
Presented at the ACM Workshop on New Paradigms in Information Visualization (NPIV99)

Application Redirection:
Hosting Windows Applications in 3D

Maarten van Dantzich,
George Robertson

Microsoft Research
One Microsoft Way

Redmond, WA 98052

maartenv @ microsoft.com

Vadim Gorokhovsky

Microsoft Corp.
One Microsoft Way

Redmond, WA 98052

ABSTRACT
We present Application Redirection, a novel architecture that lets
unmodified Windows applications be hosted in a 3D virtual
environment. The result is a platform for experimentation in 3D
Information Visualization in which the user retains all familiar
productivity tools. This paper describes the implementation of
Application Redirection, using the Task Gallery to illustrate how
it is used.

Keywords
Window Managers, 3D User Interfaces, 3D Window Managers,
Information Visualization.

1. INTRODUCTION
Researchers exploring 3D visualizations currently choose between
two approaches: create a 3D environment with new applications,
or host 3D elements inside 2D applications. Neither is ideal: any
new 3D environment will have few productivity tools available
for it, while keeping 3D visualizations inside a 2D window limits
the range of designs that can be pursued.

We have developed a novel way to bring existing Windows
applications into a 3D environment. The result is a platform for
experimentation in 3D Information Visualization in which the
user retains all familiar productivity tools. We present Application
Redirection, an architecture that lets unmodified Windows
applications be hosted in a 3D virtual environment.

Other potential uses for Application Redirection include easy
thumbnail generation for browse histories or document
visualization, scalable user interfaces, and other ways to redisplay
applications.

The Task Gallery [7] is a 3D Window Manager that uses
Application Redirection to host applications by redirecting both
their input (events) and output (visuals). This paper describes the

Permission to make digital or hard copies of all or part of this work t'or
personal or classroom use is ~m-anted without tee provided that copies
are not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific pemlission and/or a lee.
NPIVM 99 Kansas City Mo USA
Copyright ACM 2000 1-58113-254-9/99/11 ...$5.00

Figure 1. The Task Gallery.

implementation of Application Redirection, using the Task
Gallery to illustrate how it is used.

2. RELATED WORK
Most 3D environments have required the implementation of new
client applications. For example, the 3D Rooms system [5] was
built as an information workspace that used 3D virtual
environments to extend the ideas of Rooms [3]. 3D Rooms was
not actually a window manager; abstract information
visualizations replaced windows. Hence there was no need for a
mechanism like Application Redirection.

Feiner et at. [2] modified an X server to put 2D windows into a
3D augmented reality. Regions of a virtual display surface were
overlaid on the 3D scene view, possibly anchored to the camera or
to objects in the scene. However, windows were always aligned
with the film plane, and were not first-class 3D citizen. Our work
differs in several ways: we can redirect individual windows, rather
than an entire desktop. The windows become texture maps, and
thus can be displayed under any 3D transformation. We have
made the windows fully interactive by providing input redirection,
which Feiner et al. do not address. We also address the
performance issues Feiner mentions. Elmqvist et al. [1] have a
more complete X Windows solution currently under development,
using a modified version of the Xvfb virtual frame buffer.

87

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331770.331791&domain=pdf&date_stamp=1999-11-01

Presented at the ACM Workshop on New Paradigms in Information Visualization (NPIV99)

3. TASK GALLERY DESIGN
Figure 1 shows a view of the Task Gallery, a 3D window manager
designed to provide direct support for task management and
document comparison. A task is a collection of documents and
applications organized around a particular user activity. User tasks
appear as artwork hung on the walls of a virtual art gallery, with
the selected task on a stage, which contains opened documents
and running applications for that task. The user switches to a new
task by clicking on it, which moves it to the stage. Viewing
multiple windows within a task simultaneously is done with a
button click, using automatic layout and movement in the 3D
space to provide uniform and intuitive scaling.

To view other tasks, the user backs up to see more of the gallery,
as in Figure 1. The gallery is composed of a sequence of rooms,
with only one closed end; more rooms are revealed without limit
as the user moves back. The user is allowed to place tasks
wherever desired with a dragging movement, constrained to
remain on walls, floor, or ceiling.

Users (especially non-garners) tend to get lost in many systems
that require them to navigate. We avoid this problem by keeping
the space simple (a linear hallway), and by constraining the
navigation. Thus, we provide a few simple controls rather than a
general egocentric navigation mechanism: jump back, jump
forward, and return to active task; these are presented as buttons
surrounding a human figure overlaid on the 3D view. Our studies
showed that users did not become disoriented in the 3D space
when using these controls.

