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ABSTRACT
Query processing over big data is ubiquitous in modern
clouds, where the system takes care of picking both the
physical query execution plans and the resources needed to
run those plans, using a cost-based query optimizer. A good
cost model, therefore, is akin to better resource efficiency
and lower operational costs. Unfortunately, the production
workloads at Microsoft show that costs are very complex to
model for big data systems. In this work, we investigate two
key questions: (i) can we learn accurate cost models for big
data systems, and (ii) can we integrate the learned models
within the query optimizer. To answer these, we make three
core contributions. First, we exploit workload patterns to
learn a large number of individual cost models and combine
them to achieve high accuracy and coverage over a long pe-
riod. Second, we propose extensions to Cascades framework
to pick optimal resources, i.e, number of containers, during
query planning. And third, we integrate the learned cost
models within the Cascade-style query optimizer of SCOPE
at Microsoft. We evaluate the resulting system, Cleo, in a
production environment using both production and TPC-H
workloads. Our results show that the learned cost models are
2 to 3 orders of magnitude more accurate, and 20× more cor-
related with the actual runtimes, with a large majority (70%)
of the plan changes leading to substantial improvements in
latency as well as resource usage.
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Figure 1: Impact ofmanual tuning and cardinality feedback
on cost models in SCOPE
1 INTRODUCTION
There is a renewed interest in cost-based query optimiza-
tion in big data systems, particularly in modern cloud data
services (e.g., Athena [4], ADLA [40], BigSQL [22], and Big-
Query [20]) that are responsible for picking both the query
execution plans and the resources (e.g., number of containers)
needed to run those plans. Accurate cost models are therefore
crucial for generating efficient combination of plan and re-
sources. Yet, the traditional wisdom from relational databases
is that cost models are less important and fixing cardinalities
automatically fixes the cost estimation [31, 33]. The question
is whether this also holds for the new breed of big data sys-
tems. To dig deeper, we analyzed one day’s worth of query
logs from the big data infrastructure (SCOPE [11, 50]) at
Microsoft. We feed back the actual runtime cardinalities, i.e.,
the ideal estimates that any cardinality estimator, including
learned models [15, 26, 44, 47] can achieve. Figure 1 com-
pares the ratio of cost estimates with the actual runtimes for
two cost models in SCOPE: 1) a default cost model, and 2) a
manually-tuned cost model that is partially available for lim-
ited workloads. The vertical dashed-line at 100 corresponds
to an ideal situation where all cost estimates are equal to the
actual runtimes. Thus, the closer a curve is to the dashed
line, the more accurate it is.

The dotted lines in Figure 1(b) show that fixing cardinali-
ties reduces the over-estimation, but there is still a wide gap
between the estimated and the actual costs, with the Pearson
correlation being as low as 0.09. This is due to the complex-
ity of big data systems coupled with the variance in cloud
environments [42], which makes cost modeling incredibly
difficult. Furthermore, any improvements in cost modeling
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need to be consistent across workloads and over time since
performance spikes are detrimental to the reliability expecta-
tions of enterprise customers. Thus, accurate cost modeling
is still a challenge in SCOPE like big data systems.

In this paper, we explore the following two questions:
(1) Can we learn accurate, yet robust cost models for
big data systems? This is motivated by the presence of
massive workloads visible in modern cloud services that
can be harnessed to accurately model the runtime behavior
of queries. This helps not only in dealing with the various
complexities in the cloud, but also specializing or instance
optimizing [35] to specific customers or workloads, which is
often highly desirable. Additionally, in contrast to years of ex-
perience needed to tune traditional optimizers, learned cost
models are potentially easy to update at a regular frequency.
(2) Can we effectively integrate learned cost models
within the query optimizer? This stems from the obser-
vation that while some prior works have considered learning
models for predicting query execution times for a given phys-
ical plan in traditional databases [2, 5, 19, 32], none of them
have integrated learned models within a query optimizer
for selecting physical plans. Moreover, in big data systems,
resources (in particular the number of machines) play a sig-
nificant role in cost estimation [46], making the integration
even more challenging. Thus, we investigate the effects of
learned cost models on query plans by extending the SCOPE
query optimizer in a minimally invasive way for predicting
costs in a resource-aware manner. To the best of our knowl-
edge, this is the first work to integrate learned cost models
within an industry-strength query optimizer.

Our key ideas are as follows. We note that the cloud work-
loads are quite diverse in nature, i.e., there is no representa-
tive workload to tune the query optimizer, and hence there
is no single cost model that fits the entire workload, i.e.,
no-one-size-fits-all. Therefore, we learn a large collection
of smaller-sized cost models, one for each common subex-
pressions that are typically abundant in production query
workloads [23, 24]. While this approach results in specialized
cost models that are very accurate, the models do not cover
the entire workload: expressions that are not common across
queries do not have models. The other extreme is to learn
a cost model per operator, which covers the entire work-
load but sacrifices the accuracy with very general models.
Thus, there is an accuracy-coverage trade-off that makes cost
modeling challenging. To address this, we define the notion
of cost model robustness with three desired properties: (i)
high accuracy, (ii) high coverage, and (iii) high retention, i.e.,
stable performance for a long-time period before retraining.
We achieve these properties in two steps: First, we bridge
the accuracy-coverage gap by learning additional mutually
enhancing models that improve the coverage as well as the
accuracy. Then, we learn a combined model that automati-
cally corrects and combines the predictions from multiple
individual models, providing accurate and stable predictions
for a sufficiently long window (e.g., more than 10 days).

We implemented our ideas in a Cloud LEarning Optimizer
(Cleo) and integrated it within SCOPE. Cleo uses a feedback
loop to periodically train and update the learned cost models
within the Cascades-style top-down query planning [21]
in SCOPE. We extend the optimizer to invoke the learned
models, instead of the default cost models, to estimate the
cost of candidate operators. However, in big data systems, the
cost depends heavily on the resources used (e.g., number of
machines for each operator) by the optimizer [46]. Therefore,
we extend the Cascades framework to explore resources, and
propose mechanisms to explore and derive optimal number
of machines for each stage in a query plan. Moreover, instead
of using handcrafted heuristics or assuming fixed resources,
we leverage the learned cost models to find optimal resources
as part of query planning, thereby using learned models for
producing both runtime as well as resource-optimal plans.

In summary, our key contributions are as follows.
(1) We motivate the cost estimation problem from produc-
tion workloads at Microsoft, including prior attempts for
manually improving the cost model (Section 2).
(2) We propose machine learning techniques to learn highly
accurate cost models. Instead of building a generic cost model
for the entire workload, we learn a large collection of smaller
specialized models that are resource-aware and highly accu-
rate in predicting the runtime costs (Section 3).
(3) Wedescribe the accuracy and coverage trade-off in learned
cost models, show the two extremes, and propose additional
models to bridge the gap. We combine the predictions from
individual models into a robust model that provides the best
of both accuracy and coverage over a long period (Section 4).
(4) We describe integrating Cleo within SCOPE, including
periodic training, feedback loop, model invocations during
optimization, and novel extensions for finding the optimal
resources for a query plan (Section 5).
(5) Finally, we present a detailed evaluation of Cleo, using
both the production workloads and the TPC-H benchmark.
Our results show thatCleo improves the correlation between
predicted cost and actual runtimes from 0.1 to 0.75, the ac-
curacy by 2 to 3 orders of magnitude, and the performance
for 70% of the changed plans (Section 6). In Section 6.7, we
further describe practical techniques to address performance
regressions in our production settings.

2 MOTIVATION
In this section, we give an overview of SCOPE, its workload
and query optimizer, andmotivate the costmodeling problem
from production workloads at Microsoft.
2.1 Overview of SCOPE
SCOPE [11, 50] is the big data system used for internal data
analytics across the whole of Microsoft to analyze and im-
prove its various products. It runs on a hyper scale infras-
tructure consisting of hundreds of thousands of machines,
running amassive workload of hundreds of thousands of jobs
per day that process exabytes of data. SCOPE exposes a job
service interface where users submit their analytical queries



Figure 2: 150 instances of an hourly recurring job that
extracts facts from a production clickstream.

and the system takes care of automatically provisioning re-
sources and running queries in a distributed environment.
SCOPE query processor partitions data into smaller sub-

sets and processes them in parallel. The number of machines
running in parallel (i.e., degree of parallelism) depends on the
number of partitions of the input. When no specific partition-
ing is required by upstream operators, certain physical op-
erators (e.g., Extract and Exchange (also called Shuffle)),
decide partition counts based on data statistics and heuristics.
The sequence of intermediate operators that operate over the
same set of input partitions are grouped into a stage — all
operators in a stage run on the same set of machines. Except
for selected scenarios, Exchange operator is commonly used
to re-partition data between two stages.

