
ar
X

iv
:1

90
5.

09
08

8v
1

 [
cs

.C
R

]
 2

2
M

ay
 2

01
9

Scaling Pseudonymous Authentication for Large Mobile Systems

Mohammad Khodaei
Networked Systems Security Group

Stockholm, Sweden
khodaei@kth.se

Hamid Noroozi
Networked Systems Security Group

Stockholm, Sweden
hnoroozi@kth.se

Panos Papadimitratos
Networked Systems Security Group

Stockholm, Sweden
papadim@kth.se

ABSTRACT

The central building block of secure and privacy-preserving Ve-

hicular Communication (VC) systems is a Vehicular Public-Key

Infrastructure (VPKI), which provides vehicles with multiple ano-

nymized credentials, termed pseudonyms. These pseudonyms are

used to ensure message authenticity and integrity while preserv-

ing vehicle (thus passenger) privacy. In the light of emerging large-

scale multi-domain VC environments, the efficiency of the VPKI

and, more broadly, its scalability are paramount. By the same to-

ken, preventing misuse of the credentials, in particular, Sybil-based

misbehavior, and managing “honest-but-curious” insiders are other

facets of a challenging problem. In this paper, we leverage a state-

of-the-art VPKI system and enhance its functionality towards a

highly-available, dynamically-scalable, and resilient design; this

ensures that the system remains operational in the presence of

benign failures or resource depletion attacks, and that it dynam-

ically scales out, or possibly scales in, according to request arrival

rates. Our full-blown implementation on the Google Cloud Plat-

form shows that deploying large-scale and efficient VPKI can be

cost-effective.

KEYWORDS

VANETs, VPKI, Security, Privacy, Availability, Scalability, Resilient,

Micro-service, Container Orchestration, Cloud.

1 INTRODUCTION

In Vehicular Communication (VC) systems, vehicles beacon Co-

operative Awareness Messages (CAMs) and Decentralized Envi-

ronmental Notification Messages (DENMs) periodically, at high

rates, to enable transportation safety and efficiency. It has been

well-understood that VC systems are vulnerable to attacks and

that the privacy of their users is at stake. As a result, security and

privacy solutions have been developed by standardization bodies

(IEEE 1609.2 WG [51] and ETSI [45]), harmonization efforts (C2C-

CC [75]), and projects (SeVeCom [53, 71, 73], PRESERVE [76], and

CAMP [2, 88]). A consensus towards using Public Key Cryptogra-

phy (PKC) to protect Vehicle-to-Vehicle (V2V)/Vehicle-to-Infrastructure

(V2I) (V2X) communication is reached: a set of short-lived anony-

mized certificates, termed pseudonyms, are issued by a Vehicular

Public-Key Infrastructure (VPKI), e.g., [54, 60, 88], for registered

vehicles. Vehicles switch from one pseudonym to a non-previously

used one towards message unlinkability, as pseudonyms are per se

inherently unlinkable. Pseudonymity is conditional, in the sense

that the corresponding long-term vehicle identity can be retrieved

by the VPKI when needed, e.g., if vehicles deviating from system

policies.

Deploying a VPKI differs from a traditional Public-Key Infra-

structure (PKI), e.g., [6, 13, 15]. One of the most important factors

is the PKI dimension, i.e., the number of registered “users” (vehi-

cles) and the multiplicity of certificates per user. According to the

US Department of Transportation (DoT), a VPKI should be able

to issue pseudonyms for more that 350 million vehicles across the

Nation [1]. Considering the average daily commute time to be 1

hour [1] and a pseudonym lifetime of 5 minutes, the VPKI should

be able to issue at least 1.5 × 1012 pseudonyms per year, i.e., 5 or-

ders of magnitude more than the number of credentials the largest

current PKI issues (10 million certificates per year [88]). Note that

this number could be even greater for the entire envisioned Intelli-

gent Transport Systems (ITSs) ecosystem, e.g., including pedestri-

ans and cyclists, Location Based Services (LBSs) [45, 74, 83] and ve-

hicular social networks [52]. More so, outside the VC realm, there

is an ongoing trend towards leveraging short-lived certificates [85]

for the Internet: web servers request new short-lived certificates,

valid for a few days [85]. This essentially diminishes the vulner-

ability window, e.g., if a single Certification Authority (CA) were

compromised [85], or if a large fraction of certificates needed to

be revoked after the latest Certificate Revocation List (CRL) was

distributed among all entities [39, 57, 67].

With emerging large-scale multi-domain VC environments [45,

51, 61, 74, 75], the efficiency of the VPKI and, more broadly, its

scalability are paramount. Vehicles could request pseudonyms for

a long period, e.g., 25 years [63]. However, extensive pre-loading

with millions of pseudonyms per vehicle for a long period is com-

putationally costly and inefficient in terms of utilization [60].More-

over, in case of revocation [39, 57, 67], a huge CRL should be dis-

tributed among all vehicles due to long lifespan of the credentials,

e.g., [63]: a sizable portion of the CRL is irrelevant to a receiving ve-

hicle and can be left unused, i.e., wasting of significant bandwidth

for CRL distribution [57, 84]. Alternatively, each vehicle could in-

teract with the VPKI regularly, e.g., once or a few times per day, not

only to refill its pseudonym pool but also to fetch the latest revoca-

tion information1. However, the performance of a VPKI system can

be drastically degraded under a clogging Denial of Service (DoS)

attack [54, 60], thus, compromising the availability of the VPKI

entities. Moreover, a flash crowd [32], e.g., a surge in pseudonym

acquisition requests during rush hours, could render the VPKI un-

reachable, or drastically decrease its quality of service.

The cost of VPKI unavailability is twofold: security (degrada-

tion of road safety) and privacy. An active malicious entity could

prevent other vehicles from accessing the VPKI to fetch the latest

revocation information. Moreover, signing CAMs with the private

keys corresponding to expired pseudonyms, or the Long Term Cer-

tificate (LTC), is insecure and detrimental to user privacy. Even

1Note that Cellular-V2X provides reliable and low-latency V2X communication with
a wide range of coverage [28, 30, 31]; thus, network connectivity will not be a bottle-
neck.

1

http://arxiv.org/abs/1905.09088v1

though one can refill its pseudonym pool by relying on anony-

mous authentication primitives, e.g., [35, 36, 56, 72], the perfor-

mance of the safety-related applications could be degraded. For ex-

ample, leveraging anonymous authentication schemes for the ma-

jority of vehicles results in causing 30% increase in cryptographic

processing overhead in order to validate CAMs [56]. Thus, it is

crucial to provide a highly-available, scalable, and resilient VPKI

design that could efficiently issue pseudonyms in an on-demand

fashion2 [55, 65].

Considering amulti-domain development of VC systems, with a

multiplicity of service providers, each vehicle could obtain pseudo-

nyms from various service providers. The acquisition of multiple

simultaneously valid (sets of) pseudonyms would enable an adver-

sary to inject multiple erroneous messages, e.g., hazard notifica-

tions, as if they were originated from multiple vehicles, or affect

protocols based on voting, by sending out false, yet authenticated,

information. Even though there are distributed schemes to identify

Sybil [43] nodes, e.g., [47, 90], or mitigate this vulnerability by re-

lying on Hardware Security Modules (HSMs) [71], a VPKI system

should prevent such credentials misuse on the infrastructure side,

e.g., [54, 60]. However, when deploying such a system, e.g., [38, 68],

on the cloud, a malicious vehicle could repeatedly request pseudo-

nyms; in fact, requests might be delivered to different replicas of

a micro-service, releasing multiple simultaneously valid pseudo-

nyms. Mandating a centralized database, shared among all repli-

cas to ensure isolation and consistency of all transactions, would

mitigate such a vulnerability. However, this contradicts highly ef-

ficient and timely pseudonyms provisioning for large-scale mobile

systems.

Contributions: In this paper, we leverage and enhance a state-

of-the-art VPKI, and propose a VPKI as a Service (VPKIaaS) sys-

tem towards a highly-available, dynamically-scalable, and fault-

tolerant (highly-resilient) design, ensuring the system remains op-

erational in the presence of benign failures or any resource deple-

tion attack (clogging a DoS attack). Moreover, our scheme eradi-

cates Sybil-based misbehavior when deploying such a system on

the cloud with multiple replicas of a micro-service without dimin-

ishing the pseudonym acquisition efficiency. All procedures of de-

ployment andmigration to the cloud, e.g., bootstrapping phase, ini-

tializing the micro-services, pseudonym acquisition process, mon-

itoring health and load metrics, etc., are fully automated. Through

extensive experimental evaluation, we show that the VPKIaaS sys-

tem could dynamically scale out, or possibly scale in3, based on

the VPKIaaS system workload and the requests’ arrival rate, so

that it can comfortably handle unexpected demanding loads while

being cost-effective by systematically allocating and deallocating

resources. Our experimental evaluation shows a 36-fold improve-

ment over prior work [38]: the processing delay to issue 100 pseu-

donyms for [38] is approx. 2010 ms, while it is approx. 56 ms in our

system. Moreover, the performance of [60] drastically decreases

when there is a surge in the pseudonym request arrival rates; on

2Unlike issuing short-lived certificates [85] for the Internet that responses can be
cached, issuing on-demand pseudonyms cannot be precomputed: each vehicle re-
quests new certificateswith a different public key, important for unlinkability/privacy.
3In the cloud terminology, scaling in/out, termed horizontal scaling, refers to replicat-
ing a new instance of a service, while scaling up/down, termed vertical scaling, refers
to allocating/deallocating resources for an instance of a given service.

the contrary, our VPKIaaS system can comfortably handle demand-

ing loads request while efficiently issuing batches of pseudonyms.

In the rest of the paper, we describe background and related

work (Sec. 2) and the system model and objectives (Sec. 3). We then

explain the VPKIaaS system, detailing security protocols (Sec. 4),

and provide a qualitative analysis (Sec. 5), followed by a quantita-

tive analysis (Sec. 6), before the conclusion (Sec 7).