The active task workspace offers a few novel ways of rearranging
windows belonging to that task. The user maintains overlapped
windows in much the same way the current desktop metaphor
does in the 'loose stack' of windows. Documents that are not in
active use but desirable to have at hand can be stacked up on a
podium that maintains an automatically tidied stack of windows.
Selected windows are brought to a region closer to the user, so
that they are more easily read; this corresponds to maximizing a
window when the user wants to focus on a particular document.
Multiple windows can be selected and are scaled automatically so
that they appear side-by-side for easy comparison or cut and paste
operations.

The Start Palette is a Data Mountain [6] for application icons,
document thumbnails, and command buttons; it is used to create
tasks and to populate them. The Start Palette is carried relative to
the virtual camera and is accessed by a glancing operation [4].

4. IMPLEMENTATION ISSUES
The current implementation runs on PCs with a 400 MHz Intel
Pentium II processor, 128 MB of RAM, and AGP support. We
used the NVIDIA Riva TNT2 graphics accelerator with 32MB of
memory and AGP texturing support. We achieve frame rates
above 20 frames per second (fps).

While we intend the Task Gallery to become usable as a primary
visual shell, at this early stage of development it runs as a full-
screen application on top of the standard Windows 2000 shell.
Applications started by the Task Gallery appear redirected into its
environment.

All Task Gallery code was implemented in C++, using the Win32
and Direct3D APIs. The software architecture is divided into five
major components as follows:

1. objects to simplify and abstract Win32 platform functionality
like window creation, devices and events;

2. management of redirected windows;

3. a simple 3D renderer that abstracts the Direct3D interface
and performs render state maintenance and texture
management;

4. a library for scene graph management, animation, and basic
graphical object types; and

5. the high-level objects that implement behavior and visual
representations of Rooms, Tasks, and Windows.

4.1 Redirection
The key technical challenge in building a 3D window manager
like the Task Gallery is to get existing applications to work in the
3D environment without changing or recompiling them. This
requires both output and input redirection facilities in the
operating system. Output redirection causes applications to render
to off-screen bitmaps instead of the screen, provides access to
those bitmaps so they can be used as textures in the 3D
environment, and sends notification whenever an application has
updated its visual display in any way. Input redirection causes
mouse and keyboard events to be received by an application rather
than the 3D environment's main window, but with mouse
coordinates translated from 3D to 2D. The next two sections
describes these facilities.

4.1.1 Output Redirection
The Window Manager in Windows 2000 provides a new top-level
window style called Layered Window. Layered windows
encompass two different concepts - layering, the ability of
windows to exhibit sprite-like behavior, and redirection, the
ability of the system to redirect the drawing of legacy windows
into an off-screen bitmap. The sprite support for layered windows
includes flicker-free animation, and transparent and non-
rectangular windows with per-pixel alpha information. Client
applications can make explicit use of Layered Windows with
source code changes, but this does require recompilation.

Iw o0o. 1
I 0 ~ ~ 2 2

Standard Windows
3D Renderer Ap~l,i~tion ~ . ~ ~ _ _

Polyson in 3D Texture Mapped
Pol.y~on

Figure 2 Output Redirection

Since Windows 2000 already supports painting redirection as an
integral part of the layering support, the Window Manager was

8 8

Presented at the ACM Workshop on New Paradigms in Information Visualization (NPIV99)

modified to expose redirection as a separate feature via a
"Redirected" style bit. The Redirected style bit can be set on a
window at any time after its creation, enabling the redirection
functionality for that window. The system removes the window
from the desktop, creates an off-screen bitmap, and reroutes
further drawing operations applied to the window into that
bitmap. Since the redirected application is not aware of this
change, the initiator of the redirection (called the redirection host)
is responsible for propagating changes in the application's visible
appearance to the screen. To enable this, the system fires a new
event ("redirected paint") whenever the application has finished a
visual update. By requesting a hook on this event, the redirection
host obtains notifications of painting updates, including which
window was updated and the affected region within the window.

In the Task Gallery, we handle this event in a lazy fashion: the
update region is composed with the existing cached dirty region
for a window, and the texture object associated with the window
is marked dirty. When the next frame is rendered, we copy the
accumulated dirty region from the window's off-screen bitmap to
the texture surface.

Of course visual updates should happen as promptly as possible to
ensure that the user receives good visual feedback. Currently, our
system always re-renders the whole scene, as is common in 3D
systems. This is not a problem since the frame rate remains above
20 fps.

The redirection host must also notice when a redirected
application creates a new window, so that it will appear inside the
3D environment. This includes the creation of new document
windows, dialog boxes, and even drop-down menus. When
windows are destructed, the host should free resources such as the
associated texture. To do this, our redirection host installs the
hooks to receive the window show and hide notification events for
each application thread that creates windows.

The host must make intelligent decisions about the positioning of
such new windows: drop-down menus must be positioned very
precisely in relation to a parent window, whereas a dialog that
otherwise appeared in the center of the screen should now be
positioned relative to another of the application's windows.

