arXiv:1804.02593v1 [cs.DB] 7 Apr 2018

IDEBench: A Benchmark for Interactive Data Exploration

Philipp Eichmann *

Carsten Binnig 2

Tim Kraska'* Emanuel Zgraggen'

'Brown University, USA 2TU Darmstadt, Germany :*MIT CSAIL, USA

ABSTRACT

Existing benchmarks for analytical database systems such
as TPC-DS and TPC-H are designed for static reporting
scenarios. The main metric of these benchmarks is the per-
formance of running individual SQL queries over a synthetic
database. In this paper, we argue that such benchmarks
are not suitable for evaluating database workloads originat-
ing from interactive data exploration (IDE) systems where
most queries are ad-hoc, not based on predefined reports,
and built incrementally.

As a main contribution, we present a novel benchmark
called IDEBench that can be used to evaluate the perfor-
mance of database systems for IDE workloads. As opposed
to traditional benchmarks for analytical database systems,
our goal is to provide more meaningful workloads and datasets
that can be used to benchmark IDE query engines, with a
particular focus on metrics that capture the trade-off be-
tween query performance and quality of the result. As a
second contribution, this paper evaluates and discusses the
performance results of selected IDE query engines using our
benchmark. The study includes two commercial systems,
as well as two research prototypes (IDEA, approXimateD-
B/XDB), and one traditional analytical database system
(MonetDB).

1. INTRODUCTION

Motivation: There is an ever growing need for systems
which allow data scientist of varying skills levels to interac-
tively and often visually explore large structured data sets.
Unfortunately, traditional analytical database systems, such
as MonetDB|[29] or SAP HANA [15], usually do not pro-
vide the main property these systems require: sub-second
response times for ad-hoc queries created by and for a visual
interface [20 [21} [12]. As a result many existing interactive
data exploration (IDE) systems started to create their own
specialized query execution engines. For example, Tableau
has its own SQL engine [39], Vizdom [11] has the Interactive
Data Exploration Accelerator IDEA [12] as a seperate ex-
ecution engine, and imMens [28] uses a special cube-based
representation and query engine. In addition, there has also
been attempts to build approximate query engines indepen-
dent of the interface, such as SnappyData |36] or DICE [20,
21], with the goal to support interactive data exploration.
All those systems have in common that they aim to provide
better support for IDE workloads often by taking advantage
of the fact that (1) users use visual tools to incrementally
create more and more complex queries and that (2) good

approximate answers returned in seconds are better than
precise answers in minutes.

However, those systems widely differ in the techniques
they use and the trade-offs they make. For example, IDEA
uses specialized data structures and on-demand creation of
stratified samples, whereas DICE does speculative pre-com-
putation based on previous interactions. Furthermore, dif-
ferent engines implement different execution models (block-
ing, approximate, progressive), and might or might not re-
use previously computed results [12} |16, |14, 9]. Additionally,
IDE systems need to make a trade-off between the amount
of pre-processing the system requires (i.e., how long does a
user have to wait before they can explore a new data set)
versus the quality of the first approximate answers. Even
worse, different systems might have different trade-offs in re-
gard to time vs. quality; some systems might aim to provide
a first answer in 500ms, the general interactivity threshold
|127], other systems will only return a result when the qual-
ity of the answer reaches some threshold, whereas others
aim for progressive results in which the quality of an answer
improves as longer the user is willing to wait.

This variety of goals and trade-offs make it extremely
hard to determine which system is better for a particu-
lar data exploration task. For example, how much advan-
tage do pre-computed stratified samples provide. How much
overhead do approximate query processing techniques intro-
duce? When would a traditional system like MonetDB not
simply outperform an approximate engine without having
even approximate answers. Or even more mundane, which
of two approximate query engines is better.

Unfortunately, traditional analytical benchmarks can ba-
rely be used to answer any of these questions. For instance,
both TPC-H [42] and TPC-DS [41] use the time per query as
the main metric, thereby not taking into consideration that
results might be approximate. Di Tria et al. [13] developed
an extension for TPC-H that takes the accuracy of approxi-
mates result into account, but does not factor in confidence
interval in their metrics. More importantly, these bench-
marks assume a fixed upfront known workload of complex
queries, whereas in IDE queries are ad-hoc and built in-
crementally. Finally, most existing analytical benchmarks
assume that only one query at the time runs, whereas visual
interfaces often create several queries, which run simultane-
ous.

Contributions: The first contribution of this paper is a
novel benchmark called IDEBench that can be used
to evaluate the performance of database systems for

IDE workloads under realistic conditions in a standard-
ized, automated, and re-producible way. Unlike the static
workloads of traditional benchmarks, IDEBench measures
the performance of IDE systems over the course of work-
loads that are closer to real data exploration workflows.

One of the key challenges in defining an IDE benchmark
is to decide what a typical workflow constitutes. We there-
fore build upon previous user studies [12, [27] and derived
three common IDE browsing patterns ranging from inde-
pendent browsing, where users investigate the distribution
of attributes of a dataset and specify arbitrary filters, to
more targeted scenarios, where users want to answer a spe-
cific question. Yet, our goal is NOT to simulate users, which
is arguably impossible. As Hawking puts it, “Intelligence is
the ability to adapt to change” and we are far away from
being able to simulate users, which can react intelligently
to varying quality of query results, build or loose trust in a
system based on answers, or come up with new conclusions
or exploration paths based on particular insights. Similarly,
our goal is not to benchmark the effectiveness of user inter-
faces or other visual components, such as visual recommen-
dations [23].

Rather our goal is to provide meaningful abstractions,
which provides a first step towards benchmarking IDE query
engines with a particular focus on metrics that capture the
trade-off between query performance and quality of the re-
sult. Furthermore, we created a highly customizable bench-
marking framework, which allows research groups to change
different benchmarking settings to their envisioned user sce-
nario while still enabling a high degree of reproducibility
and comparability.

The second contribution of this paper is a comprehensive
study of running the benchmark on different database en-
gines. The study includes two IDE engines as well as two
research prototypes (IDEA, approXimateDB/XDB) and one
traditional analytical database system (MonetDB). The bench-
mark code is available for download at http://idebench.
github.io.

Outline: The remainder of the paper is organized as fol-
lows: In Section [2] we first reiterate the current landscape
of IDE systems and their typical workload characteristics.
We then discuss shortcomings of existing IDE evaluation
approaches and derive a set of requirements for an IDE
benchmark in Section Section {4 presents the design of
IDEBench and discusses the workload and data generator,
as well as the metrics and reporting requirements. In Sec-
tion [5| we present the results of running the benchmark on
five database systems; two commercial systems, two research
prototypes (IDEA, approXimateDB/XDB), and one tradi-
tional analytical database system (MonetDB). Finally, we
discuss the most important findings of the benchmark re-
sults and discuss future work in Section [6]

2. INTERACTIVE DATA EXPLORATION

Based on findings in recent user studies [12, 27] we first
describe a use case that anecdotally exemplifies common vi-
sual IDE frontends and then summarize typical workload
characteristics that emerge for database systems that are
triggered by these frontends. We then provide an overview
of IDE systems which are often used in practice, and dis-
cuss why existing evaluation approaches are not suitable to

compare these systems.

