This is the accepted manuscript of the article, which has been published in 11th
ACM Symposium on Eye Tracking Research and Applications, ETRA 2019.

http://dx.doi.org/10.1145/3317956.3318151

Inducing Gaze Gestures by Static lllustrations

Paivi Majaranta
paivi.majaranta@tuni.fi
Tampere University
Tampere, Finland

Jari Laitinen
jarilaitinen@sci.fi
Tampere University
Tampere, Finland

ABSTRACT

In gesture-based user interfaces, the effort needed for learning the
gestures is a persistent problem that hinders their adoption in prod-
ucts. However, people’s natural gaze paths form shapes during
viewing. For example, reading creates a recognizable pattern. These
gaze patterns can be utilized in human-technology interaction. We
experimented with the idea of inducing specific gaze patterns by
static drawings. The drawings included visual hints to guide the
gaze. By looking at the parts of the drawing, the user’s gaze com-
posed a gaze gesture that activated a command. We organized a
proof-of-concept trial to see how intuitive the idea is. Most partic-
ipants understood the idea without specific instructions already
on the first round of trials. We argue that with careful design the
form of objects and especially their decorative details can serve as a
gaze-based user interface in smart homes and other environments
of ubiquitous computing.!
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« Human-centered computing — Interaction techniques; Ubig-
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1 INTRODUCTION

Because we naturally focus our gaze on objects we want to interact
with, the gaze is an obvious interaction method in smart envi-
ronments. However, gaze tracking has some inherent challenges.
Pointing with the eyes is fast and easy but accurate gaze pointing
requires calibration. That takes time and the calibration may dete-
riorate over time. Furthermore, using gaze for selection creates a
Midas’ touch problem where fixated objects are unintentionally se-
lected. Gaze gestures help in overcoming these challenges [Drewes
and Schmidt 2007]. They can be recognized by the shape created by
the gaze path even from uncalibrated eye tracker data. Learning the
mapping between gestures and commands is a problem that reduces
the use of gestural user interfaces. More complex gestures are less
likely to be confused with natural eye movements [Drewes and
Schmidt 2007; Mellenbach et al. 2013] but even more demanding to
learn.

We were intrigued by the idea of inducing gaze patterns by
illustrations. Instead of asking the user to memorize a specific gaze
gesture, we give them something to look at. When looked at in a
specific order, the system will interpret that as a command. The
idea was inspired by the potential of exploiting people’s natural
gaze patterns while they observe their environment. Gaze-reactive
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objects could be accompanied with visual hints that initiate certain
viewing pattern while at the same time making it obvious how
to avoid executing the command accidentally. These illustrations
could be pieces of art, or stickers on or near the objects that the
illustrated gaze gestures control. Having something to look at not
only guides the gaze but also avoids the need to perform unnatural,
potentially uncomfortable gaze gestures. Avoiding weird looking
gaze behavior may be important for the social acceptability of gaze-
based interaction [Akkil et al. 2016] and affect people’s willingness
to utilize the technology [Mele and Federici 2012]. Relative gaze
gestures can be recognized with electrooculography sensors that
are hidden in regular eyeglass frames [Amft et al. 2015] and thus
unnoticeable to others.

Below we first briefly review related research. We then introduce
the idea and report results from a proof-of-concept study.

2 RELATED WORK

Using the sequence of gaze strokes to initiate gaze commands is an
old idea. Some of the earliest eye typing systems required the user
to glance at a few defined directions in specific order to compose a
character [Rosen and Durfee 1978]. Gaze gestures have also been
used to control a computer [Porta and Turina 2008], play games
[Istance et al. 2010], control mobile phones [Drewes et al. 2007;
Kangas et al. 2014] and smart watches [Akkil et al. 2015; Hansen
et al. 2016].

Relative gaze gestures are recognized based on the movement
pattern and can be done “in the air”; they do not require a target
to look at [Bulling et al. 2009; Drewes et al. 2007]. In some imple-
mentations, the stroke needs to cross a border or hit a certain area
[Huckauf and Urbina 2008; Mgllenbach et al. 2013]. These locations
serve as hints for the required amplitude and landing position for
the stroke. In natural viewing, eye movements are mostly uncon-
scious. Intentionally moving the gaze seems to be easier, if there is
a target to look at. For example, in eye drawing task, it is hard to
position the eye on a blank canvas but a grid of dots helps to anchor
the gaze [Hornof et al. 2004]. The hint for gaze-reactive areas can be
given on-screen (see e.g. [Istance et al. 2010]) or off-screen [Isokoski
2000], depending on where the stroke is expected to land.