Finally, some handling of special cases is necessary. Some
applications put up a splash screen, then fork off another process
which creates the actual main window. We have addressed this on
a case-by-case basis so far, but are implementing a module that
will track process creation so that we can correctly track window
ownership.

4.1.2 Input Redirection
The Task Gallery displays application windows using a texture
map. However, we want the texture map to appear as if it is the
live application, responding correctly to user input. Since the
operating system does not recognize the textured polygon as a
window object, some work has to be done to route input events to
the proper destination. The steps needed to accomplish this are:
ensure that mouse messages are delivered to redirected application
windows where they belong; make the redirected application
believe that the mouse cursor is in the right 2D location over a
redirected window even though it is over the redirection host
window; ensure no impact to proper system performance. We
describe each of these in turn.

If nothing is done, the redirection host will receive all mouse
messages, since in reality the user is interacting with the host's
window. Thus, the host can examine each incoming event, decide
which logical window it was meant for, and repost the event to the
correct window's event queue. This has two disadvantages. First,
each of these events will be posted twice. Since some event types
(such as mouse motion) can occur very frequently, this can
become a performance bottleneck. Second, it does not address the
issue of the mouse being captured by redirected applications by
calling SetCapture. Once the capture is set to the redirected
window, the redirection host may stop receiving mouse messages.
In addition, even if the redirection host was able to intercept them,
the mouse messages distributed under the mouse capture may
contain a point in screen coordinates as opposed to window
coordinates without the redirection host being aware of it. In
general, it would be extremely difficult for the redirection host to
imitate correctly the behavior of the system function that
distributes messages to applications.

Mouse Input ~. Y ." /

/

Keyboard Input Application

Figure 3 Input Redirection

'Our system employs a different tactic. In current versions of the
Windows operating system, the Window Manager is responsible
for distributing device events from the system event queue to the
appropriate window message queue. Keyboard messages go to the
focus window of the application currently in the foreground.
Mouse messages generally go to the window under the mouse
cursor. However, one can intervene in this mapping by installing a
low-level hit test hook. This allows the redirection host to change
the mouse position of a hit tested point.

Thus, whenever the pointer is over the main window of the
redirection host, we examine these hit test hook messages. If the
pointer is on top of a pixel that is part of a redirected window's
texture map in the 3D scene, we adjust the mouse coordinates and
the target window handle in the hit test structure so that the
pointer will appear to be in the proper location over the redirected
window in the Windows 2D desktop coordinates. This causes the
Window Manager to post the mouse message to the right
application and with the desired coordinates. In turn, the
application that the user wants to interact with will become the
foreground application and update its visuals and behavior
accordingly. Keyboard messages are now automatically sent to the
redirected application. Thus, neither mouse nor keyboard
messages actually reach the host's window event queue.

The mouse position must be adjusted in two situations: when the
hit test result is adjusted, and when a redirected application

89

Presented at the ACM Workshop on New Paradigms in Information Visualization (NPIV99)

inspects the mouse position directly. Windows applications do
this through the Win32 API call GetCursorPos. A new hook type
was added to the Window Manager so that our redirection host
can catch the occurrence of a call to GetCursorPos and forge the
mouse coordinates as we do for the hit test.

Deciding if the pointer is over a pixel belonging to a redirected
window is simple. By limiting the hit test to the list of geometry
objects known to represent application windows, we can avoid
walking the entire scene graph. Our 3D scene manager supports a
standard 3D hit test using hierarchical bounding boxes which
returns a 2D normalized coordinate on the face of the bounding
box that was hit. We construct the "forged" 2D mouse coordinates
by converting this normalized 2D coordinate into an appropriate
pixel coordinate in the window's coordinate system.

Each low-level mouse message generated in the system requires
inspection, and the 3D hit test we employ is non-trivial. Our
current system limits the impact on system responsiveness by only
forging mouse input to the active application, thus we only test
against one bounding box, but we allow that window to be
transformed in the scene arbitrarily: it does not have to be camera-
aligned. In the future, we will keep a map of the screen locations
of transformed 3D objects representing windows, so a simple
point-in-polygon test will determine whether the mouse is over
that window. By inverting and caching the 3D camera transform,
the transformation to 2D forged coordinates becomes much
cheaper than the ray-plane intersection we currently do against the
bounding box.

Note that the redirection host never touches keyboard messages:
these are sent to the foreground application by the operating
system. This implies that our environment maintains the existing
notions and policies of window activation and keyboard focus that
Windows implements. Thus, a click on a window object causes
the corresponding application to receive activation and focus; a
click on the 3D scene background causes the redirection host to
receive focus. When window manager functionality is accessed
through keyboard commands, the user has to explicitly direct
keyboard focus to the shell to obtain the desired effect. This is
true in current window managers as well; usually special modifier
keys are employed by the window manager as a workaround. In
the Task Gallery, we avoid this by providing on-screen iconic
controls for all window manager functionality, so that keyboard
input is not needed.

