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ABSTRACT

Timing channels are a significant and growing security

threat in computer systems, with no established solution.

We have recently argued that the OS must provide time
protection, in analogy to the established memory protec-

tion, to protect applications from information leakage

through timing channels. Based on a recently-proposed

implementation of time protection in the seL4 microker-

nel, we investigate how such an implementation could

be formally proved to prevent timing channels. We pos-

tulate that this should be possible by reasoning about a

highly abstracted representation of the shared hardware

resources that cause timing channels.

1 INTRODUCTION

Timing channels are a major threat to information se-

curity, they exist where the timing of a sequence of

observable events depends on secret information [Wray

1991]. The observation might be of an externally visible

event, such as the response time of a server, andmight be

exploitable over intercontinental distances [Cock et al.

2014]. Or it might only be locally observable, i.e. by a

process or VM co-located on the same physical machine,

which still enables remote attacks, if the observing pro-

cess has access to the network and is controlled by a

remote agent. The seriousness of the threat was recently

highlighted by the Spectre attacks [Kocher et al. 2019],

where speculatively executed gadgets leak information

via a covert timing channel.

The secret-dependence of events may have algorith-
mic causes, e.g. crypto implementations with secret-

dependent code paths. Or they may result from interfer-

ence resulting from competing access to limited hard-

ware resources, such as caches; there exists a wide vari-

ety of suchmicro-architectural channels [Ge et al. 2018b].
Whether algorithmic or micro-architectural, those

channels represent information flow across protection

boundaries, i.e. the boundaries are leaky. Ensuring the

security of these boundaries should be the job of the op-

erating system (OS); however, no contemporary, general-

purpose OS seems to be capable of if. Clearly, this is not

an acceptable situation, and we have recently called for

OSes to provide time protection [Ge et al. 2018a] as the

temporal equivalent of the well-established concept of

memory protection.

Memory protection is a solved problem: the formal

verification of seL4 proved, among others, that the ker-

nel is able to enforce spatial integrity, availability and

confidentiality [Klein et al. 2014]. This categorically

rules out information leakage via storage channels (pro-
vided that the kernel is aware of the state that can be

used for such channels). However, the approach taken in

the seL4 verification has no concept of time, and there-

fore cannot make any claims about timing channels.
Our aim is to rule out timing-channel leakage

just as categorically as information flow via stor-

age. Put differently, we aim to formally prove correct
implementation of time protection. This paper investi-
gates the feasibility of, and prerequisites for, achieving

the stated aim. Obviously we would not bother writing

this paper if we were not convinced that it is feasible to

achieve our aim, under certain conditions, which come

down to hardware satisfying certain requirements. We

have recently demonstrated that not all recent proces-

sors satisfy these requirements, resulting in a call for a

new, security-oriented hardware-software contract [Ge

et al. 2018a]. We claim that, for hardware that hon-

ours this contract, we will be able to achieve our aim

of proving time protection, and thus eliminate micro-

architectural timing channels.

Note that other physical channels, such as power

draw, temperature, or acoustic or electromagnetic ema-

nation, are outside the scope of this work.

2 THREAT SCENARIO

The basic problemwe are concerned with is a secret held

by one security domain, Hi, being leaked to another do-

main, Lo, which is not supposed to know it. The leaking

might be intentional, by a bad actor (Trojan) inside Hi,

constituting a covert channel. Or it can be unintentional,

via a side channel. Note that Hi, Lo are relative to a par-

ticular secret, we do not assume a hierarchical security

policy such as Bell and LaPadula [1976], and there may

be other secrets for which the roles of the domains are

reversed. It is the duty of the OS to prevent any unau-

thorised information flow, no matter what the system’s

specific security policy might be.
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Our notion of a security domain refers to a subset of

the system which is treated as an opaque unit by the sys-

tem’s security policy (i.e. intra-domain information flow

is not restricted by the policy). In OS terms, a domain

consists of one or more (cooperating) processes.

We assume that the OS provides strong, verified

memory protection, and is free of storage channels,

seL4 being an example. Our primary concern is micro-

architectural channels, i.e. channels that exploit compe-

tition for finite hardware resources that are abstracted

away by the instruction-set architecture (ISA), the clas-

sic hardware-software contract. This means that algo-

rithmic channels are not our primary concern, but we

will discuss in Sect. 4.3 how time protection can be em-

ployed to remove such channels (within limits).

