
T-REx: Table Repair Explanations

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Nave Frost
Tel Aviv University

navefrost@mail.tau.ac.il

Amir Gilad
Tel Aviv University

amirgilad@mail.tau.ac.il

Oren Sheffer
Tel Aviv University

orensheffer@mail.tau.ac.il

Abstract

Data repair is a common and crucial step in many
frameworks today, as applications may use data from
different sources and of different levels of credibil-
ity. Thus, this step has been the focus of many
works, proposing diverse approaches. To assist users
in understanding the output of such data repair al-
gorithms, we propose T-REx, a system for providing
data repair explanations through Shapley values. The
system is generic and not specific to a given repair
algorithm or approach: it treats the algorithm as a
black box. Given a specific table cell selected by the
user, T-REx employs Shapley values to explain the
significance of each constraint and each table cell in
the repair of the cell of interest. T-REx then ranks
the constraints and table cells according to their im-
portance in the repair of this cell. This explanation
allows users to understand the repair process, as well
as to act based on this knowledge, to modify the most
influencing constraints or the original database.

1 Introduction

Multiple previous works have proposed algorithms
for data repair using Denial Constraints (DCs) [2] or
subsets thereof [5, 8, 3, 1]. These approaches em-
ploy algorithms that use the constraints to detect
and change values in a database table. We propose a
system that provides explanations for data repairs by
presenting the influence of each constraint and table
cell. An explanation for such a repair may be useful
both as means of understanding the repair process
and algorithm, and as a tool for debugging the qual-

ity of the constraints for the repair of this specific
data.

T-REx1 is a novel system for data repair explana-
tions based on Shapley values [6]. The notion of Shap-
ley values was originally suggested in the context of
Game Theory as a measure of quantifying the contri-
bution of each player in a cooperative game. It was
later adopted by the Machine Learning (ML) commu-
nity as a tool for evaluating the contribution of each
feature in the model [4]. Given a repaired cell, T-REx
computes and presents the Shapley values of the DCs
and table cells that have influenced this repair. Our
approach evaluates the contribution of the input di-
rectly rather than the contribution of hidden features
which are used by a specific algorithm. This allows
our solution to treat the repair algorithm as a black
box and only query it to compute the Shapley values of
DCs and cells. Explanations for the influence of DCs
on the repair may assist users in correcting them and
adapting them to the specific data and repair algo-
rithm, while explanations about the influence of data
cells can help in understanding the repair algorithm
itself and changing specific cells to make the repair
more accurate.

Example 1.1 Consider the table in Figure 2a and
the DCs in Figure 1 with the Shapley values of each
DC on its left. C1 says that two tuples that share a
team value must be in the same city, C2 says that
if a pair of tuples share a city, they must have the
same country, C3 says that two tuples that have the
same league must have the same country, and C4
says that it is impossible for two different teams of

1Please refer to the video of the system at https: // youtu.
be/ xPVWzHPOuAk

1

ar
X

iv
:2

00
7.

04
45

0v
1

 [
cs

.D
B

]
 8

 J
ul

 2
02

0

https://youtu.be/xPVWzHPOuAk
https://youtu.be/xPVWzHPOuAk

1
6 : (C1) ∀t1, t2. ¬(t1[Team] = t2[Team] ∧ t1[City] 6= t2[City])
1
6 : (C2)

∀t1, t2. ¬(t1[City] = t2[City] ∧ t1[Country] 6= t2[Country])

2
3 : (C3) ∀t1, t2. ¬(t1[League] = t2[League]∧

t1[Country] 6= t2[Country])
0 : (C4)

∀t1, t2. ¬(t1[Team] 6= t1[Team] ∧ t1[Y ear] = t1[Y ear]∧
t1[League] = t2[League] ∧ t1[Place] = t2[Place])

Figure 1: Denial constraints with their Shapley value

Algorithm 1: Simple Repair Algorithm

Input : Set of constraints C, a dirty database table
T d

1. If tuple t has a contradiction according to C1 then
the City attribute will be modified to the most
common one, i.e., arg maxc P [City = c].

2. If tuple t has a contradiction according to C2 then
the Country attribute will be modified to the most
probable one given t [City]. i.e.,
arg maxc P [Country = c | City = t [City]].

3. If tuple t has a contradiction according to C3 then
the Country attribute will be modified to the most
common one, i.e., arg maxc P [Country = c].