A visual target is especially useful in smooth pursuit based gaze
interactions, where the gaze gesture is performed by following
a moving target. Vidal et al. [Vidal et al. 2013] showed that an
object can be selected by matching the eye movement path with
the object’s trajectory. This enables spontaneous interactions in
public spaces, without the need for calibration. The idea can be
applied in various applications, such as in control of computer
widgets [Spakov et al. 2016] or smart watches [Esteves et al. 2015].
In addition to following objects, reading moving text can also be
used to initiate commands or calibrate the system [Khamis et al.
2016].



It is also possible to guide the gaze using a see-through display to
augment the objects with visual hints, as demonstrated by Delamare
et al. [Delamare et al. 2017]. Real world objects themselves can be
exploited. Jungwirth et al. [Jungwirth et al. 2018] proposed using
the object contours to guide gaze gestures. A lamp could be turned
on with a gaze gesture composed by tracing the contour of the
lampshade. Our proposed method follows the same line of thought,
but increases significantly the liberty in choosing gesture shapes
by introducing static graphical guides placed on or near the object
to be controlled. Furthermore, we only require natural viewing: no
prior knowledge of how to perform the gesture is assumed, and
there is no need to memorize the gesture.

3 OUR APPROACH

We experimented with the idea of inducing specific gaze patterns by
static drawings. The drawings include visual hints to guide the gaze.
By looking at the parts of the drawing, the user’s gaze composes a
gaze gesture that activates a command. To separate the gaze ges-
tures from natural viewing, the gesture has to be complex enough.
Even single gaze strokes have been used to initiate gaze commands
[Mgllenbach et al. 2013] but our approach requires several “turning
points” (branches) to ensure a distinct pattern.

We ran a few pilot studies to see what kind of illustrations are
easy enough for users to work with. These included drawings, text,
and symbols. Based on the results from the pilots, we selected a few
options for the proof-of-concept test. Simple tree graphs seemed to
work best and were easy enough to draw. The nodes in the graph
included hints to guide the gaze along the appropriate path of the
graph. As hints, we used text reading direction (e.g. turn — the
— light — off/on) as well as symbols (e.g. arrows or numbers to
indicate the path to be taken, and symbols of lit / unlit lamp). The
illustrations are shown in Figure 1.

4 PROOF-OF-CONCEPT TRIAL

The main aim of the proof-of-concept trial was to study the in-
tuitiveness of the idea: how easily people understand what to do
without instructions, i.e. perform a gaze gesture just by looking at
a static drawing. The trial was organized in a laboratory at Tam-
pere University in autumn 2016. The illustrations were shown on a
computer screen for convenience.

4.1 Experimental Software

For the proof-of-concept trials we implemented a simple gaze ges-
ture recognizer. The gaze tracker was fixed to a regular 19-inch
display, i.e. we simplified the setup by making sure that the gaze
positions were in the same coordinate system with which the illus-
trations were drawn. Model gestures were given to the recognizer
as a set of sequences of coordinate pairs. The typical transitions
between nodes in models (see Figure 1) were 5 to 10 degrees long.
The sequence of user’s gaze fixations was compared to all models.
If the most closely matching model was similar enough to the gaze
gesture, the system would trigger a command.

For each gaze sample the system first checked if the current sam-
ple was far enough from the previous fixation to potentially create
a new fixation. If enough gaze samples formed a new cluster far
enough from the previous fixation that cluster location was taken
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Figure 1: The illustrations used in the experiment.

as the next fixation, and the transition between these two fixations
was used in the model comparisons. The model comparison was
done always after a new fixation was detected to see if any model
was similar enough to the latest fixation sequence.

In our proof-of-concept trials, we used the following parameters:
For fixations, we calculated an average of gaze locations over 50
milliseconds (i.e. previous three samples with a 60 Hz tracker) and
then computed whether next gaze sample was closer than 1 degree
from that average. If so, we had a potential fixation. There was no
dwell-time for fixation detection. For gaze transition calculations,
the potential fixation needed to be, at least, 4 degrees away from
the previous fixation to be counted as a next fixation. In the gesture
model comparison we calculated the average of differences between
corresponding transition vectors throughout the length of the ges-
ture as the error term. If the error term was below 3 degrees, we
selected the model with smallest error and triggered a command.
All these parameters were determined during several pilot user
trials. However, as we saw in the proof-of-concept trials, further
development and parameter tuning would be beneficial.