Like memory protection, time protection is a black-

box OS mechanism, that provides mandatory security
enforcement without relying on application cooperation.

For realism, i.e. to ensure that contemporary hard-

ware is at least close to satisfying the requirements of

time protection (and can fully satisfy them with minor

enhancements) we limit our scope in one important

way: we do not (yet) attempt to prevent covert channels
through stateless interconnects. Such channels, exploit-

ing the finite bandwidth of interconnects through con-

current competing access, are trivial to implement: a

Trojan running on one core signals by modulating its

use of interconnect bandwidth, and a spy running on a

different core measures the remaining bandwidth by try-

ing to saturate the shared interconnect. Such channels

can only be prevented with hardware support that is not

available on any contemporary mainstream hardware.
1

We will be able to extend time protection in a fairly

straightforward way, should such hardware support (or

at least an accepted model for it) become available.

An obvious example of the excluded scenario would

be a covert channel between two virtual machines (VMs)

concurrently executing on different cores of the same

processor on a public cloud. Such a covert channel is

not a particular concern, as the Trojan in the victim VM

does not need the co-located spy, as it can communicate

by other means, e.g. modulating its network commu-

nication. Side channels are a real concern in the cloud

scenario, but stateless interconnects reveal no address

information. As a consequence, no such side channels

have been demonstrated to date [Ge et al. 2018b], and

they are likely impossible.

1
Intel recently introduced memory bandwidth allocation (MBA) tech-

nology, which imposes approximate limits on the memory bandwidth

available to a core [Intel Corporation 2016]. While this represents a

step towards bandwidth partitioning, the approximate enforcement is

not sufficient for preventing covert channels.

3 TIMING-CHANNEL MECHANISMS

There are twoways inwhich Lomay learnHi’s secret: by

timing observable actions of Hi, or by Lo observing how

its own execution speed is influenced by Hi’s execution.

3.1 Timing own progress

This channel utilises the performance impact of interfer-

ence between processes resulting from competition for

shared hardware resources, especially stateful resources

such as caches, TLBs, branch predictors and pre-fetcher

state machines. For example, Lo’s rate of progress (per-

formance) is affected by cache misses. If Lo shares a

cache with Hi (either time-sharing a core-private cache

or concurrently sharing a cache with Hi’s core), then the

miss rate will depend on Hi’s cache usage. If the cache is

set-associative (which almost all of them are nowadays),

then the pattern of cache misses will also reveal address

information fromHi. Such address information supports

the implementation of side channels with potentially

high bandwidth, e.g. where the secret is used to index a

table [Ge et al. 2018b].

An effective exploitation of such a channel is the

prime-and-probe technique [Osvik et al. 2006; Percival

2005]. Here Lo fills the cache by traversing a buffer large

enough to cover the cache (prime phase). After or while

Hi is executing, Lo traverses the buffer again, moni-

toring the time taken for each access (probe phase); a

long latency indicates a conflict miss with Hi’s cache

footprint. The address of the missing access reveals the

index bits of Hi’s access.

Prime-and-probe can be used as a high-bandwidth

covert channel, where Hi explicitly encodes information

into thememory addresses accessed, or as a side channel,

where the encoding is implicit in Hi’s normal execution

(e.g. via a secret-derived array index). It can be used

for time-shared (core-private) caches as well as caches

shared between cores.

3.2 Timing Hi events

On a first glance this might seem like a silly case, why

worry about a covert channel if there is an overt one,

such as message passing? However, this situation is

in fact common: Hi might be a downgrader, an entity

trusted to handle secrets and decide which can be safely

declassified. A common example is a crypto component,

which encrypts secrets, e.g. from a web server, and pub-

lishes the encrypted text, by handing them to a network

unit; this is shown in Figure 1.

In this case, the leakage might be resulting from an

algorithmic channel (e.g. a crypto implementation with

secret-dependent execution), a Trojan modulating the
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Figure 1: Encryption engine as a downgrader.

speed of the encryption (possibly via micro-architectural

interference), or the server itself leaking through the

timing of messages to the crypto component.