2.1 Use Case

Imagine Jean: a research staff member at a major hospi-
tal. She wants to get an overview of the hospital’s patient
population and their health problems. To do so, she looks
at electronic health records from the past 20 years. Jean
starts out by examining demographic information of patients
and, for example, finds that patients ages are normally dis-
tributed. She then continues to look for interesting patterns
in admission times and dates. Jean creates a query that
shows the number of new admits per hour of the day. The
result reveals that most admits are during business hours,
but there is an interesting bump from 7 to 10pm. She fil-
ters down to admits coming from the emergency center and
notices that most of the admits between 7 and 10pm are
coming from there. Is this trend identical on all days of
the week? She refines her query to only show the admits
on weekends and sees that the previous evening bump now
shifted towards 10 to 12pm. Who are these patients? Jean
filters her previous age query by patients admitted on week-
ends between 10 and 12pm. She finds that patients rang-
ing from 20 to 35 are over represented in this subset when
compared to the overall age distribution. Now Jean wants
to see which health problems are common among this sub-
population. She finds that head traumas are fairly frequent
and decides to check with the administration if the hospital’s
duty rota accommodates for this by making sure a trauma
specialist is on call during weekend nights.

2.2 IDE Workload Characteristics

Based on this exemplary use case, we now discuss the most
important workload characteristics that emerge for database
systems.

Aggregation Queries. IDE workloads are dominated by
OLAP-style aggregation queries and typically follow the “Vi-
sual Information Seeking Mantra” [35] of “Overview first,
zoom and filter, then details-on-demand”. Since the result
of queries are typically visualized by an IDE frontend, most
queries group the data by one or many attributes and apply
aggregate functions to each group such as AVG, or SUM.

When dealing with large datasets, however, visualization
systems commonly bin the data by some definition in order
to compute aggregate results instead of just simply grouping
on a set of attributes. Binning can be found for a wide-range
of visualizations such as histograms and their siblings, pie
charts, choropleth maps, or bubble charts. Binned plots are
omnipresent and featured in virtually any visualization soft-
ware. Figure [1]illustrates this with screenshots of three dif-
ferent IDE frontends: imMens, Tableau and Vizdom. Defin-
ing the binning behavior of an IDE frontend and thus for a
benchmark, which includes the dimensionality of a bin (e.g.,
1D for a histogram, 2D for a binned scatter plot), and the bin
boundaries is not trivial. When the distribution of data for
a visualization is unknown, there are generally two methods
how bin boundaries can be defined: 1) they can be specified
by either choosing a pre-defined number of bins, which, for
quantitative values requires a computation of the current
minimum and maximum value of each bin. 2) they could
be defined by choosing a interval based on a fixed bin width
and a reference value.

http://idebench.github.io
http://idebench.github.io

(XX221]

[EER]

IBE N}

Figure 1: Shows example visualizations in three different IDE frontends: a) imMens [28] b) Tableau [40] c)
Vizdom [10|. All display binned plots, but in a and b links are implicit whereas in c links are explicitly drawn

by the user (gray arrow).

Incremental Query Building and Think Time. As illus-
trated in the use case, IDE frontends are often used in an
iterative process where queries are constructed ad-hoc and
are refined incrementally. For example, users typically start
looking at all data and then narrow down the search to more
interesting details.

Furthermore, visualizations in IDE frontends are often
linked together. Linking refers to setting the data source
of a visualization (target) to the data source of another vi-
sualization (source). When data of a source visualization is
either filtered or selected, either the source and the target,
or just the target visualization are forced to update. This is
illustrated in Figure [1| where changing the selection in one
visualization updates all other visualizations. Linking on
the query level often represents a join, since attributes of
different tables might be connected that way.

Finally, user interactions are typically separated by a think-
time, during which users analyze results and decide on what
to do next.

Multiple Concurrent Queries. Many existing visual tools
for IDE e.g. [39, [11, [28] provide user interfaces to infor-
mally create and layout visualizations of different subsets of
the data, apply (cross-) filtering, and to perform “linking,
brushing and zooming” operations |24} 37]. Typically, this
allows users to look at different facets of a data set at the
same time.

Consider Figure [1} each of the depicted applications [39,
28, [11] displays linked visualizations that users can uti-
lize to simultaneously brush or filter other visualizations.
Such links are either implicitly created by the application or
database schema, or explicitly defined by the user.

In more abstract terms, dash-boards built by users using
an IDE frontend can be seen as dependency graphs of vi-
sualization and filter objects. Changing properties of either
object may require all dependent visualization to update,
which on the database-level leads to multiple concurrent
queries per interaction.

2.3 IDE Database Landscape

Several commercial and academic database systems aim
to support interactive data exploration workloads. In the
following we summarize this landscape through three cate-
gories and provide examples for each.

Analytical Database Systems. This category represents
classic database systems that efficiently execute aggregate
queries to completion and then return full result. This
includes column-stores and main-memory systems such as
MonetDB [29], SAP HANA [15], Hyper [25] as well as database
management systems that are designed for online analytical
processing (OLAP) type workloads [7]. These systems can-
not guarantee interactive response times on large data sets.
However, since they are often used as backends for many vi-
sual data analytics tools such as Tableau, we include them
in our experiments as a baseline.

Approximate Database Systems. This category of sys-
tems also targets aggregate queries. Contrary to classic an-
alytical database systems these tools either use offline or on-
line sampling techniques to return an approximate answer
without scanning the entire dataset. That way, these sys-
tems often can better guarantee interactive response times
even on large data sets. Examples in this category include
AQUA [1], Snappy Data, BlinkDB [2|, and ApproXimate
DB (XDB) [26]. Individual systems support different ways
of how users interact with them; some require users to set a
desired result quality per query or a fixed time constraint.

Specialized Engines for IDE. Systems in this category
represent specialized engines for IDE that often come with
their own custom user interface. A prominent commercial
example is the backend of Tableau [39] and its research pre-
decessor Polaris [38], which uses a specialized engine for vi-
sual data analysis workloads. imMens [2§] is another ex-
ample that includes a specialized engine heavily leverages
pre-computation over the possible query space to enable in-
teractivity. IDEA [16] is a backend used for a pen-and-touch
interface. It uses online sampling techniques to progressively
compute query results and push them to the user interface
on request. DICE [20] is a backend system optimized for
exploratory cube analysis and leverages interaction delays
(i.e., “think-times”) and a user interaction model to predict
future queries.

3. TOWARDS A NEW BENCHMARK

Recent position papers |3} |19] have advocated for an IDE
benchmark. In this section we discuss the scope of our work
and the requirements we believe to be crucial for a bench-
mark for IDE backend systems.

3.1 Scope

Ideally workloads are close to the database workload gen-
erated by the behavior of real users in a variety of differ-
ent data exploration scenarios. While we acknowledge the
breadth and richness of different IDE tasks and user inter-
faces (UI), this work does not attempt to model exact human
behavior for its workloads.

Instead we follow a more pragmatic, Ul-agnostic approach:
we limit the scope of IDEBench to common exploration pat-
terns which can be translated to workloads on the database
backend. As previously discussed, we observed these pat-
terns in a range of user studies (e.g., |12} [45]), and empir-
ically found them to be supported by many other modern
IDE systems (see Figure |1). To that end, IDEBench fo-
cuses on aggregate queries on large datasets where queries
are built and refined incrementally (separated by a think-
time), result are (cross)-filtered between tables, and apply-
ing filters on linked visualizations can result in multiple con-
current queries.

Furthermore, in its current version IDEBench targets data
warehouse star schemas that are often used in analytical sce-
narios in both de-normalized and normalized form. In fu-
ture, we plan to extend the benchmark to more rich database
schemata as well.

