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ABSTRACT 

In this paper we present a new template class concept for 
matrices and lattices. In the design we have focussed on 
the efficiency of single as well as sequences of operations. 
In order to get concise and efficient programming code we 
present a new technique based on template mechanisms and 
suitable inheritance structures. 

1 I N T R O D U C T I O N  

In many fields in mathematics and computer science, com- 
putations on matrices and lattices have various applications, 
e.g. in class group theory, cryptography, combinatorial op- 
timization and scientific computing. Most of those appli- 
cations are extremely time consuming and therefore require 
efficient implementations of the underlying data-types and 
basic operations. In general, many applications do not call 
only one but a sequence of lattice and matrix operations. 

Through the design and the implementation of a new 
object-oriented concept for matrix and lattice operations in 
LiDIA 1 [4] we take into account the efficiency of a single al- 
gorithm as well as a sequence of different operations. Other 
computer algebra systems are typically single-algorithm- 
oriented which stands in contrast to our approach. 

In [iDIA we collect specific information in each step of an 
operation sequence which is subsequently used in the next 
step of the on-going computation. In order to achieve ihe 
maximal efficiency, this concept obviously requires the im- 
plementation of several variations of the same algorithm. 
Using conventional programming methods would result in a 
large amount of duplicated code. In this paper we present 
a new concept solving the problem by combining template 

tL iDIA is a Library for Computa t iona l  Number Theory which is 
being developed by the LiDIA Group at the Ins t i tu te  of Prof. Dr. J. 
Buchmann at the UniversitS.t des Sa.arlandes/TH Darmstad t  
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mechanisms with suitable inheritance structures. Our im- 
plementation is very efficient (for single algorithms as well 
as operation sequences), flexible, extendible and results in 
concise programmlng code which is easy to maintain. 

In the following we first describe the inheritance struc- 
ture of the template matrix and lattice classes (section 2.1). 
Subsequently (section 3), we present a new programmlng 
technique using so-called template modules and kernels for 
implementing the classes efficiently. On the basis of run- 
ning timings (section 4) of LiDIA in comparison with other 
computer algebra systems we show the efficiency of our new 
concept. 

2 STRUCTURE OF THE MATRIX  AND LATTICE 
CLASSES IN LiDIA 

In this section we will describe the structure of the matrix 
and lattice classes of the C + +  library [iDIA [4] and present 
the advantages of our design concept. The basic two con- 
cepts are the application of inheritance to template struc- 
tures and the use of bit fields for coding structure informa- 
tion, storage information and other high level information. 
By means of the first technique we can support matrices 
and lattices over different types. In addition, we achieve a 
gradation of the functions of the classes depending on the 
operations of the used template type. The second concept 
allows us to ensure that fast single operations also imply the 
efficiency of applications calling a sequence of operations. 

2.1 Inheritance Structure and Bit Fields 

The inheritance structure of the template matrix and lattice 
classes in LiDIA 1.3 is shown in figure 1. 

The basis of our matrix classes consists of the two classes 
dense .ma t r ix  and spaxse_taatr ix which are invisible for the 
user. For efficiency reasons, these classes are no virtual base 
classes [2, 13]. In these classes we define the data structure 
for sparse and dense matrices (see figure 2) which is ex- 
plained by some examples in figure 3. As shown in figures 
2 and 3 it is possible to create a matrix with dense, sparse 
or even a mixed representation by combining the dense and 
sparse data structure elements. 

Bit fields such as storage.mode, s t r u c t t t r o ~ o d e ,  
£nfo_mode and prLut_mode which are defined in the class 
sparse_mat r ix  store specific matrix information which is 
extensively used by the derived classes. The bit fields can 
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Figure 1: Inheritance Structure 
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Figure 2: Dense/Sparse Data Structure 

directly be set by the user or manipulated by the imple- 
mented algorithms. 