2 BACKGROUND AND RELATED WORK

A VPKI can provide vehicles with valid pseudonyms for a long pe-

riod, e.g., 25 years [63]. However, extensive preloading with mil-

lions of pseudonyms per vehicle for such a long period is com-

putationally costly, inefficient in terms of utilization and cumber-

some for revocation [57, 61]. On the contrary, several proposals

suggest more frequent Vehicle-to-VPKI interactions, namely on-

demand schemes, e.g., [46, 54, 60, 81]. This strategy provides more

efficient pseudonym utilization and revocation, thus being effec-

tive in fending off misbehavior. But, for on-demand pseudonym

acquisition, one needs to design (and deploy) an efficient and scal-

able system while being resilient against any resource depletion

attack. Even though VPKI systems may handle large-scaled dis-

tributed scenarios, e.g., [38], there is lack of dynamic scalability

(i.e., dynamically scale out/in according to the arrival rates) and re-

silient to a resource depletion attack, e.g., a DistributedDoS (DDoS)

attack. Beyond a significant performance improvement over [38],

ourVPKIaaS implementation is highly-available, dynamically-scalable,

and fault-tolerant.

Sybil-based [43] misbehavior can seriously affect the operation

of VC systems, as multiple fabricated non-existing vehicles could

pollute the network by injecting false information. For example,

an adversary with multiple valid pseudonyms, termed here a Sybil

node, could create an illusion of traffic congestion towards affect-

ing the operation of a traffic monitoring system, or broadcast fake

misbehavior detection votes [77, 78, 80], or disseminate Spam to

other users in a vehicular social network [52]. The idea of enforc-

ing non-overlapping pseudonym lifetimeswas first proposed in [71].

This prevents an adversary from equipping itself with multiple

valid identities, and thus affecting protocols of collection of mul-

tiple inputs, e.g., based on voting, by sending out redundant false,

yet authenticated, information. Even though this idea has been

accepted, a number of proposals, e.g., [63, 88], do not prevent a

vehicle from obtaining simultaneously valid pseudonyms via mul-

tiple pseudonym requests. The existence of multiple pseudonym

issuers deteriorate the situation: a vehicle could request pseudo-

nyms from multiple service providers, while each of them is not

aware whether pseudonyms for the same period were issued by

any other service provider. One can mitigate this vulnerability by

relying on an HSM, ensuring all signatures are generated under

a single valid pseudonym at any time. There are also distributed

schemes to detect Sybil nodes based on radio characteristics and tri-

angulation, e.g., [47, 90]; such strategies are application-dependent,

e.g., this cannot guarantee the operation of a trafficmonitoring sys-

tem from an adversary who disseminates multiple traffic conges-

tion messages, each signed under a distinct “fake” private key.

2

V-tokens [81] prevents a vehicle from obtaining multiple simul-

taneously valid pseudonyms due to having service providers com-

municating with each other, e.g., a distributed hash table. SEC-

MACE [60] (including its predecessors [54, 55]) prevents Sybil-based

misbehavior on the infrastructure side without the need for an

additional entity, i.e., extra interactions or intra-VPKI communi-

cations. More specifically, it ensures each vehicle has one valid

pseudonym at any time in a multi-domain environment. However,

when deploying such a system on the cloud, a malicious vehicle

could repeatedly request pseudonyms, hoping that requests are de-

livered to different replicas of a micro-service, thus obtaining mul-

tiple simultaneously valid pseudonyms, e.g., [38, 68]. Unlike such

schemes, our VPKIaaS scheme prevents Sybil-based misbehavior

on the cloud-deployed infrastructure: it ensures that each vehicle

can only have one valid pseudonym at any time in a multi-domain

VC environment; more important, it does not affect timely issuance

of pseudonyms.

The VPKI entities are, often implicitly, assumed to be fully trust-

worthy. Given the experience from recent mobile applications, e.g.,

[48, 64, 66], the adversarial model is extended from fully trustwor-

thy to honest-but-curious VPKI servers, notably in [60, 88]. Such

honest-but-curious entities may subvert the security protocols and

deviate from system policies if gained an advantage without being

identified, e.g., inferring user sensitive information [58, 59, 87, 89].

Outside the VC realm, there are different proposals for PKI to be re-

silient against compromised insiders. Such schemes rely on signing

a certificate by more than a threshold number of CAs, e.g., [44, 62];

however, such schemes cannot be used by VC systems. For exam-

ple, issuing a certificate in [44] takes approximately 2 minutes and

it varies with the number of required CAs. Obviously, this contra-

dicts with on-demand pseudonym acquisition strategies for VC sys-

tems, e.g., [55, 56, 60, 65], which necessitate efficient pseudonym

provisioning.

3 SYSTEMMODEL AND OBJECTIVES

3.1 Overview and Assumptions

A VPKI consists of a set of Certification Authorities (CAs) with

distinct roles: the Root CA (RCA), the highest-level authority, cer-

tifies other lower-level authorities; the Long Term CA (LTCA) is

responsible for the vehicle registration and the Long Term Certifi-

cate (LTC) issuance, and the Pseudonym CA (PCA) issues pseudo-

nyms for the registered vehicles. Pseudonyms have a lifetime (a va-

lidity period), typically ranging fromminutes to hours; in principle,

the shorter the pseudonym lifetime is, the higher the unlinkability

and thus the higher privacy protection can be achieved.We assume

that each vehicle is registered only with its Home-LTCA (H-LTCA),

the policy decision and enforcement point, reachable by the regis-

tered vehicles. Without loss of generality, a domain can be defined

as a set of vehicles in a region, registered with the H-LTCA, subject

to the same administrative regulations and policies [61, 70]. There

can be several PCAs, each active in one or more domains; any le-

gitimate, i.e., registered, vehicle is able to obtain pseudonyms from

any PCA, the pseudonym provider (as long as there is a trust es-

tablished between the two CAs). Trust between two domains can

be established with the help of the RCA, or through cross certifica-

tion.

RSU
3/4/5G

PCA

LTCA

PCA

LTCA

RCA

PCA

LTCA

BAA certi�es B

Cross-certi�cation

Domain A Domain B Domain C

RA
RA

RA

B

X-Cetify

LDAP LDAP

Message dissemination

 {Msg}(Piv),P
i
v

{Msg}(Piv),Pi
v

Figure 1: A VPKI Overview for Multi-domain VC Systems.

Each vehicle interacts with the VPKI entities to obtain a batch

of pseudonyms, each having a corresponding short-term private

key, to sign and disseminate their mobility information, e.g., CAMs

or DENMs, time- and geo-stamped, periodically or when needed

as a response to a specific event. Fig. 1 shows an overview of a

VPKI with three domains, A, B and C . Domains A and B have es-

tablished trust with the help of a higher level authority, i.e., the

RCA, while domains B and C have established security associa-

tion by cross certification. The vehicles in the figure are labeled

with the domains they are affiliated to. A vehicle registered in do-

main A digitally signs outgoing messages with the private key,

kiv , corresponding to P iv , which signifies the current valid pseu-

donym signed by the PCA. The pseudonym is then attached to

the signed messages to enable verification by any recipient. Upon

reception, the pseudonym is verified before the message itself (sig-

nature validation). This process ensures communication authentic-

ity, message integrity, and non-repudiation. Vehicles switch from

one pseudonym to another one (non-previously used) to achieve

unlinkability, thus protecting sender’s privacy as the pseudonyms

are inherently unlinkable.

Each vehicle “decides” when to trigger the pseudonym acquisi-

tion process based on various factors [55]. Such a scheme requires

sparse connectivity to the VPKI, but it facilitates an On-Board Unit

(OBU) to be preloaded with pseudonyms proactively, covering a

longer period, e.g., a week or a month, should the connectivity be

expected heavily intermittent. A universally fixed interval, Γ, is

specified by the H-LTCA and all pseudonyms in that domain are

issued with the lifetime (τP) aligned with the VPKI clock [60]. As

a result of this policy, at any point in time, all the vehicles trans-

mit using pseudonyms that cannot be distinguished based on their

issuance time thanks to this time alignment.

All vehicles (OBUs) registered are equipped with HSMs, ensur-

ing that private keys never leave the HSM. Moreover, we assume

that there is amisbehavior detection system, e.g., [34], that triggers

revocation. The Resolution Authority (RA) can initiate a process to

resolve and revoke all pseudonyms of amisbehaving vehicle [69]: it

interacts with the corresponding PCAs and LTCA (a detailed proto-

col description, e.g., in [54, 60]) to resolve and revoke all credentials

issued for a misbehaving vehicle. Consequently, the misbehaving

3

vehicle can no longer obtain credentials from the VPKI. The VPKI

is responsible for distributing the CRLs and notifying all legitimate

entities about the revocation, e.g., [57]. We further assume that

the cloud service providers are honest and they provide a service

with the desired Service Level Agreement (SLA); in terms of secret

management, we assume that the cloud service providers are fully

trustworthy.

3.2 Adversarial Model and Requirements

We extend the general adversary model in secure vehicular comm-

unications [60, 70] to include an honest-but-curious service provider,

i.e., a PCA that attempts to gain advantages towards its goal, e.g.,

profiling users. In addition, in the context of this work, malicious

PCAs could try to (i) issue multiple sets of (simultaneously valid)

pseudonyms for a legitimate vehicle, or (ii) issue a set of pseudo-

nyms for a non-existing (illegitimate) vehicle, or (iii) fraudulently

accuse different vehicles (users) during a pseudonym resolution

process. A deviant LTCA could attempt tomap a different LTC dur-

ing the resolution process, thus misleading the system. In our ad-

versarial model, we assume that the LTCA does not misbehave by

unlawfully registering illegitimate vehicles, i.e., issuing fake LTCs,

but it could be tempted to issue fake authorization tickets, to be

used during pseudonym acquisition process4. The RA can also con-

tinuously initiate pseudonym validation process towards inferring

user sensitive information. Our adversarial model considers multi-

ple VPKI servers collude, i.e., share information that each of them

individually infers with the others, to harm user privacy.

In a multi-PCA environment, malicious (compromised) clients

raise two challenges. First, they could repeatedly request multiple

simultaneously valid pseudonyms, thus misbehaving each as mul-

tiple registered legitimate-looking vehicles. Second, they could de-

grade the operations of the system by mounting a clogging DoS

attack against the VPKI servers. External adversaries, i.e., unautho-

rized entities, could try to harm the system operations by launch-

ing a DoS (or a DDoS) attack, thus degrading the availability of

the system. But they are unable to successfully forge messages or

‘crack’ the employed cryptosystems and cryptographic primitives.

Security and privacy requirements for V2X communications have

been extensively specified in [70], and additional requirements for

VPKI entities in [60] and the CRL distribution in [57]. Beyond the

aforementioned requirements, we need to thwart Sybil-based at-

tacks when deploying VPKIaaS system on the cloud (without de-

grading efficient pseudonym issuance). At the same time, we need

to ensure that the VPKIaaS system is highly-available and dynamically-

scalable: the system dynamically scales out, or possibly scales in,

according to the requests’ arrival rate, to handle any demanding

load while being cost-effective by systematically allocating and

deallocating resources.Moreover, we need to ensure that the scheme

is resilient to any resource depletion attack.