3.2 Requirements

In the following we discuss the workload, the metrics, and
the data that a new benchmark such as IDEBench should
fulfill.

Workload. As discussed before, we believe that a new bench-
mark should provide a workload that could result from plau-
sible user behaviours (see Section where actions to build
and modify a visualizations result in queries to an IDE back-
end. As discussed before, we therefore require that the work-
load not only runs individual queries but resemble workload
characteristics discussed in Section [2:2] that can be triggered
by user interacting with an visual IDE frontend. This in-
cludes actions to create new visualizations which triggers
new queries, actions that add filters to incrementally select
a sub-populations, link visualizations where a single action
can force multiple visualizations to update. Furthermore,
when queries in the benchmark are executed, there must be
delays between queries triggered by consecutive user interac-
tions, and the queries by the simulation must be aggregation
queries with different parameterizations, i.e., different bin-
ning strategies and aggregate functions. Lastly, it is crucial
for workloads to be applicable to the wide range of database
backends, as discussed in Section E

Metrics. Metrics used to evaluate the performance of an
IDE system should capture their generative power for in-
sights, and must be applicable to IDE systems which return
exact or progressive/approximate results. We believe that
this can be reduced to two aspects of IDE backends. (1)
Speed: a recent study [27] shows that higher query latencies
negatively affects users and their ability to derive insights
from data. (2) Quality of the results: while approximate and
progressive systems are able to maintain low latencies, in-
termediate results may vary from the ground-truth, or could
be returned with low confidence (large confidence intervals).
Because there is a trade-off between speed and quality, we
believe that the metrics for an IDE benchmark should reflect

FLIGHT
YR
CARRIER_ID
AIRPORT iamew_m T CARRIER
0 DESTINATION_ID e
CODE DEP_DELAY
NAME TAXIOUT
STATE TAXLIN
ARR_DELAY
AIR_TIME
DISTANCE

1}
CODE
NAME

Figure 2: The schema of the default dataset

the quality of the results for a given interactivity/time re-
quirement (quality after x seconds). Important here is that
the metrics should also be applicable to classic analytical
database systems, where the query results are always exact
but the query execution may be slow since results are only
returned upon query completion.

Data. An IDE benchmark should support different datasets
with different scale factors. As some IDE systems may per-
form better on certain data distributions than others, it is
important that the attributes in the dataset exhibit different
types of distributions, and contain random as well as corre-
lated data. Furthermore, systems like approXimateDB [26)|
implement online joins while classic systems such as Mon-
etDB [29] typically use a blocking join such as a radix hash-
join. To be able to measure the effect of such joining tech-
niques, an IDE benchmark must support different schema
complexities, i.e., normalized as well as de-normalized star
schemas.

Customizability. We believe that in order for an IDE bench-
mark to be adapted by the community, it is crucial that
workloads and datasets can be customized to the use case
of an IDE system. A benchmark should therefore facilitate
the ability to create workloads based on modifiable configu-
rations, and to scale any seed datasets to an arbitrary size
while preserving the original distributions.

4. THE IDEBENCH DESIGN

In this section we explain how we designed IDEBench
along the requirements for workloads, data and metrics, and
describe how the results of the final metrics are computed
and reported.

4.1 Overview

IDEBench comprises three main components: 1) A data
generator that scales any seed dataset to an arbitrary size.
2) A workload generator that create sequences of interac-
tions, which we henceforth refer to as “workflows”. 3) An
benchmark driver, which runs/simulates workflows, delegates
interactions to system drivers, and generates reports. 4) Dif-
ferent system adapters, which are custom proxies between
the database systems under test and the interpreter which
runs a workload. The drivers are responsible to translate
the benchmark workload into queries supported by a sys-
tem, and returns computed results back to the interpreter.

4.2 Data Generator

The default configuration of IDEBench uses a real-world
data set containing U.S. domestic flights [31] (see Figure [2).
We use this dataset instead of existing data generators from

TPC-H or TPC-DS since it contains real-world data and
distributions. This is important because the underlying dis-
tributions can affect quality of results, especially in the case
of database systems that use approximate query processing
techniques. In the default configuration, the benchmark use
this dataset to test the systems. Alternatively, users can use
any other dataset to customize the benchmark.

In order to scale the default data set (but also custom
data sets), IDEBench comes with a data generator uses a
seed datasets to create a new dataset of arbitrary size. The
generator tries to maintain distributions in the data and
relationships between attributes when scaling. It also sup-
ports the transformation of data into a more normalized
form (e.g., one fact and multiple dimension tables) based
on a specification given by the user. In the default con-
figuration, the benchmark uses three data sizes (S, M, and
L) for each data set to test the runtime for increasing data
sets. We elaborate more on the concrete data set sizes in
the evaluation section.

The data scaling procedure to scale a data set works as
follows: From the seed dataset we first create a random
sample. We then compute the covariance matrix > and per-
form the Cholesky decomposition on ¥ = AT A. To create
a new tuple, we first generate a vector X ~ N(0, 1) of ran-
dom normal variables and induce correlation by computing
X = AX. We then transform X to uniform distribution
and finally use the CDF from our sample to transform the
uniform variables to a correlated tuple. Optionally, as a last
step the data generator then vertically partitions the data
into multiple tables (normalization) based on a user-given
schema specification.

4.3 Workload Generator

Unlike the static workloads of traditional benchmarks,
IDEBench aims to measure the performance of database
workloads that result from interactive data exploration fron-
tends over the course of entire user-centered workflows (see
Section. In these workloads it is common that queries are
built and refined incrementally, executed with think-times
between queries rather than being processed back-to-back,
and that oftentimes multiple queries need to be processed
simultaneously in order to update multiple linked visualiza-
tions.

Workload Generator. In order to reflect this in our bench-
mark, IDEBench workloads simulate user interactions that
are typical interactions in IDE frontends. We have imple-
mented a workflow generator that allows users of IDEBench
to create custom workflows of for any of the four types be-
low. Workflows are sequences of common interactions that
resemble IDE interaction patterns of real users (see Figure[d]
The workflow generator models workflows as Markov Chains
with pre-defined (and customizable) probability distribu-
tions for each of the workflow types to sample a sequence
of interactions and filter/selection criteria. We base the dif-
ferent types of workloads and probability distributions of
various interactions on observations made by analyzing the
logs and videos of past user studies [12] |44].

Workflow Types

e Independent Browsing (Figure[3p), where users explore
a dataset by creating visualizations of different dimen-

sions of the data and by applying filters that only affect
a single visualization at the time. This is often applied
by users to get a first quick overview of the data.

o Sequential Linking (Figure), where users create mul-

tiple visualizations that are (logically) sequentially linked.

Filters and selections on these visualizations trigger
multiple concurrent queries to update all affected visu-
alizations. This type of workflow is often used for tar-
geted explorations where users drill down in the data
to verify one concrete hypothesis.

e 1:N Linking (Figure), where filtering/selecting on
one visualization triggers N other queries for directly
linked visualizations. This type of workflow is often
used to see how different subsets of the data match-
ing certain criteria affect visualizations of other dimen-
sions of the data.

e N:1 Linking (Figure[3d), where applying a filter to any
one of N visualization affects a single directly linked
visualization. This is often used to incrementally build
filter expressions involving multiple dimensions.