• storage.=ode:  In this field we keep the information 
on the representation of the matrix (sparse, dense or 
mixed) as weU as the information on whether the ma- 
trix is stored column or row-oriented. The advantage 
of this bit field is obvious since for each high level func- 
tion the best representation can be chosen individually. 
This way we can ensure the most efficient computation 
for each function. Fast conversion routines build the 
connection between the different representations and 
orientations. 

• s t r u c t u r ,  =ode: The idea of this bit field is to use 
information about the distribution of the entries in 
the matrix in order to achieve a major speed-up. For 
example, we code the information whether a matrix 
has diagonal or triangular structure etc. 

• info_fode:  With this field we provide special informa- 
tion on the matrix e.g. whether the columns or rows 
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Figure 3: Example 

are linearly independent or whether this is a special 
kind of matrix e.g. Gram matrix. 

• pr~nt .~ode:  This bit field is the basis of all input 
and output operations of the matrix classes. The in- 
put /output  format is chosen according to the bit field 
(e.g. in Maple2/PARI [3]/ Mathematica3/LiDIA for- 
mat). 

The class b a s e _ a a t r i x  is derived from the two classes 
dense .mat r ix  and spaxse_aat r ix .  The idea of the class 
base~aatrLx is, that a matrix can be interpreted as a 2- 
dimensional array with a more advanced functionality. The 
requirements on the used template type are rather small  
The template type only has to have an assign-operator, an 
input and output-operator  as well as a swap function. In 
general, the class base_matr ix  provides access and structure 
functions. We refer to the LiDIA-Manual [11] for a more 
detailed description of the functionality~ 

In a second step the class r ing_mat r ix  is derived from 
the class baao2aat r ix .  This class gives the LiDIA user the 
possibility to create matrices over rings. Consequently, there 
are more restrictions to the used template type. In addition 
to the requirements of the class base_matr ix  this class de- 
mands the operators +,  - and * as well as a member func- 
tion called one() (returning the one element of the ring) and 
a member function called zero() (returning the zero element 
of the abelian group). At the moment this class only offers 
simple matrix operations over rings. For the future we plan 
to implement further high-level matrix functions operating 
over arbitrary rings. 

By a third derivation step we obtain the class 
f i e l d . m a t r i x .  With this class it is possible to instantiate 
and work with matrices over fields. In addition to the re- 
quirements for the class rLag2aatr ix ,  the template type has 
to have a / operator. At the moment this class also offers 
only simple matrix operations over fields. 

Based on the described hierarchy it is now possible to 
derive the following high-level classes: 

2 M a p l e  is a t r a d e m a r k  o f  W a t e r l o o  M a p l e  S o f t w a r e  

S M a t h e m a t i c a  is a t r a d e m a r k  o f  W o l f r a m  f t e s e a r c h  Inc .  
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• b i g i n t . m a t r i x -  a class for doing linear algebra over 
7Z. This class offers functions for computing deter- 
minants, the Hermite normal form, the Smith normal 
form etc. [7]. 

• b i g f l o a t . m a t r i x  - a class for doing matr ix operations 
over b ig f loa t a  (in work). 

• bigmod_matrix - a class providing modular matrix op- 
erations, e.g. computing the kernel modulo n [11]. 

• b i g i n t l a t t i c e  and b i g f l o a t . l a t t i c e  - classes 
whose functionality comprises latt ice algorithms for 
computing reduced latt ice bases (e.g. Schnorr-Euchner 
algorithm [10, 12]), computing relations from a given 
generating system (e.g. Buchmann-Kessler algorithm 
[5]), handling Gram matrices as well as computing 
shortest and closest vectors [1, 7, 8]. 