4During the registration process, the H-LTCA registers a vehicle upon receiving a re-
quest from the corresponding Original Equipment Manufacturer (OEM), i.e., to fraud-
ulently register a vehicle, two entities must collude. But, in order to issue a fake ticket,
the H-LTCA could do it without interacting with any other entity.

4 VPKI SERVICES OVERVIEW & SECURITY
PROTOCOLS

In the registration phase, each H-LTCA registers vehicles within

its domain and maintains their long-term identities. At the boot-

strapping phase, each vehicle needs to discover the VPKI-related

information, e.g., the available PCAs in its home domain, or the

desired Foreign-LTCA (F-LTCA) and PCAs in a foreign domain,

along with their corresponding certificates. To facilitate the over-

all intra-domain and multi-domain operations, a vehicle first finds

such information from a Lightweight Directory Access Protocol

(LDAP) [82] server. This is carried out without disclosing the real

identity of the vehicle. We presume connectivity to the VPKI, e.g.,

via Roadside Units (RSUs) or Cellular-V2X; should the connectiv-

ity be intermittent, vehicle, i.e., the OBU, could initiate pseudonym

provisioning proactively based on different parameters, e.g., the

number of remaining valid pseudonyms, the residual trip duration,

and the networking connectivity.

The H-LTCA authenticates and authorizes vehicles over a mu-

tually authenticated Transport Layer Security (TLS) [42] tunnel.

Thisway the vehicle obtains a native ticket (n-tkt) from its H-LTCA

while the targeted PCA or the actual pseudonym acquisition period

is hidden from the H-LTCA; the ticket is anonymized and it does

not reveal its owner’s identity (Protocol 5 and Protocol 6 in the

Appendix). The ticket is then presented to the intended PCA, over

a unidirectional (server-only) authenticated TLS, to obtain pseudo-

nyms (Protocol 1).

When the vehicle travels in a foreign domain, it should obtain

new pseudonyms from a PCA operating in that domain; otherwise,

the vehicle would stand out and be more easily traceable (link-

able). The vehicle first requests a foreign ticket (f -tkt) from its

H-LTCA (without revealing its targeted F-LTCA) so that the ve-

hicle can be authenticated and authorized by the F-LTCA. In turn,

the F-LTCA provides the vehicle with a new ticket (n-tkt), which

is native within the domain of the F-LTCA to be used for pseu-

donym acquisition in that (foreign) domain. The vehicle then in-

teracts with its desired PCA to obtain pseudonyms. Obtaining an

f -tkt is transparent to the H-LTCA: the H-LTCA cannot distin-

guish between native and foreign ticket requests. This way, the

PCA in the foreign domain cannot distinguish native requesters

from foreign ones. For liability attribution, our scheme enables the

RA, with the help of the PCA and the LTCA, to initiate a resolu-

tion process, i.e., to resolve a pseudonym to its long-term identity.

Each vehicle can interact with any PCA, within its home or a for-

eign domain, to fetch the CRL [57] and perform Online Certificate

Status Protocol (OCSP) [54] operations, authenticated with a cur-

rent valid pseudonym.

4.1 VPKI as a Service (VPKIaaS)

We migrate the VPKI on the Google Cloud Platform (GCP) [22]

for the availability, reliability, and dynamic scalability of the VPKI

system under various circumstances. Fig. 2 illustrates a high-level

abstraction of the VPKIaaS architecture on a managed Kubernetes

cluster [25] on GCP.5 A set of Pods will be created for each micro-

service, e.g., LTCA or PCA, from their corresponding container

5Note that the RCA entity is assumed to be off-line, thus not included in this abstrac-
tion.

4

Kubernetes Master

Kube-apiserver etcd Kube-scheduler

kube-controller-manager

Node Controller Endpoints Controller

Replication Controller

LTCA RC PCA RC RA RC

Images

Container Registry

Kube-proxykubelet Docker

Container Resource Monitoring

Pod

LTCA

Pod

PCA

Pod

RA

Kube-proxykubelet Docker

Container Resource Monitoring

Pod

LTCA

Pod

PCA

Pod

RA

Kube-proxykubelet Docker

Container Resource Monitoring

Pod

LTCA

Pod

PCA

Pod

RA

Figure 2: A High-level Overview of VPKIaaS Architecture.

images, facilitating their horizontal scalability. When the rate of

pseudonym requests increases, the Kubernetes master, shown on

the top in Fig. 2, schedules new Pods or kills a running Pod in case

of benign failures, e.g., system faults or crashes, or resource deple-

tion attacks, e.g., a DoS attack. The Pods could be scaled out to the

number, set in the deployment configuration, or scaled out to the

amount of available resources enabled by Kubernetes nodes.

Each Pod publishes two types of metrics: load and health. The

load metric values are generated by a resource monitoring service,

which facilitates horizontal scaling of a micro-service: upon reach-

ing a threshold of a pre-defined load, replication controller repli-

cates a new instance of the micro-service to ensure a desired SLA.

The health metric ensures correct operation of a micro-service by

persistently monitoring its status: a faulty Pod is killed and a new

one is created. In our VPKIaaS system, we define CPU usages as

the load metric. In order tomonitor the health condition of a micro-

service, dummy requests (dummy tickets for the LTCAmicro-services

and dummy pseudonyms for the PCA micro-services) are locally

queried by each Pod6.

4.2 Security Protocols

In this section, we provide the detailed description of pseudonym

acquisition processes (Protocol 1) and pseudonym issuance valida-

tion process (Protocol 2) in order to identifymisbehaving PCA issu-

ing fraudulent pseudonym. Furthermore, in order to mitigate Sybil

attacks on the side of VPKIaaS system, we propose two protocols

(Protocols 3 and 4): an in-memory key-value Redis database [14] is

shared among all replicas of a micro-service, to facilitate efficient

validation of tickets and pseudonyms requests. Table 1 shows the

notation used in the security protocols.

4.2.1 Pseudonym Acquisition Process (Protocol 1). Each ve-

hicle first requests an anonymous ticket [54, 55] from its H-LTCA,

using it to interact with the desired PCA to obtain pseudonyms;

due to lack of space, we provide the detailed ticket acquisition pro-

cess in Appendix. Upon reception of a valid ticket, it generates

Certificate Signing Requests (CSRs) with Elliptic Curve Digital Sig-

nature Algorithm (ECDSA) public/private key pairs [45, 51] and

6A dummy ticket request is constructed by an LTCA Pod to validate the correctness
of ticket issuance procedure while a dummy pseudonym request is constructed by a
PCA Pod to ensure the correctness of pseudonym issuance procedure. Such dummy
requests cannot be used by a compromised Pod to issue fake pseudonyms (see Sec. 5).

Table 1: Notation used in the protocols

(P iv)pca , P
i
v a pseudonym signed by the PCA

(LKv ,Lkv) long-term public/private key pairs

(K i
v ,k

i
v) pseudonymous public/private key pairs

Idreq , Idres , Idca request/response/CA unique identifiers

(msд)σv a signed message with the vehicle’s private key

N ,Rnd nonce, a random number

tnow , ts , te fresh/current, starting, and ending timestamps

n-tkt , f -tkt native ticket, foreign ticket

H () hash function

Siдn(Lk ,msд) signing a message with the private key (Lk)

Veri f y(LK ,msд) verifying a message with the public key

τP pseudonym lifetime

Γ interacting interval with the VPKI

IK identifiable key

V vehicle

ζ , χ temporary variables

Protocol 1 Issuing Pseudonyms (by the PCA)

1: procedure IssuePsnyms(Req)
2: Req→(Idr eq,Rndn-tkt , tktσltca , {(K

1
v)σ

k1v
, · · · ,(Knv)σknv

},N , tnow)

3: Verify(LTCl tca, (tkt)σltca)

4: tktσltca → (SN , H (IdPCA ‖Rndtkt), IKtkt , ts , te , Exptkt)

5: H (Idthis -pca ‖Rndn-tkt)
?
= H (Idpca ‖Rndn-tkt)

6: Rndv ← GenRnd ()

7: for i:=1 to n do

8: Begin

9: Verify(K iv , (K
i
v)σ

kiv
)

10: IK
Piv
← H (IKtkt | |K

i
v | |t

i
s | |t

i
e | |H

i (Rndv))

11: if i = 1 then

12: SN i ← H (IK
Piv
| |H i (Rndv))

13: else

14: SN i ← H (SN i−1 | |H i (Rndv))

15: end if

16: ζ ← (SN i
, K iv , IKPiv

, t is , t
i
e)

17: (P iv)σpca ← Siдn(Lkpca, ζ)

18: End

19: return (Idr es , {(P
1
v)σpca , . . . , (P

n
v)σpca }, Rndv , N +1, tnow)

20: end procedure

sends the request to the PCA. Vehicle-LTCA is over mutually au-

thenticated TLS [42] tunnels (or Datagram TLS (DTLS) [79]) while

the vehicle-PCA communication is over a unidirectional (server-

only) authenticated TLS (or DTLS); this ensures that the PCA does

not infer the actual identity of the requester.

Having received a request, the PCA verifies the ticket signed

by the H-LTCA (assuming trust is established between the two)

(steps 1.2–1.3). The PCA then decapsulates the ticket and verifies

the pseudonym provider identity (step 1.4–1.5). Then, the PCA gen-

erates a randomnumber (step 1.6) and initiates a proof-of-possession

protocol to verify the ownership of the corresponding private keys

by the vehicle (step 1.9). Then, it calculates the “identifiable key”,

IK : H (IKtkt | |K
i
v | |t

i
s | |t

i
e | |H

i (Rndv)) (step 1.10). This essentially

prevents a compromised PCA from mapping a different ticket dur-

ing resolution process, or identifies a malicious PCA if issued a

pseudonymwithout a valid ticket received. The PCA implicitly cor-

relates a batch of pseudonyms belonging to each requester (steps 1.11–1.15).