2.2 Recurring Workloads
SCOPE workloads primarily consist of recurring jobs. A
recurring job in SCOPE is used to provide periodic (e.g.,
hourly, six-hourly, daily, etc.) analytical result for a specific
application functionality. Typically, a recurring job consists
of a script template that accepts different input parameters
similar to SQL modules. Each instance of the recurring job
runs on different input data, parameters and have potentially
different statements. As a result, each instance is different
in terms of input/output sizes, query execution plan, total
compute hour, end-to-end latency, etc. Figure 2 shows 150
instances of an hourly recurring job that extracts facts from a
production clickstream. Over these 150 instances, we can see
a big change in the total input size and the total execution
time, from 69, 859 GiB to 118, 625 GiB and from 40 mins
and 50 seconds to 2 hours and 21 minutes respectively. Note
that a smaller portion of SCOPE workload is ad-hoc as well.
Figure 3 shows our analysis from four of the production
clusters. We can see that 7% − 20% jobs are ad-hoc on a daily
basis, with the fraction varying over different clusters and
different days. However, compared to ad-hoc jobs, recurring
jobs represent long term business logic with critical value,
and hence the focus of several prior research works [1, 7–9,
17, 23–25, 30, 47] and also the primary focus for performance
improvement in this paper.
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Figure 3: Illustrating ad-hoc jobs in SCOPE.

2.3 Overview of SCOPE Optimizer
SCOPE uses a cost-based optimizer based on the Cascades
Framework [21] for generating the execution plan for a given
query. Cascades [21] transforms a logical plan using multiple
tasks: (i) Optimize Groups, (ii) Optimize Expressions, (iii) Ex-
plore Groups, and (iv) Explore Expressions, and (v) Optimize
Inputs. While the first four tasks search for candidate plans
via transformation rules, our focus in this work is essentially
on the Optimize Inputs tasks, where the cost of a physical
operator in estimated. The cost of an operator is modeled to
capture its runtime latency, estimated using a combination
of data statistics and hand-crafted heuristics developed over
many years. Cascades performs optimization in a top-down
fashion, where physical operators higher in the plan are iden-
tified first. The exclusive (or local) costs of physical operators
are computed and combined with costs of children operators
to estimate the total cost. In some cases, operators can have
a required property (e.g., sorting, grouping) from its parent
that it must satisfy, as well as can have a derived property
from its children operators. In this work, we optimize how
partition counts are derived as it is a key factor in cost esti-
mation for massively parallel data systems. Overall, our goal
is to improve the cost estimates with minimal changes to
the Cascades framework. We next analyze the accuracy of
current cost models in SCOPE.

2.4 Cost Model Accuracy
The solid red line in Figure 1 shows that the cost estimates
from the default cost model range between an under-estimate
of 100× to an over-estimate of 1000×, with a Pearson cor-
relation of just 0.04. As mentioned in the introduction, this
is because of the difficulty in modeling the highly complex
big data systems. Current cost models rely on hand-crafted
heuristics that combine statistics (e.g., cardinality, average
row length) in complex ways to estimate each operator’s
execution time. These estimates are usually way off and get
worse with constantly changing workloads and systems in
cloud environments. Big data systems, like SCOPE, further
suffer from the widespread use of custom user code that ends
up as black boxes in the cost models.
One could consider improving a cost model by consider-

ing newer hardware and software configurations, such as
machine SKUs, operator implementations, or workload char-
acteristics. SCOPE team did attempt this path and put in
significant efforts to improve their default cost model. This



alternate cost model is available for SCOPE queries under a
flag. We turned this flag on and compared the costs from the
improved model with the default one. Figure 1b shows the
alternate model in solid blue line. We see that the correla-
tion improves from 0.04 to 0.10 and the ratio curve for the
manually improved cost model shifts a bit up, i.e., it reduces
the over-estimation. However, it still suffers from the wide
gap between the estimated and actual costs, again indicating
that cost modeling is non-trivial in these environments.
Finally, as discussed in the introduction and shown as

dotted lines in Figure 1(b), fixing cardinalities to the perfect
values, i.e., that best that any cardinality estimator [15, 26, 44,
47] could achieve, does not fill the gap between the estimated
and the actual costs in SCOPE-like systems.
3 LEARNED COST MODELS
In this section, we describe howwe can leverage the common
sub-expressions abundant in big data systems to learn a large
set of smaller-sized but highly accurate cost models.
We note that it is practically infeasible to learn a single

global model that is equally effective for all operators. This is
why even traditional query optimizers model each operator
separately.A single model is prone to errors because opera-
tors can have very different performance behavior (e.g., hash
group by versus merge join), and even the performance of
same operator can vary drastically depending on interactions
with underneath operators via pipelining, sharing of sorting
and grouping properties, as well as the underlying software
or hardware platform (or the cloud instance). In addition,
because of the complexity, learning a single model requires a
large number of features, that can be prohibitively expensive
to extract and combine for every candidate operator during
query optimization.
3.1 Specialized Cost Models
As described in Section 2.2, shared cloud environments often
have a large portion of recurring analytical queries (or jobs),
i.e., the same business logic is applied to newer instances
of the datasets that arrive at regular intervals (e.g., daily or
weekly). Due to shared inputs, such recurring jobs often end
up having one or more common subexpressions across them.
For instance, the SCOPE query processing system at Mi-
crosoft has more than 50% of jobs as recurring, with a large
fraction of them appearing daily [25], and as high as 60%
having common subexpressions between them [23, 24, 47].
Common subexpression patterns have also been reported in
other production workloads, including Spark SQL queries
in Microsoft’s HDInsight [41], SQL queries from risk con-
trol department at Ant Financial Services Group [51], and
iterative machine learning workflows [48].
Figure 4 illustrates a common subexpression, consisting

of a scan followed by a filter, between two queries. We ex-
ploit these common subexpressions by learning a large num-
ber of specialized models, one for each unique operator-sub-
graph template representing the subexpression. An operator-
subgraph template covers the root physical operator (e.g.,
Filter) and all prior (descendants) operators (e.g., scan) from

σ σ

γ

Figure 4: Illustrating common subexpressions.

the root operator of the subexpression. However, parameters
and inputs in operator-subgraphs can vary over time, and are
used as features for the model (along with other logical and
physical features) as discussed in Section 3.3.
The operator-subgraph templates essentially capture the

context of root operator, i.e, learn the behavior of root physical
operator conditioned on the operators beneath it in the query
plan. This is helpful because of two reasons. First, the execu-
tion time of an operator depends on whether it is running
in a pipelined manner, or is blocked until the completion of
underneath operators. For example, the latency of a hash op-
erator running on top of a filter operator is typically smaller
compared to when running over a sort operator. Similarly,
the grouping and sorting properties of operators beneath the
root operator can influence the latency of root operator [21].
Second, the estimation errors (e.g., of cardinality) grow

quickly as we move up the query plan, with each intermedi-
ate operator building upon the errors of children operators.
The operator-subgraph models mitigates this issue partially
since the intermediate operators are fixed and the cost of
root operator depends only on the leaf level inputs. More-
over, when the estimation errors are systematically off by
certain factors (e.g., 10x), the subgraph models can adjust
the weights such that the predictions are close to actual
(discussed subsequently in Section 3.4). This is similar to
adjustments learned explicitly in prior cardinality estimation
work [44]. These adjustments generalize well since recurring
jobs share similar schemas and the data distributions remain
relatively stable, even as the input sizes change over time.
Accurate cardinality estimations are, however, still needed
in cases where simple adjustment factors do not exist [47].
Next, we discuss the learning settings, feature selection,

and our choice of learning algorithm for operator-subgraphs.
In Section 5, we describe the training and integration of
learned models with the query optimizer.

3.2 Learning Settings
Target variable. Given an operator-subgraph template, we
learn the exclusive cost of the root operator as our target. At
every intermediate operator, we predict the exclusive cost
of the operator conditioned on the subgraph below it. The
exclusive cost is then combined with the costs of the children
subgraphs to compute the total cost of the sub-graph, similar
to how default cost models combine the costs.
Loss function. As the loss function, we use mean-squared

log error between the predicted exclusive cost (p) and actual
exclusive latency (a) of the operator:

∑
n (loд(p+1)−loд(a+1))2

n ,



Loss Function Median Error
Median Absolute Error 246%
Mean Absolute Error 62%
Mean Squared Error 36%
Mean Squared-Log Error 14%

Table 1: Median error using 5-fold CV over the production
workload for regression loss functions

here 1 is added for mathematical convenience. Table 1 com-
pares the average median errors using 5-fold cross validation
(CV) of mean-squared log error with other commonly used
regression loss functions, using elastic net as the learning
model (described subsequently Section 3.4). We note that not
taking the log transformation makes learning more sensitive
to extremely large differences between actual and predicted
costs. However, large differences often occur when the job’s
running time itself is long or even due to outlier samples
because of machine or network failures (typical in big data
systems). We, therefore, minimize the relative error (since
loд(p+1)−loд(a+1) = loд(p+1a+1 )), that reduces the penalty for
large differences. Moreover, our chosen loss function helps
penalize under-estimation more than over-estimation, since
under estimation can lead to under allocation of resources
which is typically decided based on cost estimates. Finally,
log transformation implicitly ensures that the predicted costs
are always positive.

3.3 Feature Selection
It is expensive to extract and combine a large number of
features every time we predict the cost of an operator — a
typical query plan in big data systems can involve 10s of
physical operators, each of which can have multiple possible
candidates. Moreover, large feature sets require more number
of training samples, whilemany operator-subgraph instances
typically have much fewer samples. Thus, we perform an
offline analysis to identify a small set of useful features.