These patterns determine the workload for the database
system regarding the fact of how many queries are triggered
simultaneously. For example, for the independent browsing
type one user interaction results on in one query since only
one visualization needs to be updated. In contrast, for the
1:N linking, one user interaction (e.g., changing the filter)
on a visualization early in the sequence can trigger many
queries since multiple visualization potentially need to be
updated.

Each generated workflow comprises a sequence of interac-
tions performed by users: Creating a visualization i.e., for-
mulating and executing query (interaction 1, 3, 4 in Figure
3), filtering/selecting (interaction 2 and 6), linking visual-
izations (interaction 5), and discarding a visualization (not
shown). Alternatively, customized workflows can addition-
ally be built manually to match a specific usage scenario.
However, they are not part of the default configuration of
IDEBench. Once generated, they can be inspected with an
interactive viewer.

4.4 Benchmark Driver

The core of IDEBench is an benchmark driver, a simple
command line application (written in Python) configured to
load and simulate workflows by forwarding interactions to
system adapters (see Section7 and to evaluate the results
that are fed back into the driver. When running a workflow
the driver keeps track of a visualization graph (similar to
4), notifying an adapter about which interactions have been
executed. These interactions are specified in a JSON-based
format (see Figure [4). The benchmark driver automatically
translates queries to SQL, or alternatively, lets the system
driver translate queries into a language compatible with the
system being evaluated.

4.5 System Adapters

To be evaluated by our benchmark a system needs to im-
plement a driver interface that acts as proxy between the
benchmark and the system under test. The benchmark
driver delegates interactions from the workflows to the sys-
tem adapter. The system adapter takes these interactions
and translates them into queries executable by the system

a) Independent p) Sequential
Browsing Linking

ol |||||*"1='n.EI

.l
R | [T
I II LR lll II
|7

TN d) N1
Linking Linking
| |
[| u
o B
" 1" ~

.II.II < il

ll []
7
bl il

Figure 3: Illustrates four different workflow types used in IDEBench workloads. a) shows four different
independent visualizations; filtering/selecting any of the visualizations does not affect the others. b,c and d)
show how filtering/selecting data on a source visualizations force linked visualizations to update.

under evaluation (e.g., SQL in case of a classical analytical
database system). However, any other query language or
proprietary API can be used by implementing an additional
adapter.

Listing 1: A stub for a system adapter.
class SampleAdapter:

def process_request(self, viz_specification):
1. translate to a query format understood by the system
2. emecute queries
3. fetch and parse result
4. write results back to interpreter

* W %

def link_vizs(self, viz_from, viz_to):
use the logical links as hint for speculative
query ezecution, if applicable

def delete_vizs(self, vizs):
free memory, if applicable

def workflow_start(self):
called before a workflow starts

def workflow_end(self):
called when a workflow is done

4.6 Settings

In the following, we show the most important parameters
that our benchmark uses to test different configurations.

Time Require- | The maximum execution duration for a

ment (TR) query.

Dataset and | The dataset to run the benchmark on and

Size the number of tuples to up- or downsample
dataset to.

Think Time The delay between two consecutive inter-
actions.

Whether a normalized or de-normalized
schema is used.

Confidence The confidence level at which an AQP re-
Level turns margins of error.

Using Joins

IDEBench provides default configurations for these pa-
rameters but we also allow users of our benchmark to vary
the parameters such that they can test a system with set-
tings that match the requirements of their application. How-
ever, in order to enable comparability of benchmark results
the default configurations should be used. The details of the
default configurations are listed in the evaluation section.

Time Requirement. Various researchers have identified the
interaction response time as a crucial factor in interactive

data exploration systems 144]. Liu et. al. [27], for

instance, showed that even response times of about 500ms

could lead to poor user performance. Studies of other tasks
argue for even lower thresholds . In general, it is
important that the speed of the systems aligns with the
users’ speed of interaction. Acceptable response times may
vary depending on the domain and task. For example
6} [34] claim that responses within one second allow users
to stay focused, while response times over ten seconds exceed
the average attention span. In our experiments, we used
time requirements of 0.5s, 1s, 3s, 5s and 10s.

Dataset and Size. This parameter represents the dataset to
be used in the benchmark as well as its size in de-normalized
form (the size of the fact table). Normalization of the data
is applied as a post processing step after generation.

Think Time. User studies have shown that there are sig-
nificant delays (think time) between two consecutive inter-
actions , which systems can leverage to run speculative
queries. For the benchmark we recommend values between
3 and 10 seconds.

Using Joins. While many systems only support queries on
data in de-normalized form, e.g. , IDEBench can also
be run to measure query performance on more normalized
datasets (e.g., represented as a star schema) .

Confidence Level. Many approximate query processing (AQP)

systems are capable of returning confidence interval for ap-
proximate results, and let users define the desired confidence
level. IDEBench uses 95% as default.

4.7 Metrics

As discussed before, the metrics of our benchmark should
reflect the interactivity and the quality of the results through-
out all operations of the executed workflows. For each exe-
cuted query we evaluate the following metrics and aggregate
them into a final report (see next section):

Time Requirement Violated. Time Requirement (TR) Vi-
olated is a boolean value indicating whether or not a query
violated the time requirement specified in the settings (see
Section . TR is violated if time TR after initiating the
query, no result is present or can be fetched. In practice this
means, that for batch-processing and APQ systems, TR is
violated if the run-time of a query is greater than TR, and
no intermediate result is present. For progressive system,

"interactions ":
[
{
"viz_name": "A",
"binning": [
{
" dimension": "CARRIER"
}
1,
"aggregates" : [
{
"type": "avg",
"dimension": "DEP_DELAY"
¥
]
1
{
"viz_name": "B",
"binning": [
{
"dimension": "ORIGIN_STATE"
3
{
"dimension": "DESTINATION_STATE",
}
1,
"aggregates": [
{
"type": "count"
¥
]
1
{
"viz_name": "C",
"binning": [
{
"dimension": "ARR_DELAY"
"width": 30
¥
1
"aggregates": [
{
"type": "count”
}
]
b
{
"viz_name": "B",
"source": "A"
}
{
"viz_name": "C",
"source": "A"
b
{
"viz_name": "A",
"selection": "CARRIER = 'AA' or
CARRIER = 'DL' or
CARRIER = 'UA'"
¥

SELECT
CARRIER,
AVG(DEP_DELAY)

FROM
FLIGHTS

GROUP BY
CARRIER

SELECT
ORIGIN_STATE,
COUNT(*)

FROM
FLIGHTS

GROUP BY
CARRIER

SELECT

FLOOR (ARR_DELAY/30)
AS BIN_ARR_DELAY,

AVG(DEP_DELAY)

FROM
FLIGHTS

GROUP BY
BIN_ARR_DELAY

NO QUERY

NO QUERY

SELECT
ORIGIN_STATE,
COUNT(*)

FROM
FLIGHTS

GROUP BY
CARRIER

WHERE
CARRIER
CARRIER
CARRIER

GROUP BY
CARRIER

'AA" OR
' OR

W
=g
o

SELECT

FLOOR (ARR_DELAY/30)

AS BIN_ARR_DELAY,
AVG(DEP_DELAY)

FROM
FLIGHTS
WHERE
CARRIER = 'AA' OR
CARRIER = 'DL' OR
CARRIER = 'UA’
GROUP BY

BIN_ARR_DELAY

Figure 4: A JSON-based specification and transla-
tion to SQL queries for the 1:N workflow in Figure

Blc.

TR is violated if time TR after initiating a query no result
can be fetched. IDEBench measures a boolean rather than
the actual duration as time violation in order to guarantee
constant run-times for any workflow; queries whose run-time
exceed TR are cancelled.