4. If tuple t has a contradiction according to C4 then
the Place attribute will be modified to the most
probable one given t [Team], i.e.,
arg maxp P [Place = p | Team = t [Team]].

the same league to finish in the same place in the
same year. Consider the cell Country in the fifth
row, denoted by t5[Country]. For simplicity, assume
that we have Algorithm 1 as a näive repair algo-
rithm2. T-REx computes the contribution of each DC
and ranks them accordingly, where C3 is the most in-
fluential DC. It contributed the most as the League
value “La Liga” appears in 3 other tuples coupled with
the value “Spain” in the attribute Country. C1 and
C2 each contributed equally as C1 caused the change
of “Capital” to “Madrid” first and then C2 caused
the change of the value in the Country cell. C4 is
not involved in the repair so its contribution is 0.

Next, we measure the influence of different data

2In practice, the repair algorithm may be more sophisti-
cated; our solution is agnostic to the complexity of the repair
algorithm.

cells on this repair. Given Algorithm 1, observe that
the value of t1[Place] has no influence on the mod-
ification of t5[Country] – as t1 has no contradic-
tions with t5, and the attribute Place does not affect
Country in Algorithm 1. However, how can we deter-
mine if t5[League] was more or less influential on the
repair compared to t6[City]? Intuitively, t5[League]
is more influential than t6[City]. This is because if
t5[League] had a different value, then tuple t5 would
not have any contradictions according to C3. While
if t6[City] had a different value, then according to C1
there would have been a contradiction between t3 and
t6 (as both tuples would have Team value of “Real
Madrid”, and an inconsistent City) which would have
been resolved by Algorithm 1. As a result T-REx will
assign higher contribution to t5[League] compared to
t6[City].

T-REx takes as input the algorithm itself and its
input which is a set of DCs and a dirty database ta-
ble. Another input to the system is a specific table
cell of interest whose repair requires explaining. The
system then ranks the influencing DCs and table cells
based on their Shapley value for this cell of interest.
Generally, computing the Shapley value is exponen-
tial time in the number of DCs/table cells, and thus
T-REx employs different algorithms to compute the
Shapley value for DCs and for table cells. With DCs,
the näive approach is feasible as the number of DCs
is usually small. Conversely, the number of cells in
a table can be very large, so T-REx uses a sampling
algorithm based on [7]. To compute the Shapley val-
ues, the system repeatedly changes the input of the
repair algorithm and queries it, so it does not rely on
the components or approach of a specific algorithm.

2 Technical Details

We give a short overview of the approach underlying
T-REx.

2.1 Database Repair

T will denote a database table with schema
(A1, . . . , Am) where Ai is the ith attribute of T . For

2

(a) Dirty table (red cells are dirty) (b) Clean table (blue cells have been repaired)
Figure 2: Input dirty table and output clean table for La Liga standings

a tuple t ∈ T , the notation t[Ai] = v means that t
has the value v in attribute Ai. We denote by T d and
T c the database table prior to the repair and after it
respectively. Extending this, td[A] and tc[A] will also
be used to denote a dirty and clean cell, respectively.

Example 2.1 Consider the dirty and clean tables
shown in Figures 2a, 2b, referred to as T c and T d.
If we consider t5 in both tables, then the attribute
td5[Country] in T d is changed in T c from the value
“España” to “Spain”.

We denote the repair algorithm by Alg and its in-
put by (1) C, a set of DCs and (2) T d, a dirty ta-
ble. Also, denote Alg(C, T d) = T c as the output
table of Alg. For our purposes, we will refer to
Alg as a binary function as follows. Given a table
cell td[A] ∈ T d, the repair algorithm is a function
Alg|td[A] : (C, T d) → {0, 1}, where 1 signals that the

value in td[A] is repaired to the value in tc[A], and 0
otherwise.

Example 2.2 Consider the cell t5[City] in Fig-
ures 2a and 2b. Without C1 it would not
have changed from “Capital” to “Madrid”, there-
fore: Alg|t5[C]({C1, C2, C3}, T d) = 1 while

Alg|t5[C]({C2, C3}, T d) = 0.

2.2 Shapley Value

In Cooperative Game Theory, Shapley value [6] is
a way to distribute the worth of all players, assum-
ing they cooperate. Let N be a finite set of players
and v : 2N → R, v(∅) = 0 be a function (called a
characteristic function). v maps sets of players to
the joint worth they generate according to the game.
The Shapley value of a player a is then defined as:

Shap(N, v, a) =
∑

S⊆N\{a}

|S|!(|N | − |S| − 1)!

|N |!
· (v(S ∪ {a})− v(S))

In our scenario, the model is a black box so the Shap-
ley values are computed on the input itself, i.e., the
constraints and the table. For constraints, we adapt
the definition so that it reflects the contribution of a
specific constraint to the repair of a cell, as follows.