For selecting features, we start with a set of basic statistics
that are frequently used for estimating costs of operators
in the default cost model. These include the cardinality, the
average row length, and the number of partitions. We con-
sider three kinds of cardinalities: 1) base cardinality: the total
input cardinality of the leaf operators in the subgraph, 2) in-
put cardinality: the total input cardinality from the children
operators, and 3) output cardinality: the output cardinality of
the operator-subgraph. We also consider normalized inputs
(ignoring dates and numbers) and parameters to the job that
typically vary over time for the recurring jobs. We ignore
features such as job name or cluster name, since they could
induce strong bias and make the model brittle to the smallest
change in names.
We further combine basic features to create additional

derived features to capture the behavior of operator imple-
mentations and other heuristics used in default cost models.
We start a large space of possible derivations by applying (i)
logarithms, square root, squares, and cubes of basic features,
(ii) pairwise products among basic features and derived fea-
tures listed in (i), and (iii) cardinality features divided by the

Feature Description
Input Cardinality (I) Total Input Cardinality from children operators
Base Cardinality (B) Total Input Cardinality at the leaf operators
Output Cardinality (C) Output Cardinality from the current operator
AverageRowLength (L) Length (in bytes) of each tuple
Number of Partitions (P) Number of partitions allocated to the operator
Input (IN) Normalized Inputs (ignored dates, numbers)
Parameters (PM) Parameters

Table 2: Basic Features
Category Features
Input or Output data

√
I ,
√
B, L*I, L*B, L*log(B), L*log(I), L*log(C)

Input × Output B*C,I*C,B*log(C),I*log(C),log(I)*log(C),I*C, log(B)*log(C)
Input or Output per
partition

I/P, C/P, I*L/P, C*L/P,
√
I /P,

√
C/P,log(I)/P

Table 3: Derived Features
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Figure 5: Features weights (Op-Subgraph model)

number of partitions (i.e. machine). Given this set of can-
didate features, we use a variant of elastic net [53] model
to select a subset of useful features that have at least one
non-zero weight over all subgraph models.
Table 2 and Table 3 depict the selected basic and derived

features with non-zero weights. We group the derived fea-
tures into three categories (i) input or output data, capturing
the amount of data read, or written, (ii) the product of in-
put and output, covering the data processing and network
communication aspects, and finally (iii) per-machine input
or output, capturing the partition size.
Further, we analyze the influence of each feature. While

the influence of each feature varies over different subgraph
models, Figure 5 shows the aggregated influence over all
subgraph models of each feature. Given a total of K non zero
features and N subgraph models, withwin as the weight of
feature i in model n, we measure the influence of feature i
using normalized weight nwi , as nwi =

∑
N abs(win )∑

K
∑
N abs(wkn ) .

3.4 Choice of learning model
For learning costs over operator-subgraphs, we considered a
number of variants of linear-regression, SVM, decision tree
and their ensembles, as well as neural network models. On
5-fold cross-validation over our production workload, the
following models give more accurate results compared to the
default cost model: (i) Neural network. 3-layers, hidden layer
size = 30, solver = adam, activation = relu, l2 regularization =
0.005, (ii) Decision tree: depth =15, (ii) Random forest number
of trees = 20, depth = 5, (iii) FastTree Regression (a variant
of Gradient Boosting Tree): number of trees = 20, depth = 5,
and (iv) Elastic net: α =1.0, fit intercept=True, l1 ratio=0.5.



We observe that the strict structure of subgraph template
helps reduce the complexity, making the simpler models,
e.g., linear- and decision tree-based regression models, per-
form reasonably well with the chosen set of features. A large
number of operator-subgraph templates have fewer train-
ing samples, e.g., more than half of the subgraph instances
have < 30 training samples for the workload described in
Section 2. In addition, because of the variance in cloud en-
vironments (e.g., workload fluctuations, machine failures,
etc.), training samples can have noise both in their features
(e.g., inaccurate statistics estimates) and the class labels (i.e.,
execution times of past queries). Together, both these fac-
tors lead to over-fitting, making complex models such as
neural network as well as ensemble-based models such as
gradient-boost perform worse.

Elastic net [53], a L1 and L2 regularized linear regres-
sion model, on the other hand, is relatively less prone to
overfitting. In many cases, the number of candidate features
(ranging between 25 to 30) is as many as the number of
samples, while only a select few features are usually rele-
vant for a given subgraph. The relevant features further tend
to differ across subgraph instances. Elastic net helps per-
form automatic feature selection, by selecting a few relevant
predictors for each subgraph independently. Thus, we train
all subgraphs with the same set of features, and let elastic
net select the relevant ones. Another advantage of elastic
net model is that it is intuitive and easily interpretable, like
the default cost models which are also weighted sums of a
number of statistics. This is an important requirement for
effective debugging and analysis of production jobs.

Table 4 depicts the Pearson correlation and median error
of the five machine learning models over the production
workload. We see that operator-subgraphs models trained
using elastic net can make sufficiently accurate cost predic-
tions (14% median error), with a high correlation (more than
0.92) with the actual runtime, a substantial improvement
over the default cost model (median error of 258% and Pear-
son correlation of 0.04). In addition, elastic net models are
fast to invoke during query optimization, and have low stor-
age footprint that indeed makes it feasible for us to learn
specialized models for each possible subgraph.

4 ROBUSTNESS
We now discuss how we learn robust cost models. As defined
in Section 1, robust cost models cover the entire workload
with high accuracy for a substantial time period before re-
quiring retraining. In contrast to prior work on robust query
processing [14, 36, 52] that either modify the plan during
query execution, or execute multiple plans simultaneously,
we leverage the massive cloud workloads to learn robust
models offline and integrate them with the optimizer to gen-
erate one robust plan with minimum runtime overhead. In
this section, we first explain the coverage and accuracy trade-
off for the operator-subgraph model. Then, we discuss the
other extreme, namely an operator model, and introduce ad-
ditional models to bridge the gap between the two extremes.

Finally, we discuss how we combine predictions from indi-
vidual models to achieve robustness.
4.1 Accuracy-Coverage Tradeoff
The operator-subgraphmodel presented in Section 3 is highly
specialized. As a result, this model is likely to be highly
accurate. Unfortunately, the operator-subgraph model does
not cover subgraphs that are not repeated in the training
dataset, i.e., it has limited coverage. For example, over 1
day of Microsoft production workloads, operator-subgraphs
have learned models for only 54% of the subgraphs. Note
that we create a learned model for a subgraph if it has at
least 5 occurrences over the single day worth of training
data. Thus, it is difficult to predict costs for arbitrary query
plans consisting of subgraphs never seen in training dataset.
The other extreme: Operator model. In contrast to the
operator-subgraph model, we can learn a model for each
physical operator, similar to how traditional query optimiz-
ers model the cost. The operator models estimate the execu-
tion latency of a query by composing the costs of individual
operators in a hierarchical manner akin to how default cost
models derive query costs. As a result, operator models can
predict the cost of any query in the workload, including
those previously unseen in the training dataset. However,
similar to traditional cost model, operator models also suf-
fer from poor accuracy since the behavior of an operator
changes based on what operations appear below it. Further-
more, the estimation errors in the features or statistics at the
lower level operators of a query plan are propagated to the
upper level operators that significantly degrades the final
prediction accuracy. On 5-fold cross-validation over 1 day
of Microsoft production workloads, operator models results
in 42% median error and 0.77 Pearson correlation, which
although better than the default cost model (258% median
error and 0.04 Pearson correlation), is relatively lower com-
pared to that of operator-subgraph models (14%median error
and 0.92 Pearson correlation). Thus, there is an accuracy and
coverage tradeoff when learning cost models, with operator-
subgraph and operator models being the two extremes of
this tradeoff.
4.2 Bridging the Gap
We now present additional models that fall between the two
extreme models in terms of the accuracy-coverage trade-off.
Operator-input model. An improvement to per-operator
is to learn a model for all jobs that share similar inputs. Sim-
ilar inputs also tend to have similar schema and similar data
distribution even as the size of the data changes over time,
thus operator models learned over similar inputs often gen-
eralize over future job invocations. In particular, we create a
model for each operator and input template combination. An
input template is a normalized input where we ignore the
dates, numbers, and parts of names that change over time for
the same recurring input, thereby allowing grouping of jobs
that run on the same input schema over different sessions.
Further, to partially capture the context, we featurize the



Model Correlation Median Error
Default 0.04 258%
Neural Network 0.89 27%
Decision Tree 0.91 19 %
Fast-Tree regression 0.90 20%
Random Forest 0.89 32%
Elastic net 0.92 14%