5

Protocol 2 Pseudonym Issuance Validation Process

Vj : P
i
v ← (SN

i
, K iv , IKPiv

, t is , t
i
e) (1)

Vj : ζ ← (P
i
v) (2)

Vj : (ζ)σv ← Siдn(P
j
v , ζ) (3)

Vj → RA : (Idr eq, (ζ)σv , tnow) (4)

RA : Verify(Pv , (ζ)σv) (5)

RA : ζ ← (P iv) (6)

RA : (ζ)σra ← Siдn(Lkr a, ζ) (7)

RA→ PCA : (Idr eq, (ζ)σra , LTCr a, N , tnow) (8)

PCA : Verify(LTCr a, (ζ)σra) (9)

PCA : (tkt, RndI K
Piv
) ← Resolve(P iv) (10)

PCA : χ ← (SN
Pi

, tktσltca , RndI KPiv
) (11)

PCA : (χ)σpca ← Siдn(Lkpca, χ) (12)

PCA→ RA : (Idr es , (χ)σpca , N +1, tnow) (13)

RA : Verify(LTCpca, χ) (14)

RA :(SN
Pi

, tktσltca , RndI KPiv
)←χ (15)

RA : Verify(LTCl tca, tktσltca) (16)

RA :(H (IdPCA ‖Rndtkt), IKtkt , t
i
s , t

i
e , Exptkt)←tkt (17)

RA : H (IKtkt | |K
i
v | |t

i
s | |t

i
e | |RndI K

Piv

)
?
= IK

Piv
(18)

This essentially enables efficient distribution of the CRL [57]: the

PCA only needs to include one entry per batch of pseudonyms

without compromising their unlinkability. Finally, the PCA issues

the pseudonyms by signing it using its private key (steps 1.16–1.17)

and delivers the response (step 1.19).

4.2.2 Pseudonym Issuance Validation Process (Protocol 2).

Upon receiving a request for misbehavior identification, e.g., mul-

tiple suspicious traffic congestion alerts sent to a traffic monitor-

ing system, an entity could send a request to the RA to validate the

pseudonym issuance process of a “suspicious” pseudonym (step 2.1– 2.4).

The RA validates the request and interacts with the correspond-

ing PCA that issued the pseudonym, to provide evidence for the

pseudonym issuance procedure; in fact, this process ensures that

an actual vehicle requested the pseudonym by providing a valid

ticket, also guarantees the PCA did not issue a pseudonym for an

illegitimate vehicle (step 2.5– 2.8).

Upon receiving the request, the PCA validates the request, and

provides the corresponding ticket and RndIK
Piv

, used to issue the

pseudonym. The response is signed by the PCA sent back to the

RA (step 2.8– 2.13). Upon receiving the response, the RA verifies it,

facilitates validating the ticket using the public key of the LTCA,

and checksH (IKtkt | |K
i
v | |t

i
s | |t

i
e | |RndIKPiv

)
?
= IKP iv

(step 2.14– 2.18).

If the hash calculation results in the same hash values, it confirms

that the pseudonym has been issued based on a valid ticket, i.e.,

properly issued by the LTCA. Moreover, it ensures the PCA could

not have issued the pseudonym for a non-existing vehicle. Note

that upon performing pseudonym issuance validation process, the

actual identity of a vehicle is not disclosed, i.e., user privacy is

strongly protected. Further security and privacy analysis in Sec. 5.

4.3 Mitigating Sybil Attacks on the VPKIaaS

Multiple replicas of a micro-service interact with the same data-

base to accomplish their operations, e.g., all replicas of LTCAs should

Figure 3: VPKIaaS Memorystore with Redis and MySQL.

interact with the same database to store information about tickets

they issue. The sameway, all replicas of PCAs interact with a single

database to validate an authorization ticket and store information

corresponding to issued pseudonyms. Micro-services could opt in

to utilize their shared MySQL database either synchronously or

asynchronously7. Asynchronous interaction of the micro-services

and the shared database would result in efficient pseudonyms is-

suance. However, a malicious vehicle could repeatedly submit re-

quests. If the micro-services do not synchronously validate tickets

and pseudonym requests, one can obtain multiple sets of pseudo-

nyms if the requests were delivered to different replicas. On the

other hand, synchronous interaction of the micro-services and the

shared database would prevent issuing multiple sets of pseudonym

for a given requester, thus, eradicating the Sybil-based misbehavior.

However, it would drastically diminish the performance of the sys-

tem, notably timely on-demand issuance of pseudonyms. The per-

formance of the relational database, e.g., MySQL, used in [60], can

be highly degraded by synchronized interactions, e.g., [41]. More-

over, scaling out the Pods to handle a large volume of workload

while relying on a single shared MySQL database becomes a single

point of failure, questions the practicality of such a scheme (to be

highly-available and dynamically-scalable).

In order to systematically mitigate the aforementioned vulner-

ability, we propose a hybrid design by considering two separate

databases. Fig. 3 shows the Memorystore of the VPKIaaS: an in-

memory key-value database as a service on GCP compatible with

theRedis [14] protocol, and a relational database, e.g., MySQL. Each

Pod of amicro-service synchronously interacts with the Redis data-

base8 to validate a request towards thwarting Sybil attacks. Upon

validating a request, the tickets and pseudonyms are issued and

the corresponding information are stored in the relational database

7A synchronous interaction with a database implies enforcing limits on accessing to a
resource by locking it to ensure the consistency of all transactions. An asynchronous
interaction, though, implies that requests are proceeded without waiting to complete
a transaction; the execution will happen later via an asynchronous callback function.
8Note that MySQL and Redis could both be single point of failures if not offered as
a highly-available and dynamically-scalable service. However, a distributed cluster
of MySQL will be a bottleneck in our scenario because relational databases are slow
in nature, especially if the setup is synchronous. The Redis cluster, though, is an in-
memory key-value database which offers very fast insertion and query.

6

Protocol 3 Ticket Request Validation (by the LTCA using Redis)

1: procedure ValidateTicketReq(SN i
LTC , tkt

i
star t , tkt

i
exp)

2: (value i) ← RedisQuery(SN i
LTC
)

3: if value i == NU LL OR value i <= tkt istar t then

4: RedisUpdate(SN i
LTC

, tkt iexp)

5: Status ← I ssueT icket (. . .) ⊲ Invoking ticket issuance procedure

6: if Status == False then

7: RedisUpdate(SN i
LTC

, value i) ⊲ Reverting SN i
LTC

to value i

8: return (False) ⊲ Ticket issuance failure

9: else

10: return (T rue) ⊲ Ticket issuance success

11: end if

12: else

13: return (False) ⊲ Suspicious to Sybil attacks

14: end if

15: end procedure

asynchronously. Such a hybrid design mitigates Sybil attacks with-

out diminishing the overall performance of the pseudonym acquisi-

tion process: the time-consuming validation through the rational

database is replaced by an efficient validation through the Redis

database.

4.3.1 LTCA Sybil A�ack Mitigation (Protocol 3). The LTCA, the

policy decision and enforcement point in a domain, issues tickets

with non-overlapping intervals, i.e., vehicles cannot obtain tickets

with overlapping lifetime. Upon receiving a ticket request, each

LTCA micro-service Pod should check if a ticket was issued to the

requester during that period. Enforcing such a policy ensures that

no vehicle would obtain more than a single valid ticket towards re-

questing multiple simultaneously valid pseudonyms. Furthermore,

each ticket is implicitly bound to a specific PCA by the vehicle; as

a result, the ticket cannot be used more than once or be used for

other PCAs. Each LTCA micro-service Pod stores the serial num-

ber of the vehicle’s LTC (as the key) and the expiration time of its

current ticket (as the value) on the Redis database. Upon receipt

of a new request for obtaining a ticket, each micro-service creates

a Redis pipeline to validate the ticket (step 3.2). A Redis pipeline

entails a list of commands guaranteed to be executed sequentially

without interruption.

The Redis pipeline checks the existence of the serial number of

an LTC in the database; if it exists, it validates if the request in-

terval overlaps with the previously recorded entry (step 3.3); the

request is marked to be malicious if the serial number exists in the

database and the requested ticket start time (tktstar t) is less than

the expiration time of the already existed ticket. Otherwise, the Re-

dis pipeline updates the corresponding entry (or adds a new entry

if not existed) with the new ticket expiration time (step 3.4). Then,

the procedure for ticket issuance will be invoked (step 3.5, i.e., Pro-

tocol 6 in Appendix). In case of any failure during the ticket is-

suance, the ticket expiration valuewill be rolled back (steps 3.6–3.8).

The Redis pipeline is executed on a single thread and it is guaran-

teed to sequentially execute the commands; thus, even if all repli-

cas of the LTCA received a ticket request from the same vehicle,

Redis ensures that only one ticket request will be served and the

rest of them will be denied.

4.3.2 PCA Sybil A�ack Mitigation (Protocol 4). The PCA issues

pseudonymswith non-overlapping lifetimes in order to ensure that

Protocol 4 Pseudonym Request Validation (by the PCA using Re-

dis)

1: procedure ValidatePseudonymReq(SN i
tkt

)

2: (value i) ← RedisQuery(SN i
tkt
)

3: if value i == NU LL OR value i == False then

4: RedisUpdate(SN i
tkt

, T rue)

5: Status ← I ssuePsnyms(. . .) ⊲ Invoking pseudonym issuance

6: if Status == False then

7: RedisUpdate(SN i
tkt

, False) ⊲ Reverting SN i
tkt

to False

8: return (False) ⊲ Pseudonym issuance failure

9: else

10: return (T rue) ⊲ Pseudonym issuance success

11: end if

12: else

13: return (False) ⊲ Suspicious to Sybil attacks

14: end if

15: end procedure

no vehicle is provided with more than one valid pseudonym at

any given point in time. However, in order to fully eradicate Sybil-

based misbehavior, the PCA micro-service should ensure that each

ticket is used only once to issue a set of pseudonyms for a requester.

In other words, the VPKIaaS system should ensure that different

replicas of the PCA micro-service never issue more than a set of

pseudonyms for a ticket. All replicas of the PCA share a RedisMem-

orystore with the ticket serial number (as the key) and a boolean

data type (as the value). If the ticket serial number does not exist,

or if it exists with a boolean data type value of false, the ticket was

not used.

Upon receipt of a pseudonym acquisition request, each Pod of

the PCAmicro-service creates a Redis pipeline to validate the ticket

(step 4.2). If the key (SNtkt) does not exist or the value is false

(step 4.3), Redis updates the database with the value of true and

the procedure for issuing pseudonyms will be invoked (step 4.5,

i.e., Protocol 1). In case of failure during the pseudonym acquisition

process, the corresponding value for the ticket will be set to false in

the Redis database, i.e., rolling back the transaction, to ensure the

consistency of the pseudonym issuance procedure (steps 4.6–4.8).