4.2 Setup and Procedure

The Tobii EyeX tracker was used in the trials. It was pre-calibrated
before the experiment by a person who did not participate in the
experiment and the same calibration was used throughout the ex-
periment. Thus, the tracker was not calibrated for any of the par-
ticipants. However, we ensured that tracker saw the participant’s
eyes by checking the indicator provided by the Tobii EyeX driver.
Fourteen participants (10 males, 4 females, aged between 19-34,



with average age 24 years) volunteered for the experiment. All
participants were students of Tampere University. The participants
received partial course credit as reward for participation. Two of
them had used an eye tracker before. Two wore eye glasses and
four wore contact lenses.

Each participant first received a short introduction to the ex-
periment and was then asked to fill in an informed consent form
and a background questionnaire. The participant was seated about
70 cm away from the tracker. She was instructed to read the task
(shown on the screen) aloud, indicate she understood it and then act
accordingly. Tasks were done by looking at the screen; no mouse
or keyboard was used. The participant could skip a task or ask
questions but the researcher did not provide help during the tasks.

There were two types of tasks: (1) turning the light on or off,
and (2) ordering an elevator to a specified floor (floors 1-7). For
turning the light on or off, there were six different illustrations used
as hints for the gaze gesture (see Figure 1). To order the elevator,
we used the illustration also shown in Figure 1. If the task was
successful, i.e. the participant was able to do a gaze gesture, the
participant received a written note on the screen (e.g. “you turned
on the light”, “you ordered the elevator to floor 3”). In the case
of failure, nothing happened. Participants were given at least two
minutes to try completing the task before asking if they wanted to
skip to the next one.

The experiment had two phases. The purpose of phase 1 was to
see how well the participants can use the system without instruc-
tion. Phase 1 included 13 trials. 12 of the trials concerned turning
the light on (6 trials) and then off (6 trials). Order was balanced by
Latin square. In addition, there was one trial to order the lift to the
given floor. With 14 participants and 7 possible floors, each floor
number was ordered twice during the first phase in random order.

The purpose of phase 2 was to collect some initial performance
data on the use of the system. Before the phase 2 started, the partic-
ipant was asked whether she feels like she knew how the system
worked. Regardless of the answer, short instructions were given.
Phase 2 included 50 trials. The order of the tasks was same as in
phase 1, but each of the six illustrations for lights was repeated
three times so that the participant first turned the light on and then
off (6 trials). The lift was ordered to each floor twice. The order was
balanced by Latin square. In total, each participant performed 63
trials.

In the end of both phases, the participant was asked to fill in a
questionnaire. In the end of the session, the participant was inter-
viewed. In total, the experiment took one hour or less.

4.3 Results

In phase 1 the participants were not given any instructions on how
to do the given tasks and we were mostly interested to see if the
participants were able to realize how the system was to be used. If
the participant didn’t figure it out s/he was always allowed to skip
a task and proceed to the next one.

All but one (13/14) of the participants figured out how to do the
gestures during phase 1 and were confidently completing the tasks.
Nine participants (9/14) didn’t skip any of the tasks. Four partici-
pants (4/14) skipped between 1 and 4 tasks, while one participant
skipped 11 out of 13 tasks.

In phase 2, after the gesture system was explained to all partici-
pants, no tasks were skipped, which shows the power of training.
We intentionally didn’t train the participants for the first session to
see whether the illustrations contain enough hints without explicit
instructions.

We measured the completion time for all participants and all
tasks. In the order of presentation during the phase 1 there was
a clear learning effect, see Figure 2. The mean value for the first
task was 25 seconds but the mean completion time approached 5
seconds already around task number 5. Throughout phase 2 the
mean completion time was around 4-5 seconds.
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Figure 2: The mean task completion times in the order of
task presentation for phase 1.

Overall, around 1/20 of the gesture commands were erroneous
(i.e. wrong gesture was recognized). In phase 1 some errors prob-
ably happened because the participants didn’t fully understand
the idea. In phase 2 most of the errors happened in the elevator
task, which required more accurate separation between different
gestures. There were errors also in the lamp tasks, but in most
cases the participants indicated that they had forgotten the task, or
made other mistakes. Many (9/14) participants said that there were
instances where they thought they had made the correct gesture,
but that the recognizer did not seem to recognize it. The number of
recognizer mistakes could be decreased by more careful algorithm
development and parameter tuning as well as utilizing different
gestures. E.g. in the elevator case the diagonal numbers could be
further from the hub to increase separation.

