. The class p_vector_SP<T> which is derived from
the class p_vector<T> re-implements the scalar product by
using a function pointer v o i d (* a c a l p r o d) (T ~ , T*, T*,
l idia_sizeot) . Providing a function pointer the user can
define a special scalar product which might be important
for more elaborate applications. Since the use of function
pointers implies a loss of efficiency, we are providing a sep-
arate class for this feature to restrict this disadvantage to
the case of very specialized applications. The two classes
p_vector<T> and p_vector.SP<T> are for internal use only.
The classes are specialized for b i g i a t s and b i g f l o a t s . In
addition, we are using those classes for the types double and
xdouble.

Since the Schnorr-Euchner algorithm is working on
the exact vector as well as its approximation at the
san~e time, we simplify the handling by introducing
the two classes vector.op<g,A> and vec'cor_op..SP<g,A>
(E=exact , A=approximat ion) . The template structs
vector_op<E,A> and vector_op_SP<E,A> consist of two
elements p_vec to r (E) , p_vec to r (A) and p_vector .SP(E) ,
p_vector_SP (A) respectively.

3.2 Template Module: Type Conversions

Working on exact representations and the appropriate ap-
proximations at the same time causes major conversion
problems and requires efficient conversion routines. The
problems are solved by implementing the elementary con-
version functions (from E to 1 and vice versa) in the class
basedaodules<g,A,Var> (the parameter Vat is only used to
delimitate the different variations of an algorithm). In the
derived classes bus i s / g e n s y s modules<E, A, Vat> we provide
operations for converting vectors and lattices (see figure 5).

For lattices determined by a generating system, conver-
sions require addit ional checks (e.g. for 0-vectors) and there-
fore have to be implemented in a separate class.

In principle we do now have all basic components, neces-
sary for implementing the different versions and variations
of an algorithm. The final cooperation is enabled by the
kernel.

5 3 4

• I base._modules<E,A,Var> y --....
basis modules<E,A,Var~ [gensys_modules<E,A,Var>

,~ derived from

Figure 5: Template Module: Type Conversions

, lll_kernel_op<E,A,VectOpddodu I
. 0 :

Vector operations >: " < i Modules
• ' IlUke Ifu<E,A cOp,Modleq ' i

, _ me ,Yec u ',
i I

> u~d by

Figure 6: Template Kernel

3.3 Template Kernel

The kernel contains those parts of the various lattice algo-
rithms which are the same for all versions (see figure 6).

Because of efficiency reasons, the kernel had to be imple-
mented twice, based on operators for doub les and xdoub les
called l l l _ k e r a e l _ o p as well as on functions for b i g f l o a t s
(l l l _ k s r n e l . ~ u) since operators on da ta types.which are
not incorporated in the compiler cause an additional copy
operation and are therefore less efficient.

The combination of the components will now be illus-
trated by the example of reducing a b i g ~ n t . l a t t i c o A.
With the call A.111(0 .99) we would like to reduce the lat-
tice A by using the normal Schnorr-Euchner algorithm [12]
with reduction parameter 0.99 and doing the approxima-
tions by means of doub les . The call A.111(0 .99) invokes
an instantiation of the class l l l _ k e r n e l _ o p as

m_.kernel_op<bigLnt , doub le , vec t o r_op<big in t ,double>,
basis_modules<bigint, double,Normal> > alg;

followed by the operation alg. 111(A, 0.99) . Depending on
the compiler, the template construction gets resolved either
at compile time of the l ibrary (e.g. GNU g + +) or during
compiling the application (e.g. AT&T CC). If the compiler
can handle inlining well (e.g. GNU g + +) , the compiler will
generate the full source code from the components template
kernel and the template modules. This will result in the
same source code ~ explicitly programming each version
and variation of the algorithm by hand. In the other case,
the compiler will keep the function calls. Our new concept is
designed for compilers which can deal with inlining and then
achieves the best performance. With slight modifications
our new technique is also applied to all matrix classes (see
figure 1).