Time Require- | Boolean whether a query violated the time
ment (TR) Vi- | requirement Time Requirement (TR).
olated
Missing Bins

The ratio of the number of bins bins for
which no result has been delivered and the
total number of bins in the ground-truth.
Mean Relative | The mean relative error of all bins returned

Error in the result (see definition below).
Cosine Dis- | A measure of how much the “shape” of a
tance result resembles the ground-truth.

Mean Margin | The mean of all relative margins of error
of Error for all bins.

Out of Margin | The number of approximate results that
were outside of the return confidence in-
terval.

Bias The sum of all returned values in a result
divided by the sum of all true results for
the bins returned.

Missing Bins/Groups. Missing Bins/Groups is the ratio of
all bins for which no result has been delivered, and all bins
in the ground-truth. It is a measure of completeness for an
aggregate query result, irrespective of the number of tuples
processed by a system.

|bins_missing|

Missing Bins =
& |bins_in_groundtruth|

Mean Relative Error. To measure the error between a re-
sult of an aggregate query and its ground-truth we compute
the relative error; i.e., the ratio between the difference on
the estimated result F; and the actual result A;.

, 1 |F — Al
Mean Relative Error = ; |

We use the mean relative error due to its popularity in
existing literature and ease of interpretation. However, it is
important to note that the relative error is not defined for
any A, = 0, which is especially problematic for aggregate
functions such as AVG, MIN/MAX, or SUM, if the expected value
is zero. A possible future alternative is the Symmetric Mean
Absolute Percentage Error, which is defined as:

1 < |Fi — A4
SMAPE = — -
n ; |F3] + | Al
While less intuitive, SMAPE is defined for A; = 0, un-
less |F;] = 0, in which case the error is 0. SMAPE is
also bounded at 0 and 1, which may simplify interpretation
across different experiments.

Cosine Distance. In some cases users may be more inter-
ested in the relative difference of aggregated results, i.e. the
distribution of values, rather than the true values. We mea-
sure the cosine distance to test how much the “shape” of a
result deviates from its ground-truth. For instance, it cap-
tures if a system is able to provide a good estimate of the

relative frequency distribution of the data, even if the rel-
ative errors are high. To make sure both result vectors F
and A are of equal length, we set the value at each missing
bin to zero.

> FA;
Cosine Distance = 1 — =1

Mean Margin of Error. Approximate and progressive query
system typically provide confidence intervals with their query
results. To get a sense of how tight these intervals are, i.e.
how likely the returned result was just a good guess, we com-
pute the mean and standard deviation of all relative margins
of error.

Out of Margin. Out of Margin is a sanity check to test
whether the system returns results roughly at the confidence
level specified in the settings. We measure the number of
how many of the per-bin results exceeded the returned mar-
gins of error.

Bias. Indicates whether a system tends to over or under-
estimate aggregated values. This metric becomes especially
important if other error metrics are employed, as some (e.g.,
SMAPE) penalize under/over-estimation unequally.

4.8 Reporting

Upon completion of running the benchmark, IDEBench
generates two reports: 1) An aggregated summary report
listing how frequently the time requirement was violated,
how many bins are missing on average, and the distribution
of mean relative errors for all queries which did not violated
the time requirement. Figure [f] shows an example of such
a summary report. 2) A detailed report listing all settings
and metrics on a per query basis.

Ideally, a user wanting to explore a new dataset can effort-
lessly plug in the data. Therefore, users of IDEBench are
required to report on all actions needed to be taken to pre-
pare for a benchmark run (called “data preparation time”
in our report); i.e., the time from connecting to a new data
source to being actually able to start running the workload.
This includes steps and time taken to copy the dataset into
the system to create sample tables/views offline, perform
pre-processing, warm-up queries, etc.

S. EVALUATION

To demonstrate the applicability of IDEBench across vari-
ous systems types, we executed the benchmark on the follow-
ing systems: (1) MonetDB: A state-of-the-art open-source
analytical column-store DBMS, which uses a blocking query
execution model that requires users to wait until an exact
query result is computed. Thus, upon initiating a query,
the run-time of the query is unknown. (2) approXimateD-
B/XDB: A PostgreSQL-based DBMS that supports online

aggregation using the wander join algorithm [26]. It allows
for a maximum run-time to be set when initiating a query.
It additionally supports a “report interval”, so that interme-
diate results can be retrieved at fixed time intervals. XDB
has some limitations in terms of query support, which we
describe in detail in Section (3) IDEA: A system that
supports online aggregation and has a fully progressive com-
putation model where, after initiating a query, results can
be polled at any point in time. (4) System X: A commercial
in-memory AQP system that operates on stratified sample
tables (offline sampling). The run time of queries cannot be
set explicitly, but must be specified by means of setting the
size of samples tables, i.e. the sampling rate. (5) System Y:
A commercial specialized engine for IDE, which provides an
in-memory optimization layer on top of a number of DBMS
systems.

In the remainder of this section, we first describe the gen-
eral setup of all our default configurations (Section , re-
port on the data preparation time of each of the systems
described above (Section [5.2) and present the overall bench-
mark performance (Section[5.2)) as well as experiments with
benchmark settings (Section to Section [.6).

5.1 Default Configurations and Setup

Default Configurations

In the following, we discuss the default configurations that

our benchmark defines. In the default configuration, IDEBench

uses the flight dataset (see Section with S=100 million,
M=500 million, and L=1 billion tuples in the de-normalized
form (i.e., only one large table with all attributes). More-
over, the default configuration runs 10 workflows for each
of the workflow types described in Section as well as
10 “mixed” workflows which exhibit usage patterns from all
four workflow types. As parameters in the default configu-
ration, we use five different time requirements 0.5s, 1s, 3s, 5s
and 10s, with a confidence level set to 95%. While most rec-
ommended latencies are in the range of 0-1s, we also included
greater ones in the default configuration to get a better un-
derstanding of how fast results converge. Finally, we use ten
different think-times ranging from 1s to 10s (see Figure [6)
in our default configuration. We empirically found these to
be good estimates by analyzing video logs of a previous user
study [|11].

Setup

We ran the benchmark on MonetDB, approXimateDB, IDEA
and System X. In order to stress-test the systems, we only
report for the think-time of 1s in all experiments except ex-
periment 3 (see Section, in which we analyzed the effect
of varying the think-time. We did not run the full bench-
mark on System Y since it does not have a publicly available
APIL. For System Y we executed selected workflows manually
over its user interface in a separate experiment (see Section
5.6). All experiments were conducted on a computer with
two Intel E5-2660 CPUs (2.2GHz, 10 cores, 25MB cache)
and 256GB RAM. We use the default configuration for all
systems, and abstain from optimizations for any of the sys-
tem parameters.