If the value corresponding to the key (SNtkt) is true, the request

for obtaining a set of pseudonyms should be denied (step 4.13).

5 QUALITATIVE ANALYSIS

A detailed security and privacy analysis on the requirements for

VPKI entities can be found in [57, 60]. Here, we compile security

and privacy analysis for deploying a VPKIaaS system on the cloud,

and we discuss additional facts of the problem. A detailed descrip-

tion on secret management in the cloud can be found in Appendix.

5.1 Security and Privacy Analysis

Sybil-based misbehavior: A malicious vehicle could attempt to re-

peatedly request to obtain multiple tickets from the LTCA, and/or

aggressively request multiple sets of pseudonyms from the PCA.

However, all replicas of a micro-service share a RedisMemorystore

to validate every request. Thus, any suspicious request can be in-

stantaneously validated through the Redis Memorystore (without

interacting with the MySQL, which would be relatively more time-

consuming). Redis is executed on a single thread and the pipeline

is guaranteed to sequentially execute the commands; thus, even

7

if all replicas of a micro-service, e.g., the PCA, received a pseu-

donym request from one vehicle at the same time, the VPKIaaS

system would serve only one pseudonym request and the rest of

them would be denied. Therefore, the VPKIaaS ensures an efficient

ticket and pseudonym provisioning while preventing any vehicle

from obtaining multiple tickets or sets of pseudonyms towards a

Sybil-based misbehavior. The ramification of the Redis service fail-

ure depends on the action taken after the failure, i.e., fail open or

fail close. In case of fail open, Sybil attacks would be possible, as

the VPKIaaS system would provide vehicles with spurious pseu-

donyms. Later, it invalidates the erroneously issued credentials by

adding them to the CRL. In case of fail close, the VPKIaaS system

stops issuing credentials until the failure gets resolved.

Alternatively, a single deviant PCA could issue multiple simul-

taneously valid pseudonyms for a given vehicle, or issue pseudo-

nyms for an entity without any valid ticket issued by the LTCA.

However, upon performing pseudonym validation process, the RA

requests the corresponding PCA to validate a pseudonym. Each

pseudonym requires to have a valid pseudonym identifiable key

(IKP iv
). Thus, a malicious PCA can be identified and would then be

evicted from the VPKI system if it issued a pseudonym without a

valid ticket provided. Note that when performing the pseudonym

issuance validation process, the actual identity of the pseudonym

owner is not disclosed to the PCA or the RA, i.e., user privacy is

preserved. Moreover, no entity can infer user sensitive information

by continuously conducting pseudonym issuance validation pro-

cess towards harming user privacy. We emphasize here that our

VPKIaaS scheme does not prevent a malicious PCA from issuing

multiple sets of fake pseudonyms; rather, our scheme facilitates ef-

ficient identification of a misbehaving PCA by cross-checking the

pseudonym issuance procedure in a privacy-preserving manner.

To ensure correct operation of a micro-service, each Pod frequently

requests a dummy ticket or pseudonym. Since such operations are

executed in isolationwithin the Pod, the issued dummy tickets and

pseudonyms cannot leave the Pod. Moreover, each issued pseudo-

nym can be cross-checked towards identifying suspicious compro-

mised entity.

DDoS attacks on the VPKIaaS system: Compromised internal en-

tities or external adversaries could try to harm the system opera-

tions by launching a DoS (or a DDoS) attack, thus degrading the

availability of the system. A rate limitingmechanism prevents them

from compromising the availability of the system; moreover, the

system flags misbehaving users, thus evicting them from the sys-

tem. External adversaries could launch a DDoS attack by clogging

the LTCA with fake certificates, or the PCA with bogus tickets. In

fact, such misbehaving entities attempt to compromise the avail-

ability of the VPKI entities by mandating them to excessively vali-

date the signature of fake LTCs or bogus tickets, i.e., performing a

signature flooding attack [50].

We achieve high-availability and fault-tolerance in the face of a

benign failure by exploiting the Kubernetes master to kill the run-

ning (faulty) Pod, e.g., in case of system faults or crashes, and create

a new Pod. In case of resource depletion attacks, the Kubernetes

master scales out the Pods to handle such demanding loads. At the

same time, a puzzle technique, e.g., [29, 33], can be employed as

a mitigation approach, e.g., [60]: each vehicle is mandated to visit

a pre-defined set of Pods, in a pre-determined sequential order to

solve a puzzle. As a result, the power of an attacker is degraded

to the power of a legitimate client, thus, an adversary cannot send

high-rate spurious requests to the VPKI. On the side of the infra-

structure, there are DDoS mitigation techniques at different net-

work layers, provided by various cloud service providers.

Synchronization among the VPKI entities: Lack of synchroniza-

tion between the LTCA and the PCA could affect the pseudonym

issuance process, e.g., a PCA would not issue pseudonyms for a

seemingly ‘expired’ ticket. However, mildly drifting clocks of the

VPKI entities can hardly affect the operation, because the pseudo-

nym lifetimes and periods for pseudonym refills (Γ) are in the order

of minutes, typically. It suffices to have VPKI entities periodically

synchronizing their clocks. For example, if the accuracy of an Real

Time Clock (RTC) is 50 parts-per-million (ppm), i.e., 50×10−6, and

the maximum accepted error in timestamp is 50 ms, then each en-

tity should synchronize its clock every 16 minutes (50×10−3sec
50×10−6ppm

).

6 QUANTITATIVE ANALYSIS

Experimental setup: We leveraged a state-of-the-art VPKI sys-

tem [60] and restructured its source code to fit in a micro-services

architecture, e.g., through containerization, automation, bootstrap-

ping of services. We further added health and load metric publish-

ing features, to be used by an orchestration service to scale in/out

accordingly. We built and pushed Docker images for LTCA, PCA,

RA, MySQL, and Locust [18], an open source load testing tool, to the

Google Container Registry [9]. Isolated namespaces and deploy-

ment configuration files are defined before Google Kubernetes En-

gine (GKE) v1.10.11 [10] cluster runs the workload. We configured

a cluster of five VirtualMachines (VMs) (n1-highcpu-32), each with

32 vCPUs and 28.8GB of memory. The implementation is in C++

and we use FastCGI [49] to interface Apache web-server. We use

XML-RPC [16] to execute a remote procedure call on the cloud. The

VPKIaaS interface is language-neutral and platform-neutral, as we

use Protocol Buffers [11] for serializing and de-serializing struc-

tured data. For the cryptographic protocols and primitives (ECDSA

and TLS), we use OpenSSL with ECDSA-256 key pairs according to

the ETSI (TR-102-638) [45] and IEEE 1609.2 [51] standards; other

algorithms and key sizes are compatible in our implementation.

To facilitate the deployment of theVPKIaaS, we created all VPKIaaS

configuration in YAML language [17], applicable to deploy on any

cloud provider which offers Kubernetes As A Service, e.g., GCP [22]

and AmazonWeb Service (AWS) (aws.amazon.com). For our exper-

iments, we deployed our VPKIaaS on the GKE. We also used other

GCP services:Memorystore [20], Prometheus [26], andGrafana [23].

TheMemorystore service is a Redis-compatible [14] service which

acts as in-memory key-value data store (see Fig. 3). Prometheus is

a feature-rich metric service which collects all the metrics of the

Kubernetes cluster and the applications running on it into a time-

series database. We use Grafana to visualize the metrics collected

by Prometheus and monitor the system under test. Prometheus and

Grafana are deployed as prepared applications from the GCP mar-

ketplace [27] on the Kubernetes cluster. Moreover, we leveraged

Locust [18], deployed on the Kubernetes cluster, to synthetically

generate a large volume of pseudonym requests.

8

Table 2: Experiment Parameters.

Parameters Config-1 Config-2

total number of vehicles 1000 100, 50,000

hatch rate 1 1, 100

interval between requests 1000-5000 ms 1000-5000 ms

pseudonyms per request 100, 200, 300, 400, 500 100, 200, 500

LTCAmemory request 128 MiB 128 MiB

LTCAmemory limit 256 MiB 256 MiB

LTCA CPU request 500 m 500 m

LTCA CPU limit 1000 m 1000 m

LTCA HPA 1-40; CPU 60% 1-40; CPU 60%

PCA memory request 128 MiB 128 MiB

PCAmemory limit 256 MiB 256 MiB

PCA CPU request 700 m 700 m

PCA CPU limit 1000 m 1000 m

PCA HPA 1-120; CPU 60% 1-120; CPU 60%

Metrics: To evaluate the performance of our VPKIaaS system,

we measure the latency to obtain pseudonyms under different sce-

narios and configurations for a large-scale mobile environment.

More specifically, we evaluate the performance of the system with

(and without) flash crowds to illustrate its high-availability, robust-

ness, reliability, and dynamic-scalability. We demonstrate the per-

formance of our VPKIaaS system by emulating a large volume of

synthetic workload. Table 2 shows the configurations used in our

experiments, with Config-1 referring to a ‘normal’ vehicle arrival

rate and Config-2 for a flash crowd scenario. Experiments with

Config-1 indicates that every 1-5 seconds, a new vehicle joins the

system and requests a batch of 100-500 pseudonyms. To emulate

a flash crowd scenario, i.e., Config-2, beyond having vehicles join-

ing the system based on Config-1, 100 new vehicles join the system

every 1-5 seconds and request a batch of 100-200 pseudonyms.

Remark: Assuming the pseudonyms are issued with non-over-

lapping intervals (important to mitigate Sybil-based misbehavior),

obtaining 100 and 500 pseudonyms per day implies pseudonyms

lifetimes of 14.4 minutes (τP = 14.4 min.) or 3 minutes (τP =172.8

sec), respectively. According to actual large-scale urban vehicular

mobility dataset, e.g., Tapas-Cologne [86] or LuST [40], the average

trip duration is within 10-30 minutes. Moreover, according to the

US DoT, the average daily commute time in the US is around 1

hour [1]. Thus, requesting 100 pseudonyms per day would cover

24 hours trip duration with each pseudonym lifetime of approx.

15 minutes. We evaluate the performance of our VPKIaaS system

under such seemingly extreme configurations.