3 TEMPLATE MODULES AND KERNELS 

In the classes described in the previous section, many vari- 
ations of the same basic algorithm have to be implemented 
depending on the various information stored in the bit fields. 
In general, the differences are rather small and the diversity 
would normally result in a large amount of programming 
code. One approach to solve that  problem is applying the 
well-known C-technique of using function pointers [9]. The 
gained variability is tremendous but  might imply a major 
loss of efficiency [14]. It seems that  one only has the choice 
between a large and efficient or a small but  slower code ba- 
sis. Fortunately,  there is a third way comprising the ad- 
vantages of both techniques. In the following we will de- 
scribe this new technique on the basis of the latt ice classes 
b i g f l o a t . l a t t i c e  and bigint_lattice [II]. 

A lattice is an additive discrete subgroup of the 1~" and 
can be determined by a basis, a generating system, a Gram 
matr ix or a quadrat ic  form [7]. Since matrices are a com- 
mon representation for lattices, the lattice classes in LiDIA 
are derived from the matr ix  classes (see figure 1). In each of 
the classes b i g i n t . l a t t ; i c e  and b i g f l o a t . l a t t i c e  we have 
summarized the lat t ice algorithms for latt ice bases, gener- 
ating systems as well as Gram matrices. In earlier versions 
of LiDIA we had a class distinction between bases and gen- 
erating systems. This approach was turned down because 
there was no real practical use for the class diversity. 

As already mentioned before, the latt ice classes in LiDIA 
offer algorithms for computing reduced latt ice bases, com- 
puting relations from generating systems, handling Gram 
matrices etc. [5, 7, 10, 12]. For most algorithms the classes 
do not only contain an implementation of the original algo- 
ri thm but also comprise several variations (e.g. using differ- 
ent scalar products) :  In order to keep the code basis small 
but very efficient and variable, we have developed a new 
concept which we will describe in the following subsections. 

3.1 Template Module: Vector Operations 

As an example, we will now focus on the Schnorr-Euchner 
algorithm [12] for motivating and explaining the various de- 
sign decisions. The Schnorr-Euchner algorithm for comput- 
ing a reduced latt ice basis or relations from a generating sys- 
tem can be applied to b ig in l :  as well as b i g f l o a t  lattices. 
The necessary approximations within the algorithm can be 
done by using doub les ,  xdoub le s  (floating point ar i thmetic 
with double+double  precision) or b i g f l o a ' c s .  This diversity 
would normally imply the implementation and maintenance 

of six algorithms (later on referred to as versions), i.e. pro- 
riding n variations of the original algorithms would result 
in the tremendous amount of 6 * n algorithms. The dif- 
ferences between those six algorithms are rather small and 
essentially result from vector operations over different types. 
Therefore we have implemented template vector classes as 
shown in figure 4. 

p_vector<T> 1 

p_vector_SP<T> I 

>- I vector_op<E,A> 

> I vector._op_SP<E,A> I 

, derived from 

>-  used by 

Figure 4: Template Module: Vector Operations 

The class p_vector<T> (see figure 4) comprises vector 
operations working on pointers of the specified template 
type T. The class p_vector_SP<T> which is derived from 
the class p_vector<T> re-implements the scalar product by 
using a function pointer v o i d  ( * a c a l p r o d ) ( T ~ ,  T*, T*, 
l idia_sizeot) .  Providing a function pointer the user can 
define a special scalar product  which might be important  
for more elaborate applications. Since the use of function 
pointers implies a loss of efficiency, we are providing a sep- 
arate class for this feature to restrict this disadvantage to 
the case of very specialized applications. The two classes 
p_vector<T> and p_vector.SP<T> are for internal use only. 
The classes are specialized for b i g i a t s  and b i g f l o a t s .  In 
addition, we are using those classes for the types double  and 
xdouble. 

Since the Schnorr-Euchner algorithm is working on 
the exact vector as well as its approximation at the 
san~e time, we simplify the handling by introducing 
the two classes vector.op<g,A> and vec'cor_op..SP<g,A> 
(E=exact ,  A=approximat ion) .  The template  structs 
vector_op<E,A> and vector_op_SP<E,A> consist of two 
elements p_vec to r (E) ,  p_vec to r (A)  and p_vector .SP(E) ,  
p_vector_SP (A) respectively. 