Table 4: Correlation and error w.r.t. actual runtime for
the operator-subgraphs

intermediate subgraph by introducing two additional fea-
tures: 1) the number of logical operator in the subgraph (CL)
and 2) the depth of the physical operator in the sub-graph
(D). This helps in distinguishing subgraph instances that are
extremely different from each other.
Operator-subgraphApprox model. While operator-sub-
graph models exploit the overlapping and recurring nature
of big data analytics, there is also a large number (about
15-20%) of subgraphs that are similar but are not exactly
the same. To bridge this gap, we relax the notion of sub-
graph similarity, and learn one model for all subgraphs that
have the same inputs and the same approximate underlying
subgraph. We consider two subgraphs to be approximately
same if they have the same physical operator at the root, and
consist of the same frequency of each logical operator in the
underneath subgraph (ignoring the ordering between opera-
tors). Thus, there are two relaxations: (1) we use frequency of
logical operators instead of physical operators (note that this
is one of the additional features in Operator-input model) and
(ii) we ignore the ordering between operators. This relaxed
similarity criteria allows grouping of similar subgraphs with-
out substantially reducing the coverage. Overall, operator-
subgraphApprox model is a hybrid of the operator-subgraph
and operator-input models: it achieves much higher accuracy
compared to operator or operator-input models, and more
coverage compared to operator-subgraph model.
Table 5 depicts the Pearson correlation, the median ac-

curacy using 5-fold cross-validation, as well as the cover-
age of individual cost models using elastic net over pro-
duction workloads. As we move from more specialized to
more generalized models (i.e., operator-subgraph to operator-
subgraphApprox to operator-input to operator), we see that
the model accuracy decreases while the coverage over the
workload increases. Figure 6 shows the feature weights
for each of the intermediate models. We see that while the
weight for specialized models, like the operator-subgraph
model (Figure 5), are concentrated on a few features, the
weights for more generalized models, like the per-operator
model, are more evenly distributed.
4.3 The Combined Model
Given multiple learned models, with varying accuracy and
coverage, the strawman approach is to select a learned model
in decreasing order of their accuracy over training data, start-
ing from operator-subgraphs to operator-subgraphApprox to
operator-inputs to operators. However, as discussed earlier,
there are subgraph instances where more accurate models
result in poor performance over test data due to over-fitting.

Model Correlation Median
Error

Coverage

Default 0.04 258% 100%
Op-Subgraph 0.92 14% 54%
Op-Subgraph
Approx

0.89 16 % 76%

Op-Input 0.85 18% 83%
Operator 0.77 42% 100%
Combined 0.84 19% 100%

Table 5: Performance of learned models w.r.t to actual run-
times

Model Correlation Median Error
Default 0.04 258%
Neural Network 0.79 31%
Decision Tree 0.73 41 %
FastTree Regression 0.84 19%
Random Forest 0.80 28%
Elastic net 0.68 64%

Table 6: Correlation and errror w.r.t actual runtimes for the
Combined Model

To illustrate, Figure 7 depicts the heat-map representation
of the accuracy and coverage of different individual models,
over more than 42K operator instances from our production
workloads. Each point in the heat-map represents the error
of the predicted cost with respect to the actual runtime: the
more green the point, the less the error. The empty region
at the top of the chart depicts that the learned model does
not cover those subgraph instances. We can see that the pre-
dictions are mostly accurate for operator-subgraph models,
while Operator models have relatively more error (i.e, less
green) than the operator-subgraph models. Operator-input
have more coverage with marginally more error (less green)
compared to operator-subgraphs. However, for regions b,
d, and f, as marked on the left side of the figure, we notice
that operator-input performs better (more blue and green)
than operator-subgraph. This is because operators in those
regions have much fewer training samples that results in
over-fitting. Operator-input, on the other hand, has more
training samples, and thus performs better. Thus, it is diffi-
cult to decide a rule or threshold that always select the best
performing model for a given subgraph instance.
Learning a meta-ensemble model. We introduce a meta-
ensemble model that uses the predictions from specialized
models as meta features, along with the following extra fea-
tures: (i) cardinalities (I, B, C), (ii) cardinalities per partition
(I/P, B/P, C/P), and (iii) number of partitions (P) to output
a more accurate cost. Table 6 depicts the performance of
different machine learning models that we use as a meta-
learner on our production workloads. We see that the Fast-
Tree regression [16] results in the most accurate predictions.
FastTree regression is a variant of the gradient boosted re-
gression trees [18] that uses an efficient implementation of
the MART gradient boosting algorithm [37]. It builds a se-
ries of regression trees (estimators), with each successive
tree fitting on the residual of trees that precede it. Using
5-fold cross-validation, we find that the maximum of only
20 regression trees with mean-squared log error as the loss
function and the sub-sampling rate of 0.9 is sufficient for
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Figure 7: Heatmap of errors over 42K operators from production jobs. Each point in the heatmap depicts the error
of learned cost with respect to the actual runtime

optimal performance. As depicted in Figure 7, using FastTree
Regression as a meta-learner has three key advantages.

First, FastTree regression can effectively characterize the
space where each model performs well. The regression trees
recursively split the space defined by the predictions from in-
dividual models and features, creating fine-grained partitions
such that prediction in each partition are highly accurate.
Second, FastTree regression performs better for opera-

tor instances where individual models perform worse. For
example, some of the red dots found in outlier regions b,
d and f of the individual model heat-maps are missing in
the combined model. This is because FastTree regression
makes use of sub-sampling to build each of the regression
trees in the ensemble, making it more resilient to overfitting
and noise in execution times of prior queries. Similarly, for
region a where subgraph predictions are missing, FastTree
regression creates an extremely large number of fine-grained
splits using extra features and operator predictions to give
even better accuracy compared to Operator models.

Finally, the combined model is naturally capable of cover-
ing all possible plans, since it uses Operator model as one of
the predictors. Further, as depicted in Figure 7, the combined
model is comparable to that of specialized models, and al-
most always has better accuracy than Operator model. The
combined model is also flexible enough to incorporate addi-
tional models or features, or replace one model with another.
However, on also including the default cost model, it did not
result in any improvement on SCOPE. Next, we discuss how
we integrate the learned models within the query optimizer.

5 OPTIMIZER INTEGRATION
In this section, we describe our two-fold integration of Cleo
within SCOPE. First, we discuss our end-to-end feedback
loop to learn cost models and generate predictions during

optimization. Then, we discuss how we extend the optimizer
for supporting resource-exploration using learned models.

5.1 Integrating Learned Cost Models
The integration of learned models with the query optimizer
involves the following three components.
Instrumentation and Logging. Big data systems, such as
SCOPE, are already instrumented to collect logs of query
plan statistics such as cardinalities, estimated costs, as well
as runtime traces for analysis and debugging. For uniquely
identifying each operator and the subplan, query optimizers
annotate each operator with a signature [8], a 64-bit hash
value that can be recursively computed in a bottom-up fash-
ion by combining (i) the signatures of children operators,
(ii) hash of current operator’s name, and (iii) hash of opera-
tor’s logical properties. We extend the optimizer to compute
three more signatures, one for each individual sub-graph
mode, and extract additional statistics (i.e., features) that
were missing for Cleo. Since all signatures can be computed
simultaneously in the same recursion, and that there are only
25 − 30 features (most of which were already extracted), the
additional overhead is minimal (≤ 10%), as we describe in
Section 6. This overhead includes both the logging and the
model lookup that we discuss subsequently.
Training and Feedback. Given the logs of past query runs,
we learn each of the four individual elastic net-based models
independently and in parallel using our SCOPE-based paral-
lel model trainer. Experimentally, we found that a training
window of two days and a training frequency of every ten
days results in acceptable accuracy and coverage (Section 6).
We then use the predictions from individual models on the
next day queries to learn the combined FastTree regression
model. Since individual models can be trained in parallel, the
training time is not much, e.g., it takes less than 45 minutes



Is	required	partition	property?

Partition	
Exploration

5.		Optimize			
children	groups

Optimize	
children	groups

7.	Is	partition	operator?

Partition						
Optimization

Derive	partition	
count	from	children

10.						Learned	Cost	Model	Lookup

11.				Combine	with	children	cost	and	return

yes no

yesno

2.		Set	
partition	
count	to	required

1

2 3

5
6

7

8 9

Update	
Resource	
Context

4

10

11

(a) Resource-aware planning
Extract

Sort

Exchange

Reduce

Output

Stage	1

Stage	2 Partition	Counts:			2				8				16			…	
Output	Costs									90		80		70			…

Partition	Counts:			2				8				16			…	
Output	Costs									90		80		70			…
Reduce	Costs							200		70		30			…

Partition	Counts:			2				8				16			…	
Output	Costs									90		80		70			…
Reduce	Costs								200	70		30 …
Exchange	Costs					15			20		25 …

Resource	Context
1

2Partition	Optimization

6

Partition	Counts:			2				8				16			…	
Sort	Costs														10		12			14		…

Partition	Counts:			2				8				16			…	
Sort	Costs														10		12			14		…
Extract	Costs									40		45			50 …

3

4

5

Partition	Exploration

Pa
rt
iti
on

	D
er
iv
at
io
n

Partition	Optimization

SET	Partition	Count=	16

SET	Partition	Count	=	2

Resource	Context

(b) Example query plan

0 20 40
Number of operators

102

104

M
od

el
 L

oo
ku

ps

Exhaustive
Analytical

Geom(s=0.5)
Geom(s=5)