4.1 .3 Genera l i t y
The low-level components of this system were implemented by
the USER and GDI groups of the Windows 2000 team (primarily
one of the authors, VG). Some components use standard features
of the operating system, such as the window hide/show messages.
Others were added to a private build of Windows 2000 for this
work: the ability to turn on the redirection for a window at
runtime, the event generated when a window is updated by the
application, the low level hit test hook, and the CBT hook event
generated for calls to GetCursorPos. These new features work
without recompiling the application because their implementation
consists of changes to libraries which all applications load
dynamically at runtime as well as the Windows 2000 driver that
contains the Window Manager and the Graphics subsystem.

The details of this solution are specific to the Windows 2000
operating system. However, the components needed will be
similar on other operating systems. We believe that similar

changes are possible for any OS that uses the X Window System,
as long as the X server runs on the same machine as the client
applications and the window manager so that bitmap sharing is
efficient (e.g., Feiner [2]).

X makes it easy to replace the window manager: many have been
created by independent developers, including so-called "virtual
desktops" which dynamically position certain windows off-screen.
Many X servers can already cache bitmaps of windows for fast
handling of window expose events, providing the low-level
equivalent of redirected windows; these could be placed in shared
memory accessible to the 3D window manager. There is already a
placement negotiation mechanism between window managers and
applications. X performs cursor hit tests in the server process
based on a "window map"; this would be modified to involve the
window manager. The source code for the X window system is
widely available, making such modifications possible.

4.2 Texture Management
Another key problem is managing textures. Keeping a texture tbr
each window and each task can quickly fill any texture memory
available. In addition, our textures represent running applications
and thus are updated often, requiring high texture download
bandwidth. AGP graphics cards make it possible to texture from
main memory with little performance penalty. This helps
enormously, but careful management of textures is still required.

For example, in the Task Gallery, only the windows in the current
task need have their textures updated when window change events
occur. Those change events describe what region of the window
changed, hence only that region of the texture need be changed
(assuming the graphics card allows the modification of portions of
textures).

The task snapshots are reduced in resolution (from the original
1024x768 frame buffer size to 256x256 pixels) to avoid
overwhelming the texture map engine. However, we do not reduce
the textures that represent application windows, in order to
maintain as much visual detail and text legibility as possible.

5. CONCLUSION
Application Redirection is a novel approach to allowing existing,
unmodified Windows applications to live within a 3D virtual
environment. This allows 3D visualization users to take
advantage of familiar productivity tools. The Task Gallery is a 3D
window manager that illustrates how we can explore alternative
novel user interfaces for application environments by building on
top of the application redirection technology.

6. ACKNOWLEDGMENTS
Comeliu Lupu and Andrew Goossen of the Windows 2000 USER
and GDI teams were instrumental in architecting appropriate low-
level support for this work.

7. REFERENCES
[1] Elmqvist, N. et al, 3Dwm. Project information at

http://www.medialab.chalmers.se/projects/3dwm/index.

html

[2] Feiner, S., MacIntyre, B., Haupt, M., and Solomon, E.,

Windows on the world: 2D windows for 3D augmented
reality, in Proceedings of ACM UIST 93 Symposium

90

Presented at the ACM Workshop on New Paradigms in Information Visualization (NPIV99)

on User Interface Software & Technology, November
1993, pp. 145-155.

[3] Henderson, A., Card, S. K., Rooms: The use of
multiple virtual workspaces to reduce space contention
in a window-based graphical user interface, ACM
Transactions on Graphics 5, 3, (1986), pp. 211-243.

[4] Pierce, J., Conway, M., van Dantzich, M., and
Robertson, G., Toolspaces and glances: storing,
accessing, and retrieving objects in 3D desktop
applications, in Proceedings of Symposium on
Interactive 3D Graphics, April 1999, pp. 163-168.

[5] Robertson, G., Card, S., and Mackinlay, J., Information
visualization using 3D interactive animation, CACM,
36, 4, (1993), pp. 57-71.

[6] Robertson, G., Czerwinski, M., Larson, K., Robbins,
D., Thiel, D. & van Dantzich, M.. Data Mountain:
Using Spatial Memory for Document Management, in
Proceedings of ACM UIST 98 Symposium on User
Interface Software & Technology, November 1998, pp.
153-162.

[7] Robertson, G., van Dantzich, M., Robbins, D.,
Czerwinski, M., Hinckley, K., Risden, K., &
Gorokhovsky, V. The Task Gallery: A 3D Window
Manager, to be presented at ACM CHI 2000.

91