3.2 Template Module: Type Conversions 

Working on exact representations and the appropriate  ap- 
proximations at the same time causes major  conversion 
problems and requires efficient conversion routines. The 
problems are solved by implementing the elementary con- 
version functions (from E to 1 and vice versa) in the class 
basedaodules<g,A,Var> (the parameter  Vat is only used to 
delimitate the different variations of an algorithm). In the 
derived classes bus i s / g e n s y s  modules<E,  A, Vat> we provide 
operations for converting vectors and lattices (see figure 5). 

For lattices determined by a generating system, conver- 
sions require addit ional checks (e.g. for 0-vectors) and there- 
fore have to be implemented in a separate  class. 

In principle we do now have all basic components,  neces- 
sary for implementing the different versions and variations 
of an algorithm. The final cooperation is enabled by the 
kernel. 

5 3 4  
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Figure 5: Template Module: Type Conversions 

, lll_kernel_op<E,A,VectOpddodu I 
. . . . . . . . . .  0 : . . . . . . . . . . .  

Vector operations >:  " < i Modules 
• ' IlUke Ifu<E,A cOp,Modleq ' i 

, _ me ,Yec u ', 
i I 

> u~d by 

Figure 6: Template Kernel 

3.3 Template Kernel 

The kernel contains those parts  of the various lattice algo- 
rithms which are the same for all versions (see figure 6). 

Because of efficiency reasons, the kernel had to be imple- 
mented twice, based on operators for doub les  and xdoub les  
called l l l _ k e r a e l _ o p  as well as on functions for b i g f l o a t s  
( l l l _ k s r n e l . ~ u )  since operators on da ta  types.which are 
not incorporated in the compiler cause an additional copy 
operation and are therefore less efficient. 

The combination of the components will now be illus- 
trated by the example of reducing a b i g ~ n t . l a t t i c o  A. 
With the call A.111(0 .99)  we would like to reduce the lat- 
tice A by using the normal Schnorr-Euchner algorithm [12] 
with reduction parameter  0.99 and doing the approxima- 
tions by means of doub les .  The call A.111(0 .99)  invokes 
an instantiation of the class l l l _ k e r n e l _ o p  as 

m_.kernel_op<bigLnt  , doub le ,  vec t  o r_op<big in t  ,double>,  
basis_modules<bigint, double,Normal> > alg; 

followed by the operation alg. 111(A, 0.99) .  Depending on 
the compiler, the template construction gets resolved either 
at compile time of the l ibrary (e.g. GNU g + + )  or during 
compiling the application (e.g. AT&T CC). If the compiler 
can handle inlining well (e.g. GNU g + + ) ,  the compiler will 
generate the full source code from the components template 
kernel and the template  modules. This will result in the 
same source code ~ explicitly programming each version 
and variation of the algorithm by hand. In the other case, 
the compiler will keep the function calls. Our new concept is 
designed for compilers which can deal with inlining and then 
achieves the best performance. With slight modifications 
our new technique is also applied to all matrix classes (see 
figure 1). 

4 DISCO$$1ON 

On the basis of some examples we will now show the effi- 
ciency of our new concept described in the previous sections. 
For the following running tests we have used I_iDIA 1.2, LiDIA 
1.3 [ l l  I (which already includes the new lattice concept but 

does not support the bit fields yet), PARI 1.39.03 [3], Math- 
ematica 2.24 [15] and Maple V Release 35 [6]. In addition we 
have tested a preliminary version of LiDIA 2.0 which includes 
the bit field mechanisms. 

At first we have tested a program sequence of comput- 
ing the Hermite normal form of a regular n x n matrix with 
randomly chosen integer entries in [ 0 , . . . ,  104] followed by 
transposing the resulting matr ix  and computing their deter- 
minant. The Hermite normal form of a regular n x n matr ix 
is an upper triangular matrix.  Knowing this information 
their determinant can simply be computed by multiplying 
the diagonal entries instead of using more elaborate tech- 
niques designed for computing the determinant  of arbitrarily 
chosen matrices. 