Time protection here must make execution time de-

terministic, meaning that message passing or context

switching happen at pre-determined times. Obviously,

the OS can only provide the mechanism here (determin-

istic switch/delivery time), not the policy (the time of

the switch). This must be set by the system designer

or security officer, taking into account issues like the

worst-case execution time (WCET) of the encryption.

Cock et al. [2014] have proposed a possible model:

a synchronous IPC channel switches to the receiver

only once the sender domain has executed for a pre-

determined minimum amount of time. It is then left to

the system designer to determine a safe time threshold.

4 DEFENCES AND LIMITATIONS

4.1 Flushing and partitioning hardware

As micro-architectural timing channels result from com-

petition for (non-architected) hardware resources, elim-

inating them requires removing the competition. This

means the OS must either partition those resources be-

tween security domains, or reset them to a defined,

history-independent state between accesses from dif-

ferent domains.

Resetting, e.g. flushing caches, only helps where ac-

cesses from different domains are separated in time, i.e.

for time-shared resources. In other words, resetting only

works for resources that are private to an execution

stream. In the absence of hyperthreading, this applies

to core-local resources, such as the L1 caches, private

L2 caches (on Intel hardware), TLBs, branch predictors,

and core-local prefetchers.

Partitioning is the only option where concurrent ac-

cesses happen, i.e. for caches shared between cores. It

would also be the only option for core-local state when

hyperthreading is enabled. However, no mainstream

hardware supports partitioning of hardware resources

between hyperthreads, and such partitioning would

seem fundamentally at odds with the concept of hy-

perthreading, which is based on improving hardware

utilisation by sharing. Consequently there are a plethora

of side-channel attacks between hyperthreads [Ge et al.

2018b]. We have to conclude that hyperthreading is
fundamentally insecure, and multiple hardware threads

must never be allocated to different security domains

(multi-threading a single domain is not a security issue).

Partitioning of shared (physically-addressed) caches

is possible without extra hardware support by using

page colouring [Kessler and Hill 1992; Liedtke et al. 1997;

Lynch et al. 1992]. This uses the fact that the associative

lookup of a large cache forces a page into a specific

subset of the cache, so only pages mapping to the same

subset, said to have the same colour, can compete for

cache space. By ensuring that different security domains

are allocated physical page frames of disjoint colours, the

OS can partition the cache between domains. Modern

last-level caches have at least 64 different colours.

In general, micro-architectural timing channels can be
prevented if all shared hardware can be either partitioned
of flushed by the OS, with flushing the only option where

accesses are concurrent. Together with a few other con-

ditions outlined by Ge et al. [2018a], these form part of

a security-oriented hardware-software contract, called

the aISA (augmented ISA), that allows the OS to pre-

vent timing channels. The ISA alone is an insufficient

contract for ensuring security [Heiser 2018; Hill 2018].

4.2 Implementing time protection

We have recently proposed an implementation of time

protection in seL4, for hardware that conforms to a

security-oriented aISA [Ge et al. 2019]. It uses cache

colouring to partition shared caches. As even read-only

sharing of code is sufficient for creating a channel [Gul-

lasch et al. 2011; Yarom and Falkner 2014], we also colour

the kernel image. This is achieved by a policy-free kernel
clone mechanism, which allows setting up a domain-

private kernel image in coloured memory.

We flush time-shared micro-architectural state on

each domain switch (but not on intra-domain context-

switches). For writable micro-architectural state (e.g.

the L1 data cache), the latency of the flush is itself de-

pendent on execution history (number of dirty lines),

which would create a channel. We avoid this channel

by padding the domain-switch latency to a fixed value.

For generality (see Sect. 4.3) we make determining the

padding time not the job of the OS, but an attribute of

the switched-from security domain, controlled by the

system designer. Specifically, we specify that the next

domain will not start executing earlier than the previous

domain’s time slice plus the padding time.

The padding time should obviously be at least the

worst-case latency of the flush, but also needs to account
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for any delay of the handling of the preemption-timer

interrupt by other kernel entries (resulting from system

calls or interrupts).