4 DISCO$$1ON

On the basis of some examples we will now show the effi-
ciency of our new concept described in the previous sections.
For the following running tests we have used I_iDIA 1.2, LiDIA
1.3 [l l I (which already includes the new lattice concept but

does not support the bit fields yet), PARI 1.39.03 [3], Math-
ematica 2.24 [15] and Maple V Release 35 [6]. In addition we
have tested a preliminary version of LiDIA 2.0 which includes
the bit field mechanisms.

At first we have tested a program sequence of comput-
ing the Hermite normal form of a regular n x n matrix with
randomly chosen integer entries in [0 , . . . , 104] followed by
transposing the resulting matr ix and computing their deter-
minant. The Hermite normal form of a regular n x n matr ix
is an upper triangular matrix. Knowing this information
their determinant can simply be computed by multiplying
the diagonal entries instead of using more elaborate tech-
niques designed for computing the determinant of arbitrarily
chosen matrices.

LiDIA 1.3

0.03
0.37
2.03
5.26

20.89
56.51

141.14
340.37
844.04

[

LiDIA 2.0

0.02
0.28
1.14
4.36

16.86
52.00

135.01
330.58
799.13

Timings m seconds on a Sparc20 "~

Table 1: Program Sequence det((HNF(A)) T)

In table 1 ' - ' symbolizes tha t the running time was longer
than 6000 seconds when the computat ion was aborted.

Comparing LiDIA 1.3 and the preliminary version of
LiDIA 2.0 the timings in table 1 show that by using the bit
field mechanisms we achieve a major speed-up. It results
from the fact that the HNF computat:.on manipulates the
bit fields such that the flags for coding the triangular struc-
ture of the matrix is set. This information can therefore be
used to speed-up further computations.

As another example we have computed the LLL reduc-
tion of integer lattices using the implementation of the orig-
inal Schnorr-Euchner algorithm [12] of the b i g i n t _ l a t t i c e
(reduction parameter 0.99) based on the new concept de-
scribed in section 3.

Table 2 lists timings for sparse (n + 1) × n lattices where
the last row contains randomly chosen integer entries in
[0 102s].

I n II LiDIA] LiDIA] PARII Maple I Mathe- I
1.3 1.2 matica

r Timings in seconds on a Sparc20]

Table 2: LLL reduction for sparse matrices

4 Mathematica is a trademark of Wolfram Research, Inc.
SMaple is a trademark of Waterloo Maple Software

535

Table 3 lists the running timings for dense n x n lattices
with randomly chosen integer entries in [0 , . . . , 102t].

n LiOIA LiDIA PARI Maple Mathe-
1.3 1.2 matica

5 0.03 0.06 0.11 5.4 0.57
10 0.19 0.36 1.78 112.4 4.58
15 0.97 2.12 24.41 1391.U 27.87
20 3.63 7.42 119.07 6168.7 70.60
25 13.75 21.27 465.42 169.43
30 32.03 38.71 1555.31 365.23

Timings in seconds on a Sparc20

Table 3: LLL reduction of dense matrices

In tables 2 and 3 ' - ' symbolizes that the running time
was longer than 6000 seconds when the computation was
aborted or the result was not correct.

The timings show that the new concept does not im-
ply a loss of efficiency of our algorithms but even results
in a slight speed-up which was achieved by improved inlin-
ing. Altogether, the examples document a major advantage
comparing the timings of LiDIA 1.3 to the ones of LiDIA 1.2
as well as Maple, PARI and Mathematica. This shows the
efficiency of our new concepts.

5 CONCLUSIONS

In this paper we have proposed a new design concept for
sparse and dense matrices as well as lattices which allows
mixed representations and uses bit fields for storing specific
information (section 2.1). Consequently, we achieve a major
speed-up for single operations and especially for sequences
of operations (section 4). In addition we have introduced
a new template technique (section 3). In combination, our
new concepts ensure

• Flexibi l i ty - Good adjustment of the matrix and lat-
tice classes to the requirements of specific applications
by collecting structure and high-level information.

• G o o d M a i n t e n a n c e - As less code duplication as
possible.