(c) Model look-ups for partition
exploration

Figure 8: Integrating learned cost models with the query optimizer

for training 25K models from over 50, 000 jobs using a clus-
ter of 200 nodes. Once trained, we serialize the models and
feedback them to the optimizer. The models can be served
either from a text file, using an additional compiler flag, or
using a web service that is backed by a SQL database.
Look-up. All models relevant for a cluster are loaded upfront
by the optimizer, into a hash map with keys as signatures of
models, to avoid expensive lookup calls during optimization.
When loaded simultaneously, all 25K models together take
about 600 MB of memory, which is within an acceptable
range. Finally, for cost estimation, we modify the Optimize
Input phase of Cascade optimizer to invoke learned models.
Figure 8a highlights the the key steps that we added in blue.
Essentially, we replace the calls to the default cost-models
with the learned model invocations (Step 10 in Figure 8a)
to predict the exclusive cost of an operator, which is then
combined with costs of children operators, similar to how
default cost models combine costs. Moreover, since there is
an operator model and a combined model for every physi-
cal operator, Cleo can cover all possible query plans, and
can even generate a plan unseen in training data. All the
features that learned models need are available during query
optimization. However, we do not reuse the partition count
derived by the default cost model, rather we try to find a
more optimal partition count (steps 3, 4, 9) as it drives the
query latency.We discuss the problemwith existing partition
count selection and our solution below.
5.2 Resource-aware Query Planning
The degree of parallelism (i.e., the number of machines or
containers allocated for each operator) is a key factor in
determining the runtime of queries in massively parallel
databases [46], which implicitly depends on the partition
count. This makes partition count as an important feature in
determining the cost of an operator (as noted in Figures 5–6).

Unfortunately, in existing optimizers, the partition count
is not explored for all operators, rather partitioning operators
(e.g., Exchange for stage 2 in Figure 8b) set the partition count
for the entire stage based on their local statistics [49]. The
above operators on the same stage simply derive the partition

count set by the partitioning operator. For example, in stage
2 of Figure 8b, Exchange sets a partition count to 2 as it
results in its smallest local cost (i.e., 15). The operators above
Exchange (i.e., Reduce and Output) derive the same partition
count, resulting in a total cost of 305 for the entire stage.
However, we can see that the partition count of 16 results
in a much lower overall cost of 125, though it’s not locally
optimal for Exchange. Thus, not optimizing the partition count
for the entire stage results in a sub-optimal plan.
To address this, we explore the partition counts during

query planning, by making query planning resource-aware.
Figures 8a and 8b illustrate our resource-aware query plan-
ning approach. We introduce the notion of a resource-context,
within the optimizer-context, for tracking costs of partitions
across operators in a stage. Furthermore, we add a partition
exploration step, where each physical operator attaches a list
of learned costs for different partition counts to the resource
context (step 3 in Figure 8a). For example, in Figure 8b, the
resource-context for stage 2 shows the learned cost for dif-
ferent partition counts for each of the three operators. On
reaching the stage boundary, the partitioning operator Ex-
change performs partition optimization (step 9 in Figure 8a)
to set its local partition count to 16, that results in the lowest
total cost of 125 across for the stage. Thereafter, the higher
level operators simply derive the selected partition count
(line 8 in Figure 8a), like in the standard query planning, and
estimate their local costs using learned models. Note that
when a partition comes as required property [21] from up-
stream operators, we set the partition count to the required
value without any exploration (Figure 8a step 2).

SCOPE currently does not allow varying other resources,
therefore we focus only on partition counts in this work.
However, the resource-aware query planning with the three
new abstractions to Cascades framework, namely the resource-
context, partition-exploration, and partition-optimization,
is general enough to incorporate additional resources such
as memory sizes, number of cores, VM instance types, and
other infrastructure level decisions to jointly optimize for
both plan and resources. Moreover, our proposed extensions



Cluster Day Total 
Jobs

Recurring 
Jobs

Recurring 
Templates

Total  
Sub-Expr.

Common 
Sub-Expr.

Recurring 
Sub-Expr.

Ad-hoc 
Sub-Expr.

Cluster1

Day1 64796 52400 17662 3546087 2874485 484909 186693

Day2 62065 50055 16888 3284706 2633981 468643 182082

Day3 68479 55767 18143 3657239 2946294 493745 217200

Cluster2

Day1 52952 49452 6741 2523173 1948962 488531 85680

Day2 36776 33167 6044 1595925 1238273 285043 72609

Day3 40464 36429 6867 2232402 1624081 522783 85538

Cluster3

Day1 30277 25929 6273 1337034 1031231 238666 67137

Day2 29120 25002 5917 1292181 1017849 211155 63177

Day3 29667 25306 6281 1326588 1023611 235668 67309

Cluster4

Day1 14562 13145 2277 530045 416972 61492 51581

Day2 16000 14132 2696 519914 408397 53819 57698

Day3 18641 17040 2606 536294 420282 49434 66578

Overall 463799 397824 98395 22381588 17584418 3593888 1203282

�1

Figure 9: Workload consisting of 0.5million jobs from
4 different production clusters over 3 days

can also be applied to other big data systems such as Spark,
Flink, and Calcite that use variants of Cascades optimizers
and follow a similar top-down query optimization as SCOPE.
Our experiments in Section 6 show that the resource-

aware query planning not only generates better plans in
terms of latency, but also leads to resource savings. However,
the challenge is that estimating the cost for every single par-
tition count for each operator in the query plan can explode
the search space and make query planning infeasible. We
discuss our approach to address this next.
5.3 Efficient Resource Exploration
We now discuss two techniques for efficiently exploring the
partition counts in Cleo, without exploding the search space.
Sampling-based approach. Instead of considering every
single partition count, one option is to consider a uniform
sample over the set of all possible containers for the tenant
or the cluster. However, the relative change in partition is
more interesting when considering its influence on the cost,
e.g., a change from 1 to 2 partitions influences the cost more
than a change from 1200 to 1210 partitions. Thus, we sam-
ple partition counts in a geometrically increasing sequence,
where a sample xi+1 is derived from previous sample xi us-
ing: xi+1 = ⌈xi + xi/s⌉ with x0 = 1, x1 = 2. Here, s is a
skipping coefficient that decides the gap between successive
samples. A large s leads to a large number of samples and
more accurate predictions, but at the cost of higher model
look-ups and prediction time.
Analytical approach.We reuse the individual learned mod-
els to directly model the relationship between the partition
count and the cost of an operator. The key insight here is that
only features where partition count is present are relevant
for partition exploration, while the rest of the features can
be considered constants since their values are fixed during
partition exploration. Thus, we can express operator cost as
follows: cost ∝ (θ1∗I+θ2∗C+θ3∗I∗C)

P + θc ∗ P where I , C , and P
refer to input cardinality, cardinality and partition count re-
spectively. During optimization, we know I ,C , I∗C , therefore:
cost ∝ θP

P + θc ∗ P . Extending the above relationship across

all operators (say n in number) in a stage, the relationship
can be modeled as: cost ∝

∑n
i=1 θPi
P +

∑n
i=1 θCi ∗ P

Thus, during partition exploration, each operator calcu-
lates θP and θC and adds them to resource-context, and the
partitioning operator selects the optimal partition count by
optimizing the above function. There are three possible sce-
narios: (i)

∑n
i=1 θPi is positive while

∑n
i=1 θCi is negative: we

can have the maximum number of partitions for the stage
since there is no overhead of increasing the number of par-
titions, (ii)

∑n
i=1 θPi is negative while

∑n
i=1 θCi is positive:

we set the partition count to minimum as increasing the
partition count increases the cost, (iii)

∑n
i=1 θPi and

∑n
i=1 θCi

are either both positive or both negative: we can derive the
optimal partition count by differentiating the cost equation
with respect to P. Overall, form physical operator, and the
maximum possible partition count of Pmax , the analytical
model makes 5 ·m ·loд s+1

s
Pmax cost model look-ups. Figure 8c

shows the number of model look-ups for sampling and an-
alytical approaches as we increase the number of physical
operators from 1 to 40 in a plan. While the analytical model
incurs a maximum of 200 look-ups, the sampling approach
can incur several thousands depending on the skipping co-
efficients. In section 6.5, we further analyze the accuracy
of the sampling strategy with the analytical model on the
production workload as we vary the sample size. Our results
show that the analytical model is at least 20 × more efficient
than the sampling approach for achieving the same accuracy.
Thus, we use the analytical model as our default partition
exploration strategy.