Finally, interrupts could also be used as a channel,

if the Trojan triggers an I/O such that its completion

interrupt fires during Lo’s execution [Ge et al. 2019]. We

prevent this by partitioning interrupts (other than the

preemption timer) between domains, and keep all inter-

rupts masked that are not associated with the presently-

executing domain.

4.3 Preventing algorithmic channels

Padding is a general mechanism that can also be used to

prevent algorithmic channels. In the scenario of Figure 1,

we can pad the execution time of the downgrader to a

safe value (an upper bound of its execution time). In

practice, this is very wastive if padding is done by busy

looping. To make it practical, another Hi process should

be scheduled for padding. Obviously, that interim pro-

cess must be preempted early enough to allow the kernel

to switch domains without exceeding the pad time (as

this might introduce new channels). This may not be

straightforward to implement, but it is clearly possible.

5 PROVING TIME PROTECTION

At first glance, one might expect that proving time pro-

tection is a hopeless exercise. After all, the precise inter-

action between microarchitectural state and execution

latency is unspecified for modern hardware platforms,

and the latency of some instructions may vary by orders

of magnitude depending on hardware state. Formally

reasoning about precise execution latencies is therefore

infeasible [Klein et al. 2011].

However, we argue that reasoning about the exact

latency of executions is unnecessary. The key insight

is that these channels are effected by shared hard-

ware resources, and if we can prove that no shar-

ing happens, there can be no timing channels.Con-

sequently, proving temporal isolation requires formal

models of microarchitectural state, but these can be kept

abstract, providing only detail to identify resources that

need to be partitioned (and how such partitioning is per-

formed), and state that must be reset (and how to reset

it). That is, we do not need to know how long an instruc-

tion will take to execute, only which micro-architectural

state its execution time depends on and how this state

behaves wrt. partitioning and flushing.

For partitionable state, temporal isolation becomes a

functional property (namely an invariant about correct

partitioning) that can be verified without any reference

to time, meaning existing verification techniques apply.

For state that requires flushing, correct application of

the flush is also a functional property. As mentioned in

Sect. 4.2, the latency of flushing operations themselves

needs to be hidden by the OS, by padding its execution.

Correct padding can be verified with a relatively simple

formalisation of hardware clocks, which allows veri-

fying padding time by simply comparing time stamps,

reducing this to a functional property as well.

Once timing-channel reasoning is reduced to the ver-

ification of functional properties, it should be possi-

ble to integrate it into existing proof frameworks of

storage-channel freedom, such as seL4’s information

flow proofs [Murray et al. 2013].

Indeed, under this approach timing-channel rea-

soning is transmuted into reasoning about storage

channels, reducing it to a solved problem, and also

enabling reasoning about timing-channels without ref-

erence to precise execution time. This possibility may

seem surprising, but it is known that the distinction be-

tween storage and timing channels is not fundamental,

but refers to themechanisms used for exploitation [Wray

1991]. In our case we transform the temporal interfer-

ence problem into a spatial one, by reasoning about the

shared hardware resources which the channels exploit.

5.1 Hardware formalisation

Carrying out these proofs requires a model of the shared

hardware resources (the microarchitectural model) that
influence execution latencies, as well as a simple model

of a hardware clock (the time model) to allow reasoning

about elapsed time intervals. Naturally these models are

interrelated: how much an execution step advances the

hardware clock naturally depends on the microarchitec-

tural state that influences execution time.

Crucially, a precise description of this interaction is

not necessary. Instead, the interaction can be faithfully

yet feasibly modelled as follows. Firstly, the microar-

chitectural model must delineate the partitionable state

from the flushable state, and all microarchitectural state

must be partitionable or flushable (Sect. 4.1). Secondly,

the time model, which captures how far time advances

on each execution step, is defined as a deterministic
yet unspecified function of the microarchitectural state.

Then, when the microarchitectural state is properly par-

titioned and flushed, one can prove that a security do-

main’s execution time cannot be influenced by other

domains (see Sect. 5.2 below).

This construction neatly reflects the basic assump-

tions that (i) the hardware provides sufficient mecha-

nisms to partition and flush microarchitectural state

between security domains, that (ii) such mechanisms
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work correctly, and that (iii) these account for all mi-

croarchitectural state that influences execution time.