5.2 Exp. 1: Overall Results

MonetDB IDEA System X approXimate DB
. Blocking/Exact Progressive Blocking/Approximate Partially Progressive
Execution o o
Model
e i i i S mmn
Time 19 min 3min 27 min
Time Time Missing Error Time Missing Error Time Missing Error Time Missing Error
Requirement Violated Bins Violated Bins Violated Bins Violated Bins
o -- " o o e o
3s 4% 41% N/A 0% 2% 0% 32% 66%
5s 26% 26% 0% 31% 0% 2% 66%
10s 14% 14% 0% 30% 0% 2% 66%

Blockil i Results; No Query Resumption
L ® Blocking/Exact Results; No Query Resumption

Progressive; No Query
Progressive; Supports Query Resumption

Data Size: 500M

Size of the area above the curve
Median of the rel. Errors
Truncated CDF

[0-100%! rel. Error

Figure 5: Shows the aggregated benchmark results for four systems in a summary report. The benchmark
was run for five time requirements on a fixed dataset of size 500M. It shows the mean percentage of time
violations and missing bins, as well as a visualization of the behavior of the mean relative errors (MREs). It
shows a CDF of the MREs, truncated to errors less or equal to 100%. Thus, the greater the proportion of
small errors, the smaller the area above the curve (shown as percentage above the CDF).

In our main experiment (Figure [5| and @ we analyzed
how the four systems behave with respect to different time
requirements (see Figure|5]). We show the results the mixed
workload, i.e., 10 workflows with a mix of the four explo-
ration behavior described in Section [£-3] data size of 500M,
a de-normalized schema, and a confidence level to 95%.

Data Preparation Time

In MonetDB data stored in a CSV file can be loaded into
the database through an SQL interface, which takes 19 min-
utes for 500M records. There is no pre-processing time
upon starting the server. approXimateDB works identically,
but takes 130min (time split between adding the data and
adding a primary key). This system also provides support
for an additional SQL statement to pre-load relations and
indexes into the database buffer in main memory. For our
experiments we did not make use of this statement. IDEA
expects data in a single CSV file and does not need any
pre-processing. On start-up, IDEA by default loads a fixed
amount of tuples into main memory, which takes 3min. In
System X data stored in a CSV file can be loaded into the
database through a SQL interface. In order to be able to
execute approximate queries, stratified sample tables have
to be created offline. We used a sample size of 1% of the
data size. System X further requires upon restart of the sys-
tems that each connection must execute a warm-up query.
For 500M records we measured a data preperation time of
27min.

Speed and Quality Metrics

As expected for an exact execution model, MonetDB’s TR
(Time Requirement) violations decrease roughly linearly with
the defined TR, and so does the proportion of missing bins
(see also Figure @) approXimateDB, on the other hand,
violates the time requirement consistently around 66% for
any TR. This is due to the fact that while approXimateDB
supports online aggregation for COUNT and SUM, it does not
provide online support for AVG nor for multiple aggregates in
a single query. Thus, queries that cannot be executed online
typically fail for a small TR. We therefore set up approXi-
mateDB so that any query that cannot be executed online
will fall back to a regular Postgres query. With System X
more than 50% of all queries violate TR=0.5s. Interestingly,
though, for TR=1s only 5% are violated, and for TR=3s all
query results are returned on time. The percentage where
TR is violated is therefore a good indicator of how large
one should set the sample size, if speed is more important
than result quality. IDFA on other hand does not violate
any TR, with the exception of 1% of all queries for TR=0.5.
The authors confirmed that this is due a slightly higher over-
head for the first query after a restart of the system. IDEA
also starts off with significantly less missing bins (37%) for
TR=0.5 than any other system, but achieves similar values
to System X for TR;=1s. Furthermore, IDEA manages to
perform better than other systems in terms of mean relative
error of all return results. The median of all mean rela-
tive is constantly much lower than approXimateDB’s, and
marginally lower than the one of System X. More interest-
ingly, approXimateDB’s area above the curve is much higher
than the one of IDEFA and System X, indicating that high

12
a b .. c
)) R) 06| Ao P Aeeeen.
08 : e . Al rreaaas A
. 10 A \
Arrrrnns R, V. Arrrrnnn Arrrsnnnsy, A g‘ \‘ BT PS L REEEERN A 05 K
Bos| R 5 08 \ g \
s . o IDEA > \ 504 \
= \ MonetDB = 06 3 a .
= 04 P m SystemX Kl \ @ 03 \
2 \‘ 4 XDB c 04 . 2 02 :
&2 \ 2 \ S 0.
v \ =0 = —a——-u 01 =
00| e—o= 00 — 00
05 1 3 5 10 05 1 3 5 10 05 1 3 5 10
Time Requirement (TR) Time Requirement (TR) Time Requirement (TR)
d) MonetDB IDEA SystemX XDB e) f)
independent 7496 34 4% | 83% = de-norm. 075 ® IDEA
) 3 = norm. £
sequential - 29% 54% 80% i = 0.70
S 2
N m 0% 43% - = = 065
e
NI - T4% 28% 44% 66%
100M 500M 100M 500M 12 3 4 5 6 17 8 9 10
% Missing Bins MonetDB approXimateDB Think Time (in seconds)
Figure 6: a, b, and c¢) Show how the ratio of TR violations, the median of the mean relative margins, and

the cosine distance develop with increasing time requirements. d) Compares how the proportion of missing
bins differs based on which system and workflow type is used. e) A comparison of the proportion of violated
time requirements for MonetDB and approXimateDB, using a normalized and de-normalized dataset of size
500M. f) Shows the effect of varying think-times on missing bins.

mean relative errors occur more frequently. A similar con-
clusion can be drawn by looking at the end of the curve.
approXimateDB’s curve ends, below 50%, indicating that
more than 50% of all mean relative error are greater than
100%.

Figure [Bp and [fk show how the median of the mean rel-
ative margins, and the cosine distance develops with in-
creasing time requirements. approXimateDB has signifi-
cantly higher relative margins than both IDEA and Sys-
tem X. However, while System X’s median is close to 120%
for TR=0.5s and drops to slightly above 20% for TR=1s,
IDEA’s median remains constant around zero for all TRs.
Figure [Bd compares how the proportion of missing bins dif-
fers based on which system and workflow type is used. As
none of the systems we used in the evaluation use specula-
tive execution by default, there are only few significant dif-
ferences. For instance, MonetDB has fewer missing bins on
average for independent browser and N:1 workflows, which
may be attributed to the fact that any interaction of these
workflows only trigger a single query.

5.3 Exp. 2: Normalized vs. De-normalized

In a third experiment, we compare the performance of
MonetDB and approXimateDB using a normalized and de-
normalized schema. We exclude IDFEA as it does not support
joins. Similarly, System X, only works on de-normalized
data. We used our data generator to create two datasets
of 100 million and 500 million tuples and normalized the
data so that the fact table holds foreign keys to two dimen-
sion tables (airports and carriers). Interestingly, as can be
seen in Figure [6g, both MonetDB and approXimateDB per-
form slightly better in terms of time requirement violations
with a normalized schema. We can attribute this to the
fact that the overall size of all tables is reduced since split-

10

ting data into fact and dimension tables reduced the overall
database size. Another interesting observation is that Mon-
etDB’s proportion of TR violations grows with the size of
the normalized dataset. Conversely, approXimateDB is able
to keep it roughly at the same level, due to its online join
support for aggregate queries.

5.4 Exp. 3: Varying Think-Time

In this experiment, we evaluated the impact of increasing
think times between interactions (see Figure@). We used an
experimental extension of IDFEA that speculatively executes
queries when two visualizations are linked. For the setup we
used a fixed data size of 500M tuples, a time requirement of
3s, and created a custom workflow comprising following four
interactions. 1) data for a 2D count histogram (100 bins) of
arrival delays vs. departure delays is requested. 2) data for
a 1D count histogram (25 bins) of carriers is requested. 3) a
link between the to visualizations is established, setting the
1D histogram as source and the 2D histogram as target 4)
a single carrier is selected in the 1D histogram, forcing the
2D histogram to update

IDEA keeps track of a visualization graph, and executes
queries for every possible single bin selection in the source
visualization. If upon the next interaction one of the bins in
the 1D histogram is selected, IDFEA can return a potentially
better estimate of the results, as the query has had more
processing time. Figure [6f shows the proportion of missing
bins across ten think times (1s - 10s).