After each phase, the participant filled in a semantic differential
rating scale questionnaire about the understandability and pleas-
antness of each illustration, and the participant’s perceived success
in the task. Overall, the ratings were rather positive. In the 7-step
scale (from 1 positive to 7 negative), the average ratings for all
illustrations were below 3 in both phases: 1.9 and 1.7 (understand-
ability); 2.2 and 2.0 (pleasantness); 1.9 and 2.1 (perceived success),
in phase 1 and 2, respectively. The elevator got the worst average
ratings in all categories in both phases. However, the differences
were quite small. For example, in phrase 1, the average ratings for
the understandability of the illustrations varied between 1.4 (arrow
icons for lamp on/off) and 2.6 (elevator).

In the post-test semi-structured interview, we asked about partic-
ipants’ overall impressions, and if they had understood the idea and
what they were supposed to do. Participants commented that the



system was interesting and worked surprisingly well. They under-
stood the idea “immediately”, “soon” or “easily”. Some participants
had tried “sliding” the gaze along the lines, or were unsure how
long they need to look at each step. Seven participants commented
that they liked the icon-based illustrations more than text based —
which were preferred by five participants. Some participants felt
that reading text was slower than glancing an icon. However, not
all participants explained why they liked a certain illustration type
more than the other. Related to the problems, participants com-
mented on the need to check the illustration before action to avoid
wrong turn in the end, and the need to carefully look at the intended
floor number to avoid false selections.

5 DISCUSSION

We experimented with the idea of inducing specific gaze patterns
by drawings. The proof-of-concept trials show that all but one
participant got the idea very early in the experiment and all were
able to use the system after a brief explanation. After learning,
performing the gaze gestures was quite consistent and robust —
without the need to calibrate the eye tracker.

Completing a gaze gesture took about 4-5 seconds. The fastest
task completion times were between 1 and 2 seconds. The difference
is because participants took some time to orient to the task and
in some cases one or more than one retry was needed. Also, we
didn’t instruct to aim for maximum speed. Even if a command by
gaze gesture would be slower than pushing a button, there is use
for gaze. Gaze-based environmental control is useful for people
with disabilities [Bates et al. 2012]. There are also environments
where avoiding physical contact is beneficial, for example, to avoid
infections. In our design we are mainly thinking of future living and
working environments where many things are connected to the
internet. Then building physical user interfaces is an unnecessary
expense. On the other hand, being within hand’s reach is not needed
for operating devices because they can be commanded through the
internet.

The performance of the system can be improved by fine-tuning
the illustrations. Some types of gestures may be easier to perform
than others, and/or be easier to recognize. For example, diagonal
gaze strokes may induce more errors than horizontal strokes [Is-
tance and Hyrskykari 2017]. In situations, which require many
choices to be made, we could vary the length of the branches or
continue the gestures hierarchically when the space on the surface
allows this.

We did not give any feedback for unsuccessful gesture recog-
nition. This is because the system does not know when the user
is attempting to give a command. It is receiving gaze data all the
time and only reacts when it recognizes a pattern that is very close
to one of the predefined gesture patterns. A different design could
make the user signal that an attempt for a gesture begins, e.g., with
speech. The system could also detect that the user is viewing a
gesture illustration, for example, from a visual tag that the system
recognizes with a forward-looking camera. If the eye tracker is
embedded in the environment or the controlled object [Shell et al.
2003; Vidal et al. 2013], it could detect the eyes of the user facing
it. It would be useful to give some indication of typical failures,
starting from the indication if the tracker sees the eye and if it is

in recognition mode. However, we believe that by improving the
gesture shapes and recognition technology, we can get to a point
where recognition failures that seem unexplainable to the user are
rare enough not to be a problem.

The size of the illustration and its distance from the eyes affects
its visibility to the user and the magnitude of the eye movements. In
our experiment, with the user being about 70 cm from the display,
we required the distance between fixation points to be at least 4
degrees apart from each other. A closer look at the data shows that
there were a number of unrecognized gestures that were near the
threshold and would have been accepted with a different threshold.
Further research is required to find appropriate limits in real life
scenarios for robust gaze gesture recognition (depending on the
tracker), and, what size of illustration is comfortable for the user to
view (depending on the user).

The aesthetics of the illustration should also be considered. We
used simple tree graphs for convenience. At home or office, people
may prefer more artistic pictures that are in harmony with the
environment. Creating such art requires skills and resources. Nev-
ertheless, apart from the design, adding the illustrations is easy
and cheap (no electronics required). The illustrations are robust
and durable. Creating new, custom gestures is also easy: draw the
pictorial hint, gaze it, and record the path to teach a new gesture.
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