6 EXPERIMENTS
In this section, we present an evaluation of our learned op-
timizer Cleo. For fairness, we feed the same statistics (e.g.,
cardinality, average row length) to learned models that are
used by the SCOPE default cost model. Our goals are five fold:
(i) to compare the prediction accuracy of our learned cost
models over all jobs as well as over only ad-hoc jobs across
multiple clusters, (ii) to test the coverage and accuracy of
learned cost models over varying test windows, (iii) to com-
pare the Cleo cost estimates with those from CardLearner,
(iv) to explore why perfect cardinality estimates are not suffi-
cient for query optimization, (iv) to evaluate the effectiveness
of sampling strategies and the analytical approach proposed
in Section 5.2 in finding the optimal resource (i.e., partition
count), and (v) to analyze the performance of plans produced
by Cleo with those generated from the default optimizer
in Cleo using both the production workloads and the TPC-
H benchmark (v) to understand the training and runtime
overheads when using learned cost models.
Workload. As summarized in Figure 9, we consider a large
workload trace from 4 different production clusters compris-
ing of 423 virtual clusters, with each virtual cluster roughly
representing a business unit within Microsoft, and consist-
ing a total of ≈ 0.5 million jobs over 3 days, that ran with a
total processing time of ≈ 6 million hours, and use a total of
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Figure 10: Illustrating workload changes over different clusters and different days.
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Figure 11: Cross-validation results of ML algorithms for each learned model on Cluster 4 workload
All jobs Ad-hoc jobs

Correlation Median Error 95%tile Error Coverage Correlation Median Error 95%tile Error Coverage
Default 0.12 182% 12512% 100% 0.09 204% 17791% 100%
Op-Subgraph 0.86 9% 56% 65% 0.81 14% 57% 36%
Op-Subgraph Approx 0.85 12 % 71% 82% 0.80 16 % 79% 64%
Op-Input 0.81 23% 90% 91% 0.77 26% 103% 79%
Operator 0.76 33% 138% 100% 0.73 42% 186% 100%
Combined 0.79 21% 112% 100% 0.73 29% 134% 100%

Table 7: Breakdown of accuracy and coverage of each learned model for all jobs and ad-hoc jobs separately on Cluster1.

Cluster Default (all jobs) Learned (all jobs) Learned (ad-hoc jobs)
Correlation Median

Accuracy
Correlation Median

Accuracy
Correlation Median

Accuracy
Cluster 1 0.12 182% 0.79 21% 0.73 29%
Cluster 2 0.08 256% 0.77 33% 0.75 40%
Cluster 3 0.15 165% 0.83 26% 0.81 38%
Cluster 4 0.05 153% 0.74 15% 0.72 26%
Table 8: Pearsion Correlation and Median accuracy of de-
fault and combined learned model over all jobs and ad-hoc
jobs on each cluster.

≈ 1.4 billion containers. The workload exhibits variations
in terms of the load (e.g., more than 3× jobs on Cluster1
compared to Cluster4), as well as in terms of job properties
such as average number of operators per job (50s in Cluster1
compared to 30s in Cluster4) and the average total processing
time of all containers per job (around 17 hours in Cluster1
compared to around 5 hours in Cluster4). The workload also
varies across days from a 30% decrease to a 20% increase of
different job characteristics on different clusters(Figure 10).
Finally, the workload consists of a mix of both recurring and
ad-hoc jobs, with about 7% − 20% ad-hoc jobs on different
clusters and different days.

6.1 Cross Validation of ML Models
We first compare default cost model with the five machine
learning algorithms discussed in Section 3.4. (i) Elastic net,
a regularized linear-regression model, (ii) DecisionTree Re-
gressor, (iii) Random Forest, (iv) Gradient Boosting Tree, and
(v) Multilayer Perceptron Regressor (MLP). Figure 11 (a to

d) depicts the 5-fold cross-validation results for the ML al-
gorithms for operator-subgraph, operator-input, operator,
and combined models respectively. We skip the results for
operator-subgraphApprox as it has similar results to that of
operator-input. We observe that all algorithms result in bet-
ter accuracy compared to the default cost model for each of
the models. For operator-subgraph and operator-input mod-
els, the performance of most of the algorithms (except the
neural network) is highly accurate. This is because there are
a large number of specialized models, highly optimized for
specific sub-graph and input instances respectively. The accu-
racy degrades as the heterogeneity of model increases from
operator-subgraph to operator-input to operator. For individ-
ual models, the performances of elastic-net and decision-tree
are similar or better than complex models such as neural
network and ensemble models. This is because the complex
models are more prone to overfitting and noise as discussed
in Section 3.4. For the combined model, the FastTree Regres-
sion does better than other models because of its ability to
better characterize the space where each model performs
well. The operator-subgraph and operator-input models have
the highest accuracy (at between 45% to 85% coverage), fol-
lowed by the combined model (at 100% coverage) and then
the operator model (at 100% coverage).
6.2 Accuracy
Next, we first compare the accuracy and correlation of learned
models to that of the default cost model for each of the clus-
ters. We use the elastic net model for individual learned
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Figure 12: Accuracy results on all jobs (recurring + ad-hoc) over four different clusters
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Figure 13: Accuracy results on only ad-hoc jobs over four different clusters.

model and the Fast-Tree regression for the combined model.
We learn the models on day 1 and day 2, and predict on day
3 of the workload as described in Section 5.1. Table 8 shows
the Pearson correlation and median accuracy of default cost
model and the combined model for all jobs and only ad-hoc
jobs separately for each of the clusters on day 3. We further
show the breakdown of results for each of the individual
models on cluster 1 jobs in Table 7. Figure 12 and Figure 13
show the CDF distribution for estimated vs actual ratio of
predicted costs for each of the learned models over different
clusters.
All jobs.We observe that learned models result between 8×
to 10× better accuracy and between 6× to 14× better correla-
tion compared to the default cost model across the 4 clusters.
For operator-subgraph, the performance is highly accurate
(9% median error and .86 correlation), but at lower coverage
of 65%. This is because there are a large number of specialized
models, highly optimized for specific sub-graph instances.
As the coverage increases from operator-subgraphApprox
to operator-input to operator, the accuracy decreases. Over-
all, the combined model is able to provide the best of both
worlds, i.e., accuracy close to those of individual models and
100% coverage like that of the operator model. The 50th and
the 95th percentile errors of the combined model are about
10× and 1000× better than the default SCOPE cost model.
These results show that it is possible to learn highly accurate
cost models from the query workload.
Only ad-hoc Jobs. Interestingly, the accuracy over ad-hoc
jobs drop slightly but it is still close to those over all jobs (Table 8
and Table 7). This is because: (i) ad-hoc jobs can still have
one or more similar subexpressions as other jobs (e.g., they
might be scanning and filtering the same input before doing
completely new aggregates), which helps them to leverage

the subgraph models learned from other jobs. This can be
seen in Table 7 — the sub-graph learned models still have
substantial coverage of subexpression on ad-hoc jobs. For
example, the coverage of 64% for Op-SubgraphApproxmodel
means that 64% of the sub-expressions on ad-hoc jobs had
matching Op-Subgraph Approx learned model. (ii) Both the
operator and the combined models are learned on a per-
operator basis, and have much lower error (42% and 29%)
than the default model (182%). This is because the query
processor, the operator implementations, etc. still remain the
same, and their behavior gets captured in the learned cost
models. Thus, even if there is no matching sub-expression
in ad-hoc jobs, the operator and the combined models still
result in better prediction accuracy.

6.3 Robustness
We now look at the robustness (as defined in Section 1) of
learned models in terms of accuracy, coverage, and retention
over a month long test window on cluster 1 workloads.
Coverage over varying test window. Figure 14a depicts
the coverage of different subgraph models as we vary the
test window over a duration of 1 month. The coverage of
per-operator and combined model is always 100% since there
is one model for every physical operator. The coverage of
per-subgraph models, strictest among all, is about 58% after
2 days, and decreases to 37% after 28 days. Similarly, the cov-
erage of per-subgraphApprox ranges between 75% and 60%.
The per-operator-input model, on the other hand remains
stable between 78% and 84%.
Error and correlation over varying test window. Fig-
ures 14b and 14c depict the median and 95%ile error per-
centages respectively over a duration of one month. While
the median error percentage of learned models improves
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Figure 14: Coverage and accuracy with respect to default optimizer over 1 month

on default cost model predictions by 3-15x, the 95%ile er-
ror percentage is better by over three orders of magnitude.
For specialized learned models, the error increases slowly
over the first two weeks and then grows much faster due to
decrease in the coverage. Moreover, the 95%ile error of the
subgraph models grows worse than their median error. Simi-
larly, in Figure 14d, we see that predicted costs from learned
models are much more correlated with the actual runtimes,
having high Pearson correlation (generally between 0.70 and
0.96), compared to default cost models that have a very small
correlation (around 0.1). A high correlation over a duration
month of 1 month shows that learned models can better dis-
criminate between two candidate physical operators. Overall,
based on these results, we believe re-training every 10 days
should be acceptable, with a median error of about 20%, 95%
error of about 200%, and Pearson correlation of around 0.80.
Robustness of the combined model. From Figure 14, we
note that the combined model (i) has 100% coverage, (ii)
matches the accuracy of best performing individual model
at any time (visually illustrated in Figure 7), while having a
high correlation (> 0.80) with actual runtimes, and (iii) gives
relatively stable performance with graceful degradation in
accuracy over longer run. Together, these results show that
the combined model in Cleo is indeed robust.