6.1 Large-scale Pseudonym Acquisition

Fig. 4.a illustrates the Cumulative Distribution Function (CDF) of

the single ticket issuance processing delay (executed based onConfig-

1 in Table 2); as illustrated, 99.9% of ticket requests are served

within 24 ms: Fx (t = 24 ms) = 0.999, i.e., Pr {t ≤ 24 ms} =

0.999. Fig. 4.b shows the CDF of processing latency for issuing

pseudonyms with different batches of pseudonyms per request as

a parameter. For example, with a batch of 100 pseudonyms per

request, 99.9% of the vehicles are served within less than 77 ms

(Fx (t = 77ms) = 0.999). Even with a batch of 500 pseudonyms

per request, the VPKIaaS system can efficiently issue pseudonyms:

0 1000 2000 3000 4000 5000

End-to-end Processing Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

P
ro
b
ab
ili
ty

1 ticket per request

5 8 11 14 17 20 23
End-to-end Processing Delay [ms]

0.000

0.250

0.500

0.750

0.999

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

(a) Ticket Issuance

0 1000 2000 3000 4000 5000

End-to-end Processing Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

P
ro
b
ab
ili
ty

100 pseudonyms per request

200 pseudonyms per request

300 pseudonyms per request

400 pseudonyms per request

500 pseudonyms per request

100 200 300 400
End-to-end Processing Delay [ms]

0.000

0.250

0.500

0.750

0.999

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

(b) Pseudonyms Issuance

Figure 4: (a) CDF of end-to-end latency to issue a ticket.

(b) CDFof end-to-endprocessing delay to issue pseudonyms.

0

25

50

75

100

A
v
g
.
C
P
U

U
ti
li
za
ti
o
n

LTCA

PCA

0 500 1000 1500 2000 2500
System Time [s]

0

100

200

300

400

500

R
eq
u
es
ts

p
er

S
ec
. Requests per Second

(a)

0 2000 4000 6000 8000 10000

End-to-end Processing Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

P
ro
b
ab
ili
ty

1 ticket per request

100 pseudonyms per request

200 pseudonyms per request

0 100 200 300

End-to-end Latency [ms]

0.000

0.250

0.500

0.750

0.999

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

(b)

Figure 5: VPKIaaS system in a flash crowd load situation. (a)

CPU utilization and the number of requests per second. (b)

CDF of processing latency to issue tickets and pseudonyms.

Fx (t = 388 ms) = 0.999. The results confirm that the VPKIaaS

scheme is efficient and scalable: the pseudonym acquisition pro-

cess incurs low latency and it efficiently issues pseudonyms for

the requesters.

6.2 VPKIaaS with Flash Crowd Load Pattern

Fig. 5 shows the performance of the VPKIaaS when a surge in

pseudonym acquisition requests happens to the VPKIaaS (executed

based on Config-2 in Table 2, with 100 pseudonyms per request

for Fig. 5.a). We assess CPU utilization of the LTCA and the PCA

Pods (Fig. 5.a top) and the total number of pseudonyms requests

per second (Fig. 5.a bottom). When the number of requests per sec-

ond increases, the average CPU utilization would rise; however,

when CPU utilization hits 60% threshold, defined in the Horizontal

Pod Autoscalers (HPAs) [24], the LTCA and the PCA deployment

would horizontally scale to handle demanding loads, thus the av-

erage CPU utilization drops upon scaling out.

Fig. 5.b shows the end-to-end processing latency to obtain tick-

ets and a batch of 100 or 200 pseudonyms in a flash crowd situation.

The processing latency to issue a single ticket is: Fx (t = 87ms) =

0.999; to issue a batch of 100 pseudonyms per request, the pro-

cessing latency is: Fx (t = 192ms) = 0.999. In comparison with

processing delay under ‘normal’ conditions (Fig. 4), the processing

latency of issuing a single ticket increases from 24 ms to 87 ms; the

processing latency to issue a batch of 100 pseudonyms increased

from 77 ms to 192 ms. Thus, even under such a highly demanding

request rate, the VPKIaaS system issues credentials efficiently.9

9The total number of vehicles requesting 100 pseudonyms (under Config-2 in Ta-
ble 2) is 398,870 and the VPKIaaS system issued approximately 40 millions pseudo-
nyms within 2,500 seconds; with such an arrival rate, the VPKIaaS system would is-

sue 0.5 × 1012 pseudonyms per year. Obviously, this number is lower that the one

9

100 200 300 400 500

Number of Pseudonyms per Request

0

100

200

300

400

500

E
n
d
-t
o-
E
n
d
L
at
en
cy

[m
s]

Client Side Operations

All PCA Operations

All LTCA Operations

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

End-to-end Latency [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

P
ro
b
ab
ili
ty

100 psnyms per request

200 psnyms per request

300 psnyms per request

400 psnyms per request

500 psnyms per request

(b)

Figure 6: VPKIaaS system with flash crowd load pattern. (a)

Average end-to-end latency to obtain pseudonyms. (b) CDF

of end-to-end latency, observed by clients.

Fig. 6.a shows the latency for each system component to obtain

different batches of pseudonyms per request (Config-2 in Table 2).

Our VPKIaaS system outperforms prior work [38]: the processing

delay to issue 100 pseudonym for [38] is approx. 2010 ms, while it

is approx. 56 ms in our system, i.e., achieving a 36-fold improve-

ment over prior work [38]. Fig. 6.b illustrates the average end-to-

end latency to obtain pseudonyms, observed by clients. As we can

see, during a surge of requests, all vehicles obtained a batch of 100

pseudonyms within less than 4,900 ms (including the networking

latency). Obviously, the shorter the pseudonym lifetime, the higher

the workload on the VPKI, thus the higher the end-to-end latency.

Note that serving requests under a flash crowd scenario at this rate

(Config-2 in Table 2) implies that our VPKIaaS system would serve

720,000 vehicles joining the system within an hour. Thus, even un-

der such flash crowd load pattern, our VPKIaaS system can com-

fortably handle such a high demand of requests.

6.3 Dynamic-scalability of the VPKIaaS

In this scenario, we demonstrate the performance of our VPKIaaS

system, notably its reliability and dynamic scalability. To emulate a

large volume of workload, we generated synthetic workload using

30 containers, each with 1 vCPU and 1GB of memory (executed

based on Config-2 in Table 2). Fig. 7.a shows the average CPU uti-

lizations of the LTCA and PCA Pods (observed by HPA) as well as

the total number of requests per second. Fig. 7.b shows how our

VPKIaaS system dynamically scales out or scales in according to

the rate of pseudonyms requests. The numbers next to the arrows

show the number of LTCA and PCA Pod replicas at any specific

system time. As illustrated, the number of PCA Pods starts from 1

and it gradually increases; at system time 1500, there is a surge in

pseudonym requests, thus the number of PCA Pods increased to

80. Note that issuing a ticket is more efficient than issuing pseudo-

nyms; thus, the LTCA micro-service scaled out only up to 4 Pod

replicas.

6.4 VPKIaaS Performance Comparison

We compare ourVPKIaaS schemewith a baseline scheme [38],which

implements a VPKI according to the ETSI architecture. More pre-

cisely, each vehicle requests pseudonyms from an authorization

authority; the request is forwarded to the enrollment authority to

mentioned in Sec. 1, i.e., 1.5 × 1012 . Note that this is a proof of concept of the im-
plementation and evaluation of the VPKIaaS system; by allocating more resources
and increasing the pseudonym request rates, the VPKIaaS system would issue even
further pseudonyms.

0 500 1000 1500 2000

System Time [s]

0

25

50

75

100

125

150

C
P
U
U
ti
liz
at
io
n
&

R
P
S

Average LTCA CPU utilization

Average PCA CPU utilization

Pseudonyms request pre sec.

(a)

0 500 1000 1500 2000

System Time [s]

0

25

50

75

100

125

150

O
b
se
rv
ed

C
P
U
U
ti
liz
at
io
n

1

2 4

1

2

4 8 16 32
64

80

32

LTCA Pods

PCA Pods

(b)

Figure 7: Each vehicle requests 500 pseudonyms (CPU uti-

lization observed by HPA). (a) Number of active vehicles and

CPU utilization. (b) Dynamic scalability of VPKIaaS system.

check and validate the request. Upon a successful validation, the

authorization authority issues the pseudonyms and sends them

back to the vehicle. Using the similar setup to have a meaningful

and direct comparison, we achieve a 36-fold improvement over the

baseline scheme: under normal conditions, the processing delay to

issue 100 pseudonyms for the baseline scheme is approx. 2010 ms,

while it is approx. 56 ms in our VPKIaaS system. Even under a

flash crowd scenario (based on Config-2), the processing delay to

issue 100 pseudonyms is approx. 71 ms, i.e., 28-fold improvement.

Furthermore, unlike the VPKI system in [38], our implementation

supports dynamic scalability, i.e., the VPKI scales out, or scales is,

based on the arrival rate of pseudonyms requests.

Moreover, in order to handle a large volume of workload, SEC-

MACE [60] requires to statically allocate resources to the VPKI. In

case of an unpredictable surge in the arrival rates or being under

a DDoS attack, the performance of SECMACE would drastically

decrease. Furthermore, when deploying SECMACE on the cloud, a

malicious vehicle could repeatedly request to obtain pseudonyms

towards performing Sybil-based misbehavior. On the contrary, our

VPKIaaS system can comfortably handle requests with unexpected

arrival rate while being efficient in issuing pseudonyms, being re-

silient against Sybil and resource depletion attacks, and being cost-

effective by systematically allocating and deallocating resources.

7 CONCLUSION

Paving theway for the deployment of a secure and privacy-preserving

VC system relies on deploying a special-purpose VPKI. However,

its success requires extensive experimental evaluation, to ensure

viability (in terms of performance and cost). We leverage a state-

of-the-art VPKI, enhance its functionality, and migrate it into the

GCP to illustrate its availability, resiliency, and scalability towards

a cost-effective VPKI deployment. Through extensive security and

privacy analysis, we show that the VPKIaaS system fully eradicates

Sybil-based misbehavior without compromising the efficiency of

the pseudonym acquisition process. All these investigations would

catalyze the deployment of the central building block of secure and

privacy-preserving VC systems.

ACKNOWLEDGEMENT

Work supported by the Swedish Foundation for Strategic Research

(SSF) SURPRISE project and the KAW Academy Fellowship Trust-

worthy IoT project.