5.5 Exp. 4: Other Effects

We also used the benchmark results to analyze each sys-
tem for other effects, e.g., differences in performance in re-
gards to bin widths/number of bins, binning types (1D vs

.2D, nominal vs. quantitative ranges), as well as how sys-
tems respond to interactions that lead to multiple concur-
rently executed queries. We analyzed all queries listed in
the detailed reports of all systems, but found no evidence
that any of the factors above have a significant impact on
the performance of any of the metrics. By far the most cru-
cial factor in terms of query performance, seems to be the
specificity of filter/selection predicates.

5.6 Exp. 5: Experiment with System Y

In the last experiment we replicated a selected subset of
our workflows in a commercial IDE System Y and used Mon-
etDB as a backend. We used a fixed data size of 500M and
simulated three variants of the 1:N workflow type. In par-
ticular, we were interested to see if System X uses an inter-
mediate layer that pre-fetches/computes results, similar to
the experimental extension of IDEA (see Section. How-
ever, we did not find this to be the case. System Y renders
and updates the visualizations in the workload roughly at
the same speed as when one uses MonetDB directly, with
an added delay of about 1-2s per query. This is likely to be
the rendering overhead to draw the visualizations.

6. DISCUSSION AND FUTURE WORK

Main Findings. By implementing IDEBench for four sys-
tems we have shown that the performance in terms of data
preperation time, TR violations as well as quality of the re-
sults can vary significantly. We saw that progressive and
AQP systems like IDEA and System X were able to keep
time violations at a minimum while maintaining low error
rates with increasing data sizes and time requirements. This
is in stark contrast to classical analytical databases repre-
sented by MonetDB where time violations increase for larger
datasets and time requirements. We saw that approXimat-
eDB can only execute a subset of the queries in our workload
online. It has to revert to executing other queries in a block-
ing fashion, which in turn leads to significantly more TR
violations. For AQP systems where sample tables need to
be created offline (e.g., System X), quality of result metrics
such as the relative error and missing bins remain constant
across different time requirements. Thus, such a system
would have to scan the full table or to create additional
sample tables of different sizes in order to achieve a higher
result quality. This in turn would increase the data prepara-
tion time. Furthermore, our results indicate at which point
the use of an AQP that implements online sampling over
offline sampling is beneficial; stratified sampling is able to
provide results similar to online systems. However, there
is significant overhead for offline sample-based approaches.
Determining a “good” sample size to find a good trade-off
between speed and quality of the results is time-consuming,
and sample tables created offline cannot be fully optimized
because in IDE the workload is unknown ahead of time.

Future Work. The core idea of IDEBench is to provide a
benchmark that simulates typical user behavior for basic
tasks in IDE such as such as executing aggregate queries,
filtering result sets, etc. |24} |37]). The richer the tasks the
harder they become to benchmark. For the future we there-
fore envision an extensible benchmark design that defines
different task specific core-sets where each core-set aims to

11

analyze a different functional aspects; e.g., one core-set (as
defined in this paper) only tests simple analytical opera-
tions, whereas another one tests more complex model build-
ing tasks. Which core-sets are used to evaluate a system
depends on the supported functionality of that system.

Specifically, we envision for our benchmark four core-sets:
Core-Set I focuses on Interactive Data Exploration as cov-
ered by the benchmark implementation presented in this pa-
per. However, it excludes interactive model building, which
is part of Core-Set II. For the future version of IDEBench,
we believe that Core-Set I and II should be coupled as it
seems unreasonable to assume that one would build a model
without having the possibility to inspect the data set be-
fore. Core-Set III should then concerned with benchmark-
ing recommendation engines which are often used to com-
plement IDE systems by steering users to interesting parts
of a new data set. Examples systems are SeeDB [23] or Data
Polygamy [8|. Finally, for Core-Set IV we suggest to extend
the benchmark to other data sets that allows us compare
the interactive data cleaning capabilities covered by systems
such as DataWrangler [22], Trifacta [43] or Paxata [32]).

We believe that there will be variety of systems that can
only cover the functionality of some the core-sets above. We
therefore envision that each core-set can be tested individu-
ally. The higher the core-set number the harder it is to define
a benchmark since the sheer complexity of supported oper-
ations is increasing and their comparability becomes more
difficult.

Finally, a last important aspect is to make the benchmark-
ing code publicly available on the web [19] and include more
recent benchmarking results on the already tested systems
as well as results on other systems. Moreover, we plan to al-
low other research groups as well as industry to upload other
data sets and user-defined workflows in the format that they
can be included our framework to cover interesting aspects
of other domains.

7. CONCLUSION

In this paper, we presented a new benchmark IDEBench
for evaluating systems for interactive data exploration (IDE).
IDEBench defines a new set of metrics and a workload gen-
erator to simulate different exploration behaviours of users
as well as a data generator to better address the challenges
of IDE workloads. Based on this new benchmark, we con-
ducted an evaluation study that covered five different sys-
tems (approximateDB, IDEA, MonetDB as well as two com-
mercial systems) of three different categories (traditional an-
alytical database systems, approximate query processing en-
gines, as well as specialized engines for IDE) that are used
today in order to execute IDE workloads.

A. APPENDIX

A.1 A Detailed Benchmark Report

Table [1| shows an example of a detailed report generated
by IDEBench. Each row describes a query and its evalu-
ation results. id is a query identifier. interaction_id is a
reference to the interaction a query is associated with; it
is the index to an interaction in a workflow specification.
viz_name is a reference to the visualization specification in
a workflow. driver is the name of the driver used to run
the benchmark. think_time, time_req, data_size refer to the

report for a single workflow.

Table 1: A

T Tnteraction Thinktime

Tod bindims
T

TRUE.
TRUE

26 18 idea 500m 3000 500
idea 500m 3000 500

example of a detailed be

quantitative
quantitative
1 quantitative

nchmark

ype bins ofm _bims delivered b in gt el errorave _rel error stdev _missing bins _cosme distance _marginave _marginstdev
5 5 1 .02 502 032 (53 0.05 .06
1.39 3.47 0.8 0.00 0.99 082
0.01 0.02 0.00 0.00 0.01 0.03
039

comt 0

benchmark settings (see Section workflow is a the name
of the workflow a query is part of. start_time and end_time
are UNIX time stamps of when a query was initiated and
when it returns/got cancelled. bins_dims indicate the num-
ber of binning dimensions in the visualization specification.
binning_type indicate whether a nominal and/or quantita-
tive bin range was used in the visualization specification.
bins_ofm is a count of how many bins in the result of a query
exceed the margin of error. bin_in_gt shows how many bins
are in the ground-truth for a query. agg-type shows which
aggregate function was used in the query specification. The
remaining columns are the results for the metrics described
in Section [f27] Note that rel_error_avg and margin_avg are
the mean relative error/margin of error across all bins in a
query result. The summary report (see Section computes
the means of all metrics in the detailed report, aggregated
on a per workflow-type basis.

8. REFERENCES

[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
The aqua approximate query answering system. In ACM
SIGMOD, pages 574-576, 1999.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: queries with bounded errors and bounded
response times on very large data. In Proceedings of the 8th
ACM European Conference on Computer Systems, pages
29-42. ACM, 2013.