6.4 Impact of Cardinality
Comparison with Cardlearner. Next, we compare the ac-
curacy and the Pearson correlation of Cleo and the default
cost model with CardLearner [47], a learning-based cardinal-
ity estimation that employs a Poisson regression model to
improve the cardinality estimates, but uses the default cost
model to predict the cost. For comparison, we considered
jobs from a single virtual cluster from cluster 4, consisting of
about 900 jobs.WhileCleo and the default cost model use the
cardinality estimates from the SCOPE optimizer, we addition-
ally consider a variant (Cleo +CardLearner) whereCleo uses
the cardinality estimates from CardLearner. Overall, we ob-
serve that the median error of default cost with CardLearner
(211%) is better than that of default cost model alone (236%)
but much still worse than that of Cleo’s (18%) and Cleo +
CardLearner (13%). Figure 15 depicts the CDF of estimated
and actual costs ratio, wherewe can see that by learning costs,
Cleo significantly reduces both the under-estimation as well
as over-estimation, while CardLearner only marginally im-
proves the accuracy for both default cost model and Cleo.
Similarly, the Pearson correlation of CardLearner’s estimates
(.01) is much worse than that of Cleo’s (0.84) and Cleo +

CardLearner (0.86). These results are consistent with our
findings from Section 2 where we show that fixing the car-
dinality estimates is not sufficient for filling the wide gap
between the estimated and the actual costs in SCOPE-like
systems. Interestingly, we also observe that the Pearson cor-
relation of CardLearner is marginally less than that of the
default cost model (0.04) inspite of better accuracy, which can
happen when a model makes both over and under estimation
over different instances of the same operator.
Why cardinality alone is not sufficient? To understand
why fixing cardinality alone is not enough, we performed
the following two micro-experiments on a subset of jobs,
consisting of about 200 K subexpressions from cluster 4.
1. The need for a large number of features. First, start-
ing with perfect cardinality estimates (both input and output)
as only features, we fitted an elastic net model to find / tune
the best weights that lead to minimum cost estimation error
(using the loss function described in Section 3.4). Then, we
incrementally added more and more features and also com-
bined feature with previously selected features, retraining
the model with every addition. Figure 18 shows the decrease
in cost model error as we cumulatively add features from left
to right. We use the same notations for features as defined
in Table 2 and Table 3.

We make the following observations.
(1) When using only perfect cardinalities, the median error
is about 110%. However, when adding more features, we
observe that the error drops by more than half to about
40%. This is because of the more complex environments and
queries in big data processing that are very hard to cost with
just the cardinalities (as also discussed in Section 2.3).
(2) Deriving additional statistics by transforming (e.g., sqrt,
log, squares) input and output cardinalities along with other
features helps in reducing the error. However, it is hard to
arrive at these transformations in hand coded cost models.
(3) We also see that features such as parameter (PM), input
(IN), and partitions (P) are quite important, leading to sharp
drops in error. While partition count is good indicator of
degree of parallelism (DOP) and hence the runtime of job;
unfortunately query optimizers typically use a fixed partition
count for estimating cost as discussed in Section 5.2.
(4) Finally, there is a pervasive use of unstructured data
(with schema imposed at runtime) as well as custom user
code (e.g., UDFs) that embed arbitrary application logic in
big data applications. It is hard to come up with generic
heuristics, using just the cardinality, that effectively model
the runtime behavior of all possible inputs and UDFs.
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2. Varying optimal weights.We now compare the optimal
weights of features of physical operators when they occur in
different kinds of sub-expressions. We consider the popular
hash join operator and identified two sets of sub-expressions
in the same sample dataset: (i) hash join appears on top of
two scan operators, and (ii) hash join appears on top of two
other join operators, which in turn read from two scans.
Figure 16 shows the weights of the top 10 features of

the hash join cost model for the two sets. We see that the
partition count is more influential for set 2 compared to set 1.
This is because there is more network transfer of data in set 2
than in set 1 because of two extra joins. Setting the partition
count that leads to minimum network transfer is therefore
important. On the other hand, for jobs in set 1, we notice that
hash join typically sets the partition count to the same value
as that of inputs, since that minimizes repartitioning. Thus,
partition count is less important in set 1. To summarize, even
when cardinality is present as a raw or derived feature, its
relative importance is instance specific (heavily influenced
by the partitioning and the number of machines) and hard
to capture in a static cost model.

6.5 Efficacy of Partition Exploration
In this section, we explore the effectiveness of partition ex-
ploration strategies proposed in Section 5.2 in selecting the
partition count that leads to lowest cost for learned models.
We used a subset of 200 sub-expression instances from the
production workload from cluster 1, and exhaustively probe
the learned models for all partition counts from 0 to 3000
(the maximum capacity of machines on a virtual cluster) to
find the most optimal cost. Figure 17 depicts the median er-
ror in cost accuracy with respect to the optimal cost for (i)
three sampling strategies: random, uniform, and geometric
as we vary the number of samples of partition counts (ii)
the analytical model (dotted blue line) that selects a single
partition count.

We note that the analytical model, although approximate,
gives more accurate results compared to sampling-based ap-
proaches until the sample size of about 15 to 20, thereby re-
quiring much fewer model invocations. Further, for a sample
size between 4 to 20, we see that the geometrically increasing
sampling strategy leads to more accurate results compared
to uniform and random approaches. This is because it picks
more samples when the values are smaller, where costs tend
to change more strongly compared to higher values. During
query optimization, each sample leads to five learned cost
model predictions, four for individual models and one for the
combined model. Thus, for a typical plan in big data system
that consists of 10 operators, the sampling approach requires
20 ∗ 5 ∗ 10 = 1000 model invocations, while the analytical
approach requires only 5 ∗ 10 = 50 invocations for achieving
the same accuracy. This shows that the analytical approach is
practically more effective when we consider both efficiency
and accuracy together. Hence, Cleo uses the analytical ap-
proach as the default partition exploration strategy.

6.6 Performance
We split the performance evaluation of Cleo into three parts:
(i) the runtime performance over production workloads, (ii) a
case-study on the TPC-H benchmark [38], explaining in de-
tail the plan changes caused by the learned cost models,
and (iii) the overheads incurred due to the learned models.
For these evaluations, we deployed a new version of the
SCOPE runtime with Cleo optimizer (i.e., SCOPE+Cleo) on
the production clusters and compared the performance of
this runtime with the default production SCOPE runtime.
We used the analytical approach for partition exploration.

6.6.1 Production workload. Since production resources
are expensive, we selected a subset of the jobs, similar to prior
work on big data systems [47], as follows.We first recompiled
all the jobs from a single virtual cluster from cluster 4 with
Cleo and found that 182 (22%) out of 845 jobs had plan
changes when partition exploration was turned off, while
322 (39%) had plan changes when we also applied partition
exploration. For execution, we selected jobs that had at least
one change in physical operator implementations, e.g, for
aggregation (hash vs stream grouping), join (hash vs merge),
addition or removal of grouping, sort or exchange operators.
We picked 17 such jobs and executed them with and without
Cleo over the same production data, while redirecting the
output to a dummy location, similar to prior work [1].
Figure 19a shows the end-to-end latency for each of the

jobs, compared to their latency when using the default cost
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Figure 19: Performance comparison on production jobs with changed plans

model. We see that the learned cost models improve latency
in 70% (12 jobs) cases, while they degrade latency in the re-
maining 30% cases. Overall, the average improvement across
all jobs is 15.35%, while the cumulative latency of all jobs
improves by 21.3%. Interestingly, Cleo was able to improve
the end-to-end latency for 10 out of 12 jobs with less degree
of parallelism (i.e., the number of partitions). This is in con-
trary to the typical strategy of scaling out the processing
by increasing the degree of parallelism, which does not al-
ways help. Instead, resource-awareness plan selection can
reveal more optimal combinations of plan and resources. To
understand the impact on resource consumption, Figure 19b
shows the total processing time (CPU hours). Learned cost
models reduce the Overall, we see the total processing time
reducing by 32.2% on average and 40.4% cumulatively across
all 17 jobs— a significant operational cost saving in big data
computing environments.
Thus, the learned cost models could reduce the overall

costs while still improving latencies in most cases. Below, we
dig deeper into the plans changes using the TPC-H workload.