• Ex tend ib i l i t y - Easy integration of new versions and
variations of algorithms and data-types by defining
new template modules and extending the template ker-
nel.

For the future we plan to integrate the new programming
technique of expression templates [14] which should result
in another major speed-up of the operations. In addition
we are working on extending the functionality of the matrix
and lattice classes in LiOlA.

References

[I] Babai, L.: On Lov£sz' Lattice Reduction and the
Nearest Lattice Point Problem. Combinatorica 6, 1-13
(1986).

[2] Barton, J.J., and Nackman, L.R.: Scientific and Engi-
neering C++ - An Introduction with Advanced Tech-
niques and Examples. Addison Wesley (1994).

[3] Batut, C., Bernardi, D., Cohen, H., and Olivier, M.:
User's Guide to PARI-GP. University of Bordeaux,
f t p : / /megrez . math. u-bordeaux, f r (1995).

[4] Biehl, I., Buchmann, J., and Papanikolaou, T.: LiDIA:
A Library for Computational Number Theory. Techni-
cal Report 03/95, SFB 124, Universit£t des Sa~rlandes
(1995).

[5] Buchmann, J., and Kessler, V.: Computing a Reduced
Lattice Basis from a Generating System. Preprint, Uni-
versit£t des Saarlandes (1992).

[6] Char, B.W., Geddes, K.O., Gunner, G.H., Leong, B.L.,
Monagan, M.B., and Watt, S.M.: Maple VLibrary Ref-
erence Manual. Springer-Verlag and Waterloo Maple
Publishing (1991).

[7] Cohen, H.: A Course in Computational A/gebra/c Num-
ber Theory. Second Edition, Springer Verlag Heidelberg
(1993).

[8] Fincke, U., and Pohst, M.: Improved Methods for Cal-
culation Vectors of Short Length in a Lattice, includ-
ing a Complexity Analysis. Math. Comp. 44, 463-471
(1985).

[9] Kernighan, B. W., and Ritchie, D.M~: The C Program-
ming Language. Second Edition, Prentice Hall, Engle-
wood Cliffs, New Jersey (1988).

[10] Lenstra, A. K., Lenstra, H. W. Jr., and Lov~sz, L.: Fac-
toring Polynomials with Rational CoeMcieuts. Math.
Ann. 261, 515-534 (1982).

[11] I_iDIA Group: LiDIA Manual. UniversitKt des
Saarlandes/TH Darmstadt, see I_iDIA homepage:
http ://www-j b. cs. uni-sb, de/LiDIl/l ~ -~ml/lidia
/lidia.html (1996).

[12] Schnorr, C.P., and Euchner, M.: Lattice Basis Reduc-
tion: Improved Practical Algorithms and Solving Sub-
set Sum Problems. Springer Lecture Notes in Computer
Science LNCS 529, 68-85 (1991).

[13] Stroustrup, B.: The C++ Programming Language.
Second Edition, Addison Wesley (1991).

[14] Veldhuizen, T.: Expression Templates. Developer In-
formation and Resources, Rogue Wave Software, Inc.
(1994).

[15] Wolfram, S.: Mathematica - A System for Doing Math-
ematics by Computer. Second Edition, Addison Wesley
(1991).

Patrick Theobald is a Ph.D. student at the Lehrstuhl ffir
Theoretische Informatik at the Technische Hochschule in
Darmstadt, Germany. He holds a Dipl.-Inform. degree from
the Universit£t des Saarlandes, Germany. His research in-
terest is in Computational Number Theory. He is currently
supported by the Deutsche Forschungsgemeinschaft.

Susanne Wetzel is a Ph.D. candidate at the Universit£t
des Saarlandes, Germany and holds a scholarship from the
Deutsche Forschungsgemeinschaft. She received her Dipl.-
Inform. degree from the Universit£t Karlsruhe (TH), Ger-
many. Her current research interests are in Computational
Number Theory and Cryptography.

Werner Backes is a Master student at the Universit£t des
Saarlandes, Germany. His research interest is in Computa-
tional Number Theory.

536