LiDIA 1.3 

0.03 
0.37 
2.03 
5.26 

20.89 
56.51 

141.14 
340.37 
844.04 

[ 

LiDIA 2.0 

0.02 
0.28 
1.14 
4.36 

16.86 
52.00 

135.01 
330.58 
799.13 

Timings m seconds on a Sparc20 "~ 

Table 1: Program Sequence det((HNF(A)) T) 

In table 1 ' - '  symbolizes tha t  the running time was longer 
than 6000 seconds when the computat ion was aborted. 

Comparing LiDIA 1.3 and the preliminary version of 
LiDIA 2.0 the timings in table 1 show that  by using the bit 
field mechanisms we achieve a major  speed-up. It results 
from the fact that  the HNF computat:.on manipulates the 
bit fields such that  the flags for coding the triangular struc- 
ture of the matrix is set. This information can therefore be 
used to speed-up further computations.  

As another example we have computed the LLL reduc- 
tion of integer lattices using the implementation of the orig- 
inal Schnorr-Euchner algorithm [12] of the b i g i n t _ l a t t i c e  
(reduction parameter  0.99) based on the new concept de- 
scribed in section 3. 

Table 2 lists timings for sparse (n + 1) × n lattices where 
the last row contains randomly chosen integer entries in 
[0 . . . . .  102s]. 

I n II LiDIA] LiDIA] PARII Maple I Mathe- I 
1.3 1.2 matica 

r Timings in seconds on a Sparc20 ] 

Table 2: LLL reduction for sparse matrices 

4 Mathematica is a trademark of Wolfram Research, Inc. 
SMaple is a trademark of Waterloo Maple Software 
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Table 3 lists the running timings for dense n x n lattices 
with randomly chosen integer entries in [0 , . . . ,  102t]. 

n LiOIA LiDIA PARI Maple Mathe- 
1.3 1.2 matica 

5 0.03 0.06 0.11 5.4 0.57 
10 0.19 0.36 1.78 112.4 4.58 
15 0.97 2.12 24.41 1391.U 27.87 
20 3.63 7.42 119.07 6168.7 70.60 
25 13.75 21.27 465.42 169.43 
30 32.03 38.71 1555.31 365.23 

Timings in seconds on a Sparc20 

Table 3: LLL reduction of dense matrices 

In tables 2 and 3 ' - '  symbolizes that the running time 
was longer than 6000 seconds when the computation was 
aborted or the result was not correct. 

The timings show that the new concept does not im- 
ply a loss of efficiency of our algorithms but even results 
in a slight speed-up which was achieved by improved inlin- 
ing. Altogether, the examples document a major advantage 
comparing the timings of LiDIA 1.3 to the ones of LiDIA 1.2 
as well as Maple, PARI and Mathematica. This shows the 
efficiency of our new concepts. 

5 CONCLUSIONS 

In this paper we have proposed a new design concept for 
sparse and dense matrices as well as lattices which allows 
mixed representations and uses bit fields for storing specific 
information (section 2.1). Consequently, we achieve a major 
speed-up for single operations and especially for sequences 
of operations (section 4). In addition we have introduced 
a new template technique (section 3). In combination, our 
new concepts ensure 

• Flexibi l i ty  - Good adjustment of the matrix and lat- 
tice classes to the requirements of specific applications 
by collecting structure and high-level information. 

• G o o d  M a i n t e n a n c e  - As less code duplication as 
possible. 

• Ex tend ib i l i t y  - Easy integration of new versions and 
variations of algorithms and data-types by defining 
new template modules and extending the template ker- 
nel. 

For the future we plan to integrate the new programming 
technique of expression templates [14] which should result 
in another major speed-up of the operations. In addition 
we are working on extending the functionality of the matrix 
and lattice classes in LiOlA. 
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