5.2 Information-flow proofs

With these models in hand, time protection can then be

proved by showing that there is no way in which the

execution of one domain can affect the execution timing

of another domain.

Specifically the proofs must show that all resource

partitioning and flushing is applied at all times and not

bypassable, and that domain-switches (flushing) is cor-

rectly padded to a constant amount of time (under the

assumption that the padding value, obtained by a sep-

arate analysis, is sufficient). These proofs can then be

integrated with existing storage-channel freedom proofs

to derive the absence of timing channels as follows.

Without loss of generality, fix some domain (Lo) and

consider one of its execution steps for which we show

its timing cannot be influenced by another domain (Hi).

There are two possibilities: (Case 1) either it is an ordi-

nary user-mode instruction, or (Case 2) it is a trap (a

system call, exception, or interrupt arrival). For Case

1, the execution time given by the time model will be

affected by the shared hardware resources in the mi-

croarchitectural model. Recall that this effect can be

modelled by an unspecified deterministic function from

the state of the microarchitectural model to an elapsed

(symbolic) time value. For an individual instruction this

function will examine the state of the instruction cache,

namely the cache set identified by the program counter,

and the state of the data cache for any memory address

accessed by that instruction. Since the access does not

fault (otherwise it would be a trap), all such memory

accesses must lie within the physical memory of the

current domain and thus within areas of the cache that

cannot be affected by other partitions (due to correct

cache partitioning by the kernel, or correct flushing,

e.g. for the on-core L1 cache).

A similar argument applies to other microarchitec-

tural resources. Thus the resulting execution time can-

not be affected by other partitions.

For Case 2, we distinguish two sub-cases: The trap is

either (Case 2a) a system call or exception, or (Case 2b)

it is the arrival of a timer interrupt signalling a switch

to the next domain. For Case 2a, the execution time

depends on the state of the instruction cache wrt. the

kernel instructions executed, plus the data cache for any

data accessed. However, in a partitioned system with

the kernel correctly cloned as in Sect. 4.2, the former

cannot be affected by other partitions and the latter

accesses only data of the current domain. The only re-

maining state that might be accessed is global kernel

data, which we will prove is accessed deterministically

and whose cache state after a domain switch is indepen-

dent of prior Hi activity (due to correct flushing). Thus

a similar, if naturally more involved, argument applies

as to the user mode case (Case 1). Incorporating general

(i.e. non-timer) interrupts we believe is also possible,

by partitioning the interrupt set as covered in Sect. 4.2.

For Case 2b, we invoke the proof of the constant-time

domain switch property. □

Note that by reflecting elapsed time as a value in the

state of the time model (updated by an unspecified func-

tion of the microarchitectural model), timing-channel

reasoning is reduced to storage-channel reasoning, and

indeed time protection itself can be phrased and proved

akin to storage-channel freedom via a suitable noninter-

ference property [Murray et al. 2012].

5.3 TLB

The TLB is an example where the principles of partition-

ing and flushing can already be observed in a formal

model for pure functional correctness: while not yet

suitable for reasoning about timing, Syeda and Klein

[2018] provide a logic for functional correctness under

an ARM-style TLB. For instance, it is easy to show in this

model that page tables modifications under one address

space identified (ASID) do not affect TLB consistency for

any other ASID. This is the kind of partitioning theorem

we would make use of for timing-relevant state.

The model in this work is a high-level abstraction

of the TLB proved sound with respect to a low-level

model that would be infeasible to reason about directly.

We propose the same for timing behaviour. Instead of

reasoning about a detailed low-level architecture model

with precise timing information, we only record the

information needed for timing-independence.

6 CONCLUSIONS

We conclude that proving time protection should be

possible with established formal methods, thanks to the

key insight that they result from spatial-type micro-

architectural resources, and can thus be treated as stor-

age channels. This requires some reasoning about those

hardware resources, but we expect to get awaywith very

high-level abstractions. The key challenge is to achieve

agreement on a hardware-software contract that makes

it at least possible to remove timing channels. We are

clearly at the mercy of processor manufacturers here!
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