6.6.2 TPC-Hworkload. Wegenerated TPC-H dataset with
a scale factor of 1000, i.e., total input of 1TB. We ran all 22
queries 10 times, each time with randomly chosen different
parameters, to generate the training dataset. We then trained
our cost models on this workload and feedback the learned
models to re-run all 22 queries. We compare the performance
with- and without the feedback as depicted in Figure 20 . For
each observation, we take the average of 3 runs. Overall,
6 TPC-H queries had plan changes when using resource-
aware cost model. Out of these, 4 changes (Q8, Q9, Q16, Q20)
improve latency as well as total processing time, 1 change
improves only the latency (Q11), and 1 change (Q17) leads
to performance regression in both. We next discuss the key
changes observed in the plans.
1. More optimal partitioning. In Q8, for Part (100 partitions)
Zpar tKey Lineitem (200 partitions) and in Q9 for Part (100
partitions)Zpar tKey (LineitemZ Supplier) (250 partitions),
the default optimizer performs the merge join over 250 par-
titions, thereby re-partitioning both Part and the other join
input into 250 partitions over the Partkey column. Learned
cost models, on other hand, perform the merge join over 100
partitions, which requires re-partitioning only the other join
inputs and not the Part table. Furthermore, re-partitioning
200 or 250 partitions into 100 partitions is cheaper, since it in-
volves partial merge [10], compared to re-partitioning them
into 250 partitions. InQ16, for the final aggregation and top-k

selection, both the learned and the default optimizer reparti-
tion the 250 partitions from the previous operator’s output
on the final aggregation key. While the default optimizer
re-partitions into 128 partitions, the learned cost models pick
100 partitions. The aggregation cost has almost negligible
change due to change in partition counts. However, reparti-
tioning from 250 to 100 turns out to be substantially faster
than re-partitioning from 250 to 128 partitions.
2. Skipping exchange (shuffe) operators. In Q8, for Part (100
partitions) Zpar tKey Lineitem (200 partitions), the learned
cost model performs join over 100 partitions and thus it
skips the costly Exchange operator over the Part table. On
the other hand, the default optimizer creates two Exchange
operator for partitioning each input into 250 partitions.
3. More optimal physical operator: For both Q8 and Q20,
the learned cost model performs join between Nations and
Supplier using merge join instead of hash join (chosen by
default optimizer). This results in an improvement of 10%
to 15% in the end-to-end latency, and 5% to 8% in the total
processing time (cpu hours).
4. Regression due to partial aggregation. For Q17, the learned
cost models add local aggregation before the global one to
reduce data transfer. However, this degrades the latency by
10% and total processing time by 25% as it does not help in
reducing data. Currently, learned models do not learn from
their own execution traces. We believe that doing so can
potentially resolve some of the regressions.

6.6.3 Training and Runtime Overheads. We now describe
the training and run-time overheads of Cleo. It takes less
than 1 hour to analyze and learn models for a cluster run-
ning about 800 jobs a day, and less than 4 hours for training
over 50K jobs instances at Microsoft. We use a parallel model
trainer that leverages SCOPE to train and validate models
independently and in parallel, which significantly speeds up
the training process. For a single cluster of about 800 jobs,
Cleo learns about 23K models which when simultaneously
loaded takes about 600 MB of memory. About 80% of the
memory is taken by the individual models while the remain-
ing is used by the combined model. The additional memory
usage is not an issue for big data environments, where an
optimizer can typically have 100s of GBs of memory. Finally,
we saw between 5-10% increase in the optimization time for
most of the jobs when using learned cost models, which in-
volves the overhead of signature computation of sub-graph
models, invoking learned models, as well as any changes in
plan exploration strategy due to learned models. Figure 19c
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depicts the overhead in the optimization time for each of
the 17 production jobs we executed. Since the optimization
time is often in orders of few hundreds of milliseconds, the
overhead incurred here is negligible compared to the over-
all compilation time (orders of seconds) of jobs in big data
systems as well as the potential gains we can achieve in the
end-to-end latency (orders of 10s of minutes).

6.7 Discussion
We see that it is possible to learn accurate yet robust cost
models from cloud workloads. Given the complexities and
variance in the modern cloud environments, the model ac-
curacies in Cleo are not perfect. Yet, they offer two to three
orders of magnitude more accuracy and improvement in
correlation from less than 0.1 to greater than 0.7 over the
current state-of-the-art. The combined meta model further
helps to achieve full workload coverage without sacrificing
accuracy significantly. In fact, the combined model consis-
tently retains the accuracy over a longer duration of time.
While the accuracy and robustness gains from Cleo are ob-
vious, the latency implications are more nuanced. These are
often due to various plan explorations made to work with
the current cost models. For instance, SCOPE jobs tend to
over-partition at the leaf levels and leverage the massive
scale-out possible for improving latency of jobs.
There are several ways to address performance regres-

sions in production workloads. One option is to revisit the
search and pruning strategies for plan exploration [21] in
the light of newer learned cost models. For instance, one
problem we see is that current pruning strategies may some-
times skip operators without invoking their learned models.
Additionally, we can also configure optimizer to not invoke
learned models for specific operators or jobs. Another im-
provement is to optimize a query twice (each taking only few
orders of milliseconds), with and without Cleo, and select
the plan with the better overall latency, as predicted using
learned models since they are highly accurate and correlated
to the runtime latency. We can also monitor the performance
of jobs in pre-production environment and isolate models
that lead to performance regression (or poor latency predic-
tions), and discard them from the feedback. This is possible
since we do not learn a single global model in the first place.
Furthermore, since learning cost models and feeding them
back is a continuous process, regression causing models can
self-correct by learning from future executions. Finally, re-
gressions for a few queries is not really a problem for ad-hoc

workloads, since majority of the queries improve their la-
tency anyways and reducing the overall processing time (and
hence operational costs) is generally more important.
Finally, in this paper, we focused on the traditional use-

case of a cost model for picking the physical query plan.
However, several other cost model use-cases are relevant in
cloud environments, where accuracy of predicted costs is
crucial. Examples include performance prediction [39], allo-
cating resources to queries [25], estimating task runtimes for
scheduling [6], estimating the progress of a query especially
in server-less query processors [29], and running what-if
analysis for physical design selection [12]. Exploring these
would be a part of future work. Examples include perfor-
mance prediction [39], allocating resources to queries [25],
estimating task runtimes for scheduling [6], estimating the
progress of a query especially in server-less query proces-
sors [29], and running what-if analysis for physical design
selection [12]. Exploring these would be a part of future
work.

7 RELATEDWORK
Machine learning has been used for estimating the query exe-
cution time of a given physical plan in centralized databases [2,
19, 32]. In particular, the operator and sub-plan-level mod-
els in [2] share similarities with our operator and operator-
subgraphmodel. However, we discovered the coverage-accuracy
gap between the two models to be substantially large. To
bridge this gap, we proposed additional mutually enhancing
models and then combined the predictions of these individual
models to achieve the best of accuracy and coverage. There
are other works on query progress indicators [13, 34] that
use the run time statistics from the currently running query
to tell how much percentage of the work has been completed
for the query. Our approach, in contrast, uses compile time
features to make the prediction before the execution starts.
Cardinality is a key input to cost estimation and several

learning and feedback-driven approaches [1, 44, 47]. How-
ever, these works have either focused only on recurring or
strict subgraphs [1, 47], or learn only the ratio between the
actual and predicted cardinality [44] that can go wrong in
many situations, e.g., partial coverage results in erroneous es-
timates due to mixing of disparate models. Most importantly,
as we discuss in Section 2, fixing cardinalities alone do not
always lead to accurate costs in big data systems. There are
other factors such as resources (e.g., partitions) consumed,
operator implementations (e.g., custom operators), and hard-
ware characteristics (e.g., parallel distributed environment)
that could determine cost. In contrast to cardinality models,
Cleo introduces novel learning techniques (e.g., multiple
models, coupled with an ensemble) and extensions to opti-
mizer to robustly model cost. That said, cardinality is still
an important feature (see Figure 5), and is also key to de-
ciding partition counts, memory allocation at runtime, as
well as for speculative execution in the job manager. A more
detailed study on cardinality estimates in big data systems
is an interesting avenue for future work.



Several works find the optimal resources given a physical
query execution plan [3, 39, 45]. They either train a perfor-
mancemodel or apply non-parametric Bayesian optimization
techniques with a few sample runs to find the optimal re-
source configuration. However, the optimal execution plan
may itself depend on the resources, and therefore in this
work, we jointly find the optimal cost and resources. Never-
theless, the ideas from resource optimization work can be
leveraged in our system to reduce the search space, especially
if we consider multiple hardware types.
Generating efficient combination of query plans and re-

sources are also relevant to the new breed of serverless com-
puting, where users are not required to provision resources
explicitly and they are billed based on usage [43]. For big
data queries, this means that the optimizer needs to accu-
rately estimate the cost of queries for given resources and
explore different resource combinations so that users do not
end up over-paying for their queries.

Finally, several recent works apply machine learning tech-
niques to improve different components of a data system [27,
35]. The most prominent being learned indexes [28], which
overfits a given stored data to a learned model that provides
faster lookup as well as smaller storage footprint. [35] takes
a more disruptive approach, where the vision is to replace
the traditional query optimizers with one built using neural
networks. In contrast, our focus in this paper is on improv-
ing the cost-estimation of operators in big data systems and
our goal is to integrate learned models into existing query
optimizers in a minimally invasive manner.
8 CONCLUSION
Accurate cost prediction is critical for resource efficiency in
big data systems. At the same time, modeling query costs is
incredibly hard in these systems. In this paper, we present
techniques to learn cost models from the massive cloud work-
loads. We recognize that cloud workloads are highly hetero-
geneous in nature and no one model fits all. Instead, we lever-
age the common subexpression patterns in the workload
and learn specialized models for each pattern. We further
describe the accuracy and coverage trade-off of these special-
ized models and present additional mutual enhancing models
to bridge the gap. We combine the predictions from all of
these individual models into a robust model that provides the
best of both accuracy and coverage over a sufficiently long
period of time. A key part of our contribution is to integrate
the learned cost models with existing query optimization
frameworks. We present details on integration with SCOPE,
a Cascade style query optimizer, and show how the learned
models could be used to efficiently find both the query and re-
source optimal plans. Overall, applying machine learning to
systems is an active area of research, and this paper presents
a practical approach for doing so deep within the core of a
query processing system.
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