10

REFERENCES
[1] 2014. V2V Communications: Readiness of V2V Technology for Application. Na-

tional Highway Traffic Safety Administration, DOT HS 812 014.
[2] 2016. Vehicle Safety Communications Security Studies: Technical Design of the

Security Credential Management System. https://bit.ly/2CA1WbV.
[3] 2018. AWS Certificate Manager. https://aws.amazon.com/certificate-manager/.
[4] 2018. AWS CloudTrail. https://aws.amazon.com/cloudtrail/.
[5] 2018. Cloud Identity & Access Management. https://cloud.google.com/iam/.
[6] 2018. Comodo Certification Authority. https://ssl.comodo.com/.
[7] 2018. FIPS 140-2 Level 3 Non-Proprietary Security Policy.

https://bit.ly/2R1XUhE.
[8] 2018. GCP Cloud Audit Logging. https://cloud.google.com/logging/docs/audit/.
[9] 2018. Google Container Registry. https://cloud.google.com/container-registry/.
[10] 2018. Google Kubernetes Engine v1.9.6. https://bit.ly/2I8MjJx.
[11] 2018. Google Protocol Buffer. https://bit.ly/1mISy49. Accessed April 25, 2018.
[12] 2018. Kubernetes Namespaces. https://bit.ly/2DjOw5d.
[13] 2018. Let’s Encrypt Stats. https://letsencrypt.org/.
[14] 2018. Redis, In-memory Data Structure Store, Used as a Database.

https://redis.io/.
[15] 2018. Symantec SSL/TLS Certificates. https://symc.ly/2Mp8Mpe.
[16] 2018. XML-RPC for C/C++. https://bit.ly/2R0pMCS. Accessed April 25, 2018.
[17] 2018. YAML API Reference. https://learn.getgrav.org/advanced/yaml.
[18] 2019. An Open Source Load Testing Tool. https://locust.io/.
[19] 2019. AWS CloudHSM. https://aws.amazon.com/cloudhsm/.
[20] 2019. Cloud Memorystore. https://cloud.google.com/memorystore/.
[21] 2019. Google Cloud HSM. https://cloud.google.com/hsm/.
[22] 2019. Google Cloud Platform. https://cloud.google.com/gcp/
[23] 2019. Grafana. https://grafana.com/.
[24] 2019. Horizontal Pod Autoscaler. https://bit.ly/2Q8Ri1u.
[25] 2019. Kubernetes: Production-Grade Container Orchestration. kubernetes.io/
[26] 2019. Prometheus. https://prometheus.io/.
[27] 2019. Prometheus & Grafana: Google Cloud Marketplace.

https://bit.ly/2Q8Ri1u.
[28] K. Abboud et al. 2016. Interworking of DSRC andCellular NetworkTechnologies

for V2X Communications: A Survey. IEEE TVT 65, 12 (July 2016), 9457–9470.
[29] M. Abliz and T. Znati. 2009. A Guided Tour Puzzle for Denial of Service Preven-

tion. In IEEE ACSAC. Honolulu, HI, 279–288.
[30] M. Agiwal et al. 2016. Next Generation 5GWirelessNetworks: A Comprehensive

Survey. IEEE Communications Surveys & Tutorials 18, 3 (2016), 1617–1655.
[31] J. G. Andrews et al. 2014. What Will 5G Be? IEEE JSAC 32, 6 (2014), 1065–1082.
[32] I. Ari et al. 2003. Managing Flash Crowds on the Internet. In IEEE/ACM MAS-

COTS. Orlando, FL, USA, 246–249.
[33] T. Aura et al. 2001. DoS-Resistant Authentication with Client Puzzles. In Pro-

ceedings of Security Protocols Workshop. New York, USA.
[34] N. Bißmeyer. 2014. Misbehavior Detection and Attacker Identification in Vehicular

Ad-Hoc Networks. Ph.D. Dissertation. Technische Universität.
[35] G. Calandriello et al. 2007. Efficient and Robust Pseudonymous Authentication

in VANET. In ACM VANET. New York, USA, 19–28.
[36] G. Calandriello et al. 2011. On the Performance of Secure Vehicular Communi-

cation Systems. IEEE TDSC 8, 6 (Nov. 2011), 898–912.
[37] L. J. Carnahan and M. E. Smid. 1994. Security Requirements for Cryptographic

Modules. Technical Report.
[38] P. Cincilla et al. 2016. Vehicular PKI Scalability-Consistency Trade-Offs in Large

Scale Distributed Scenarios. In IEEE VNC. Columbus, Ohio, USA.
[39] J. Clark and et al. 2013. SoK: SSL and HTTPS: Revisiting Past Challenges and

Evaluating Certificate Trust Model Enhancements. In IEEE SnP. Berkeley, USA.
[40] L. Codeca et al. 2015. Luxembourg SUMO Traffic (LuST) Scenario: 24 Hours of

Mobility for Vehicular Networking Research. In IEEE VNC. Kyoto, Japan.
[41] Brian F Cooper et al. 2010. Benchmarking Cloud Serving Systems with YCSB. In

ACM SoCC. Indianapolis, Indiana, USA, 143–154.
[42] T. Dierks. 2008. The transport layer security protocol version 1.2. (Aug. 2008).
[43] J. R Douceur. 2002. The Sybil Attack. In ACM Peer-to-peer Systems. London, UK.
[44] L. Dykcik et al. 2018. BlockPKI: An Automated, Resilient, and Transparent

Public-Key Infrastructure. arXiv preprint arXiv:1809.09544 (Sep. 2018).
[45] ETSI. 2009. Intelligent Transport Systems (ITS); Vehicular Communications;

Basic Set of Applications; Definitions.
[46] L. Fischer et al. 2006. Secure Revocable Anonymous Authenticated Inter-vehicle

Communication (SRAAC). In ESCAR. Berlin, Germany.
[47] Philippe Golle, Dan Greene, and Jessica Staddon. 2004. Detecting and correcting

malicious data in VANETs. In ACM VANET. Philadelphia, PA, USA, 29–37.
[48] D. Goodin. 2011. New Hack on Comodo Reseller Exposes Private Data.
[49] Paul Heinlein. 1998. FastCGI. Linux journal 1998, 55es (1998), 1.
[50] H-C. Hsiao et al. 2011. Flooding-Resilient Broadcast Authentication for VANETs.

In ACM Mobile Computing and Networking. Las Vegas, Nevada, USA.
[51] IEEE-1609.2. 2016. IEEE Standard forWirelessAccess inVehicular Environments

- Security Services for Applications and Management Messages. (Mar. 2016).

[52] H. Jin, M. Khodaei, and P. Papadimitratos. 2016. Security and Privacy in Vehic-
ular Social Networks. In Vehicular Social Networks. Taylor & Francis Group.

[53] Antonio K. [n. d.]. Security Architecture and Mechanisms for V2V/V2I, SeVe-
Com.

[54] M. Khodaei et al. 2014. Towards Deploying a Scalable & Robust Vehicular Iden-
tity and Credential Management Infrastructure. In IEEE VNC. Paderborn, Ger-
many.

[55] M. Khodaei et al. 2016. Evaluating On-demand Pseudonym Acquisition Policies
in Vehicular Communication Systems. In ACM IoV-VoI. Paderborn, Germany.

[56] M. Khodaei et al. 2017. RHyTHM: A Randomized Hybrid Scheme To Hide in the
Mobile Crowd. In IEEE VNC. Torino, Italy.

[57] M. Khodaei et al. 2018. Efficient, Scalable, and Resilient Vehicle-Centric Certifi-
cate Revocation List Distribution in VANETs. In ACM WiSec. Stockholm, Swe-
den.

[58] M. Khodaei et al. 2018. Poster: Mix-Zones Everywhere: A Dynamic Cooperative
Location Privacy Protection Scheme. In IEEE VNC. Taipei, Taiwan.

[59] M. Khodaei et al. 2018. POSTER: Privacy Preservation through Uniformity. In
ACM WiSec. Stockholm, Sweden, 279–280.

[60] M. Khodaei et al. 2018. SECMACE: Scalable and Robust Identity and Credential
Management Infrastructure in Vehicular Communication Systems. IEEE TITS
19, 5 (May 2018), 1430–1444.

[61] M. Khodaei and P. Papadimitratos. 2015. The Key to Intelligent Transporta-
tion: Identity and CredentialManagement inVehicular Communication Systems.
IEEE Vehicular Technology Magazine 10, 4 (Dec. 2015), 63–69.

[62] T H-J. Kim et al. 2013. Accountable Key Infrastructure (AKI): A Proposal for a
Public-key Validation Infrastructure. In ACM WWW. Rio de Janeiro, Brazil.

[63] Virendra Kumar et al. 2017. Binary Hash Tree based Certificate Access Manage-
ment for Connected Vehicles. In ACM WiSec. Boston, USA.

[64] John Leyden. 2011. Inside ’Operation Black Tulip’: DigiNotar hack analysed.
https://bit.ly/2REVJ8Q.

[65] Zhendong Ma et al. 2008. Pseudonym-on-demand: A New Pseudonym Refill
Strategy for Vehicular Communications. In IEEE VTC. Calgary, BC, 1–5.

[66] Neil McAllister. 2013. Browser makers rush to block fake Google.com security
cert. https://bit.ly/2QXANoo.

[67] Patrick McDaniel and Aviel Rubin. 2000. A Response to “Can We Eliminate
Certificate Revocation Lists?”. In FC (Springer). Berlin, Heidelberg, 245–258.

[68] H. Noroozi et al. 2018. DEMO: VPKIaaS: A Highly-Available and Dynamically-
Scalable Vehicular Public-Key Infrastructure. In ACM WiSec. Stockholm, Swe-
den.

[69] P. Papadimitratos. 2008. "On the road" - Reflections on the Security of Vehicular
Communication Systems. In IEEE ICVES. Columbus, OH, USA.

[70] Panagiotis Papadimitratos et al. 2006. Securing Vehicular Communications-
Assumptions, Requirements, and Principles. In ESCAR. Berlin, Germany.

[71] Panagiotis Papadimitratos et al. 2007. Architecture for Secure and Private Vehic-
ular Communications. In IEEE ITST. Sophia Antipolis, 1–6.

[72] P. Papadimitratos et al. 2008. Impact of Vehicular Communication Security on
Transportation Safety. In IEEE INFOCOM MOVE. Phoenix, AZ, USA, 1–6.

[73] Panagiotis Papadimitratos et al. 2008. Secure Vehicular Communication Systems:
Design and Architecture. IEEE CommMag 46, 11 (Nov. 2008), 100–109.

[74] P. Papadimitratos et al. 2009. Vehicular Communication Systems: Enabling Tech-
nologies, Applications, and Future Outlook on Intelligent Transportation. IEEE
Communications Magazine 47, 11 (Nov. 2009), 84–95.