[3] L. Battle, R. Chang, J. Heer, and M. Stonebraker. Position
statement: The case for a visualization performance
benchmark. IEEE Internet Computing, 13(3):48-55, 2009.

[4] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu,
and M. Claypool. The effects of loss and latency on user
performance in unreal tournament 2003®). In Proceedings of
8rd ACM SIGCOMM workshop on Network and system
support for games, pages 144-151. ACM, 2004.

[5] J. Brutlag. Speed matters for google web search. https:
//services.google.com/fh/files/blogs/google_delayexp.pdf),
2009.

[6] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The
information visualizer, an information workspace. In ACM
SIGCHI, pages 181-186. ACM, 1991.

[7] S. Chaudhuri and U. Dayal. An overview of data warehousing
and olap technology. ACM Sigmod record, 26(1):65-74, 1997.

[8] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire. Data
polygamy: the many-many relationships among urban
spatio-temporal data sets. In ACM SIGMOD, pages 1-15.
ACM, 2016.

[9] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig,

U. Cetintemel, and S. Zdonik. An architecture for compiling

udf-centric workflows. PVLDB, 8(12):1466-1477, 2015.

A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and

T. Kraska. Vizdom: Interactive analytics through pen and

touch - video.

http://emanuelzgraggen.com/assets/video/vizdom_v1.0.mp4.

Accessed: 2018-04-01.

A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and

T. Kraska. Vizdom: interactive analytics through pen and

touch. PVLDB, 8:2024-2027, 2015.

[10

(1]

12

[12] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. The case for interactive data exploration
accelerators (IDEAs). In HILDA@SIGMOD, page 11. ACM,
2016.

[13] F. Di Tria, E. Lefons, and F. Tangorra. Benchmark for
evaluating approximate query processing on data streams. In
Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), 2017 IEEE 26th International
Conference on, pages 191-196. IEEE, 2017.

[14] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska. Vistrees: fast
indexes for interactive data exploration. In ACM SIGMOD,
page 5, 2016.

[15] F. Farber, N. May, W. Lehner, P. Gro8e, I. Miiller, H. Rauhe,
and J. Dees. The SAP HANA database — an architecture
overview. IEEE Data Eng. Bull., 35(1):28-33, 2012.

[16] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and
T. Kraska. Revisiting reuse for approximate query processing.
PVLDB, 10(10):1142-1153, 2017.

[17] P. Hanrahan. Analytic database technologies for a new kind of
user: the data enthusiast. In ACM SIGMOD, pages 577-578.
ACM, 2012.

[18] J. Heer and B. Shneiderman. Interactive dynamics for visual
analysis. Queue, 10:30, 2012.

[19] Omitted due to double blind requirement.

[20] P. Jayachandran, K. Tunga, N. Kamat, and A. Nandi.
Combining user interaction, speculative query execution and
sampling in the dice system. PVLDB, 7:1697-1700, 2014.

[21] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed and interactive cube exploration. In ICDE, pages
472-483. IEEE, 2014.

[22] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
In ACM SIGCHI, pages 3363-3372. ACM, 2011.

[23] M.-T. Ke, S. Fujimoto, and T. Imai. Seedb: a simple and
morphology-preserving optical clearing agent for neuronal
circuit reconstruction. Nature neuroscience, 16:1154-1161,
2013.

[24] D. A. Keim. Information visualization and visual data mining.
IEEE Trans. Vis. Comput. Graph., 8(1):1-8, 2002.

[25] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots.
In ICDE, pages 195-206. IEEE, 2011.

[26] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online
aggregation via random walks. In ACM SIGMOD, pages
615-629. ACM, 2016.

[27] Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. IEEE transactions on
visualization and computer graphics, 20:2122-2131, 2014.

[28] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual
querying of big data. In Computer Graphics Forum,
volume 32, pages 421-430. Wiley Online Library, 2013.

[29] Monetdb. http://www.monetdb.org. Accessed: 2017-11-02.

[30] J. Nielsen. Powers of 10: Time scales in user experience.
Retrieved January, 5:2015, 2009.

[31] B. of Transportation Statistics. Bureau of transportation
statistics. http://www.transtats.bts.gov, 2017. Accessed:
2017-10-21.

[32] Paxata. http://www.paxata.com. Accessed: 2017-11-02.

[33] S. C. Seow. Designing and engineering time: The psychology
of time perception in software. Addison-Wesley Professional,
2008.

[34] B. Shneiderman. Response time and display rate in human

https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
http://emanuelzgraggen.com/assets/video/vizdom_v1.0.mp4
http://www.monetdb.org
http://www.transtats.bts.gov
http://www.paxata.com

3]

36]

(37]

(38]

(39]
(40]

[41]
[42)

(43
[44]

(45]

performance with computers. ACM Computing Surveys
(CSUR), 16(3):265-285, 1984.

B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Visual Languages,
1996. Proceedings., IEEE Symposium on, pages 336-343.
IEEE, 1996.

Snappy data. https://www.snappydata.io/. Accessed:
2017-11-02.

H. H. G. W. Steffen Oeltze, Helmut Doleisch. Interactive visual
analysis of scientific data. In Presentation at IEEE VisWeek
2012, 2012.

C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for
query, analysis, and visualization of multidimensional relational
databases. IEEE Trans. Vis. Comput. Graph., 8(1):52-65,
2002.

Tableau. http://www.tableau.com. Accessed: 2017-11-02.
Tableau. Tableau learn. https://www.tableau.com/learn/
tutorials/on-demand/building-dashboard. Accessed:
2018-04-01.

TPC-DS. http://www.tpc.org/tpcds/, 2016. Accessed:
2017-11-02.

TPC-H. http://www.tpc.org/tpch/, 2016. Accessed: 2017-11-02.
Trifacta. http://www.trifacta.com. Accessed: 2017-11-02.

E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and

T. Kraska. How progressive visualizations affect exploratory
analysis. IEEFE transactions on visualization and computer
graphics, 23(8):1977-1987, 2017.

E. Zgraggen, R. Zeleznik, and S. M. Drucker. Panoramicdata:
Data analysis through pen & touch. IEEE transactions on
visualization and computer graphics, 20(12):2112-2121, 2014.

13

https://www.snappydata.io/
http://www.tableau.com
https://www.tableau.com/learn/tutorials/on-demand/building-dashboard
https://www.tableau.com/learn/tutorials/on-demand/building-dashboard
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
http://www.trifacta.com

	1 Introduction
	2 Interactive Data Exploration
	2.1 Use Case
	2.2 IDE Workload Characteristics
	2.3 IDE Database Landscape

	3 Towards a new Benchmark
	3.1 Scope
	3.2 Requirements

	4 The IDEBench Design
	4.1 Overview
	4.2 Data Generator
	4.3 Workload Generator
	4.4 Benchmark Driver
	4.5 System Adapters
	4.6 Settings
	4.7 Metrics
	4.8 Reporting

	5 Evaluation
	5.1 Default Configurations and Setup
	5.2 Exp. 1: Overall Results
	5.3 Exp. 2: Normalized vs. De-normalized
	5.4 Exp. 3: Varying Think-Time
	5.5 Exp. 4: Other Effects
	5.6 Exp. 5: Experiment with System Y

	6 Discussion and Future Work
	7 Conclusion
	A Appendix
	A.1 A Detailed Benchmark Report

	8 References