[75] PKI-Memo. 2011. C2C-CC. http://www.car-2-car.org/.
[76] PRESERVE-Project. 2015. www.preserve-project.eu/.
[77] Maxim Raya et al. 2007. Eviction of Misbehaving and Faulty Nodes in Vehicular

Networks. IEEE JSAC 25, 8 (Oct. 2007), 1557–1568.
[78] Steffen Reidt et al. 2009. The Fable of the Bees: Incentivizing Robust Revocation

Decision Making in Ad Hoc Networks. In ACM CCS. Chicago, Illinois, US.
[79] Eric Rescorla et al. 2012. Datagram Transport Layer Security V.1.2. (Jan. 2012).
[80] Sushmita Ruj and others Cavenaghi. 2011. On Data-Centric Misbehavior Detec-

tion in VANETs. In IEEE VTC. San Francisco, CA, USA, 1–5.
[81] F. Schaub, F. Kargl, Z. Ma, and M. Weber. 2010. V-tokens for Conditional Pse-

udonymity in VANETs. In IEEE WCNC. Sydney, Australia.
[82] J. Sermersheim. 2006. Lightweight Directory Access Protocol (LDAP). (2006).
[83] R. Shokri et al. 2014. Hiding in the Mobile Crowd: Location Privacy through

Collaboration. IEEE TDSC 11, 3 (May 2014), 266–279.
[84] Marcos Simplicio et al. 2018. ACPC: Efficient Revocation of Pseudonym Certifi-

cates using Activation Codes. Elsevier Ad Hoc Networks (July 2018).
[85] E. Topalovic et al. 2012. Towards Short-lived Certificates. IEEE Oakland Web 2.0

Security and Privacy (W2SP) (May 2012).
[86] S. Uppoor et al. 2014. Generation and Analysis of a Large-scale Urban Vehicular

Mobility Dataset. IEEE TMC 13, 5 (May 2014), 1061–1075.
[87] C. Vaas et al. 2018. Nowhere to Hide? Mix-Zones for Private Pseudonym Change

using Chaff Vehicles. In IEEE VNC. Taipei, Taiwan.
[88] W. Whyte, AWeimerskirch, V. Kumar, and T. Hehn. 2013. A Security Credential

Management System for V2V Communications. In IEEE VNC. Boston, MA.
[89] B. Wiedersheim et al. 2010. Privacy in Inter-vehicular Networks: Why Simple

Pseudonym Change is not Enough. InWONS. KranjskaGora, Slovenia, 176–183.

11

https://bit.ly/2CA1WbV
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/cloudtrail/
https://cloud.google.com/iam/
https://ssl.comodo.com/
https://bit.ly/2R1XUhE
https://cloud.google.com/logging/docs/audit/
https://cloud.google.com/container-registry/
https://bit.ly/2I8MjJx
https://bit.ly/1mISy49
https://bit.ly/2DjOw5d
https://letsencrypt.org/
https://redis.io/
https://symc.ly/2Mp8Mpe
https://bit.ly/2R0pMCS
https://learn.getgrav.org/advanced/yaml
https://locust.io/
https://aws.amazon.com/cloudhsm/
https://cloud.google.com/memorystore/
https://cloud.google.com/hsm/
https://cloud.google.com/gcp/
https://grafana.com/
https://bit.ly/2Q8Ri1u
kubernetes.io/
https://prometheus.io/
https://bit.ly/2Q8Ri1u
https://bit.ly/2REVJ8Q
https://bit.ly/2QXANoo
http://www.car-2-car.org/
www.preserve-project.eu/

[90] B. Xiao et al. 2006. Detection and Localization of Sybil Nodes in VANETs. In
DIWANS. Los Angeles, CA, USA, 1–8.

APPENDIX
Protocol 5 Ticket Request from the LTCA (by the vehicle)

1: procedure ReqTicket(ts, te)
2: Rndtkt ← GenRnd ()

3: ζ ← (Idr eq, H (IdPCA ‖Rndtkt), ts , te)

4: (msд)σv ← Siдn(Lkv , ζ)

5: return ((msд)σv , LTCv , N , tnow)

6: end procedure

Protocol 6 Issuing a Ticket (by the LTCA)

1: procedure IssueTicket((msд)σv , LTCv , N , tnow)
2: Verify(LTCv , (msд)σv)

3: RndI Ktkt ← GenRnd ()

4: IKtkt ← H (LTCv | |ts | |te | |RndI Ktkt)

5: ζ ← (SN , H (IdPCA ‖Rndtkt), IKtkt , ts , te , Exptkt)

6: (tkt)σltca ← Siдn(Lkl tca, ζ)

7: return (Idr es, (tkt)σltca , RndI Ktkt , N + 1, tnow)

8: end procedure

Ticket Acquisition Process (Protocols 5 and 6). Assume the

OBU decides to obtain pseudonyms from a specific PCA. It first

interacts with its H-LTCA to obtain a valid ticket. To conceal the

actual identity of its desired PCA from the LTCA, it calculates the

hash value of the concatenation of the specific PCA identity with

a random number10 (steps 5.1–5.2). The vehicle prepares the re-

quest and signs it under the private key corresponding to its LTC

(step 5.3–5.4) before returning the ticket request (step 5.5). It will

then interact with the LTCA over a bidirectional authenticated

TLS.

Upon reception of the ticket request, the LTCA verifies the LTC

(thus authenticating and authorizing the requester) and the signed

message (step 6.2). The LTCAgenerates a randomnumber (RndIKtkt)

and calculates the “ticket identifiable key” (IKtkt) to bind the ticket

to the LTC as: H (LTCv | |ts | |te | |RndIKtkt) (steps 6.3–6.4); this pre-

vents a compromised LTCA from mapping a different LTC dur-

ing the resolution process. The LTCA then encapsulates (step 6.5),

signs (step 6.6), and delivers the response (step 6.7).

Secret Management

Secret management is a concern towards deploying services in

the cloud. Passwords, secret keys, and private keys cannot be sim-

ply integrated (hard-coded) into the services, e.g., the source code

or the configuration files. Having services deployed on the cloud,

each service fetches the needed secrets according to role-based ac-

cess control. In this section, we review best practices, provided by

cloud service providers. Note that deploying services on the cloud

typically implies trusting cloud service providers, notably in terms

of secret management.

Amazon Web Service (AWS): AWS offers several services regard-

ing secret management on the cloud. The most common service is

Key Management Service (KMS), which offers a key management

service on FIPS 140-2 validated HSMs [19] as the way to create,

import, store, and rotate keys within AWS. The KMS of the AWS

10The storage cost for these random numbers is reasonably cheap, e.g., 264 million
vehicles with average trip duration of 1 hour require 32 GB per day (25$ per month).

only supports Advanced Encryption Standard (AES)-256. Through

role-based access control policies for key management, one can be

ensured that the secret key is only accessible by the authorized ser-

vice, which initiated the process. As the applications and services

will fetch the secrets from the KMS whenever they need, chang-

ing the secret key will not affect the operations of the services be-

cause they will fetch a new secret in the next iteration. The KMS

provides automatic secret rotation, which can be enabled by the

service. KMS can also be integrated with CloudTrail [4], logging

access to the secret keys. CloudTrail logs must be configured with

proper actions, besides raising an alarm in case of suspicious ac-

tivities, e.g., rotating the key if illegitimate access to the secret

key. Beyond KMS, there are other services for secret management,

specifically designed to hold secret strings for the use in Relational

Database Service (RDS) services of AWS. AWS also offers AWSCer-

tificateManager (ACM), providing a traditional certificate manage-

ment [3].

Google Cloud Platform (GCP): GCP offers a key management ser-

vice similar to AWS. Unlike AWS, GCP supports various cryptogra-

phic algorithms and primitives, e.g., AES-256, RSA-2048, RSA-3072,

RSA-4096, EllipticCurve Cryptography (ECC)-P256, and ECC-P384.

In order to protect the secrets according to compliance standards,

e.g., Federal Information Processing Standard (FIPS) 140-2, the KMS

can be integrated with the HSM [21] service provided by the cloud

service provider according to the FIPS 140-2 Level 3 [7, 37]. Ac-

cessing the secret keys can be restricted using Identity & Access

Management (IAM) policies [5]. The cloud IAM service facilitates

fine-grained access control to a service, e.g., defining a role to en-

able encryption using a certain KMS service and assigning the role

to a specific (authorized) micro-service. Thus, the system ensures

that only the specified micro-service can access the KMS instance

without being able to access other cryptographic materials. Simi-

lar to CloudTrail in AWS, the GCP provides an Audit Logging Ser-

vice [8] in order to monitor activities, e.g., accessing the data, as

well as logging the system events for auditing purposes.

Kubernetes: Kubernetes is an orchestration service, responsible

for orchestratingmicro-services. Secretmanagement in Kubernetes

is different from the ones that cloud providers would offer. Kuber-

netes offers a secret management system for micro-services. Thus,

a micro-service can leverage only the secret management system

within the Kubernetes, or alternatively, it can interact with the se-

cret management services offered by the cloud service provider, in

which the Kubernetes instances operate.

Secret Management in VPKIaaS: In order to offer a cloud agnos-

tic solution for the VPKIaaS system, the Kubernetes secret volume

suits our solution the best. However, the contents of the volume

are encrypted using the KMS of the cloud service provider. Dur-

ing the bootstrapping phase, each Pod of a micro-service fetches

its encrypted private key from its local volume; it then queries the

KMS of the cloud provider to decrypt the private key (according to

role-based access control). To protect the secrets, i.e., the key-pairs

used by the VPKI entities, each micro-service leverages its own se-

cret volume in its own namespace [12]. A namespace is an isolated

environment with all classes of elements operating in it. However,

to protect the secret volumes, the keys can be encrypted using the

KMS of the cloud service provider, depending on the choice of de-

ployment.

12

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Model and Objectives
	3.1 Overview and Assumptions
	3.2 Adversarial Model and Requirements

	4 VPKI Services Overview & Security Protocols
	4.1 VPKI as a Service (VPKIaaS)
	4.2 Security Protocols
	4.3 Mitigating Sybil Attacks on the VPKIaaS

	5 Qualitative Analysis
	5.1 Security and Privacy Analysis

	6 Quantitative Analysis
	6.1 Large-scale Pseudonym Acquisition
	6.2 VPKIaaS with Flash Crowd Load Pattern
	6.3 Dynamic-scalability of the VPKIaaS
	6.4 VPKIaaS Performance Comparison

	7 Conclusion
	References