Shap(C, Alg|
td[A]

, C) =
∑

S ⊆ C \ {C}

|S|!(|C| − |S| − 1)!

|C|!
· (Alg|

td[A]
(S ∪ {C}, Td

)−

Alg|
td[A]

(S, T
d
))

Where td[A] is a specific cell of interest and C is a
constraint whose contribution we want to determine.
The “set of players” is the set of DCs while the table
T d remains constant.

Example 2.3 Recall the tables in Figure 2 with the
DCs in Figure 1 (Shapley values are on the left) and
Algorithm 1. We now compute the contribution of
each DC to the repair of the cell t5[Country], de-
noted t5[C]. Algorithm 1 will repair t5[C] only if
we have the DCs {C1, C2}, or {C3}. According to
the definition, we can compute the contribution of
C1 as follows: there are 8 subset of {C2, C3, C4},
and only for S = {C2} and S = {C2, C4} we have
Alg|t5[C](S ∪{C1}, T d) = 1 and Alg|t5[C](S, T

d) = 0,

so Shapley(C, T d, C1) = 2
12 . The same computation

applies to C2. For C3 we have 6 out of 8 subsets S of
{C1, C2, C4} that result in Alg|t5[C](S∪{C3}, T d) =

1 and Alg|t5[C](S, T
d) = 0, including S = ∅. Thus,

Shapley(C, T d, C3) = 2
3 . As for C4, its presence

or absence does not change the value of t5[C], so
Shapley(C, T d, C4) = 0.

Let us explain the intuition for the value of C3 be-
ing double that of the pair {C1, C2}. Ignore for now

3

C4 since its contribution is 0. There are 5 subsets
of the DCs {C1, C2, C3} for which we repair t5[C].
These are {C3}, {C1, C2}, {C1, C3}, {C2, C3}, and
{C1, C2, C3}. Four of these sets contain C3 while
only two contain the pair {C1, C2} (for the subsets
where one of these is present without its partner, the
repair is due to C3), thus, the contribution of C1 and
C2, as a pair, is half that of C3.

Similarly, we adjust the definition for the Shapley
value of a cell. Given a repair of cell td[A] we define
the formula for calculating the Shapley value of a cell
ti[B], or intuitively, its contribution to the repair of
td[A].

Shap(D,Alg|
td[A]

, ti[B]) =
∑

S ⊆ Td \ {ti[B]}

|S|!(|Td| − |S| − 1)!

|Td|!
·

(Alg|
td[A]

(C, S ∪ {ti[B]})− Alg|
td[A]

(C, S))

Where S ⊆ T d means ∀tj [C] ∈ T d \ S. tj [C] =
null. Here, the “set of players” here is the set of cells
in the table T d while the set of constraints remains
constant.

Example 2.4 Reconsider our example with the DCs
from Figure 1, Algorithm 1, and the tables in Fig-
ure 2. Consider the cell t5[Country] whose value is
changed from “España” to “Spain”. Among all the
cells, t5[League] has the highest Shapley value, next
we will explain why. Notice that based on C3 the in-
clusion of t5[League] to any coalition that contains
at least one of the pairs {ti[Country], ti[League]}
for any i ∈ {1, 2, 3, 6} would result in the repair
of t5[Country] to “Spain”. Observe that there are
175 · 227 such coalitions (since out of the relevant
8 cells there are 28 − 34 = 175 options to choose a
coalition such that at least one pair exists, and ex-
cluding those cells and t5[League] there are 27 re-
maining cells that can be either included or excluded
from the coalition). Next, we will estimate the num-
ber of coalitions that are required for the fix based on
C1 and C2. According to these DCs, a coalition that
contains {t3[Team], t3[City], t3[Country], t5[Team]}
is required. There are 232 such coalitions. Since
175 · 227 is more than five times larger than 232

we conclude that t5[League] has the highest influ-
ence on the repair of t5[Country] from “España” to

“Spain”. For simplicity we overlooked the coalitions
sizes, though they too play a role in the evaluation of
Shapley values.

2.3 Computing Shapley Values

Shapley values can be computed from the definition,
but the computation time may be exponential. For
constraints, we can use the formula directly as their
number is typically small. However, the number of
table cells can be huge. Therefore, we use a novel
algorithm based on probabilistic sampling [7] to ap-
proximate the contribution of a table cell.

Example 2.5 Reconsider the table in Figure 2a.
Suppose we are interested in the effect of the cell
t5[City] on the repair of the cell t5[Country]. We ini-
tialize a variable ϕ = 0. We vectorize the table to get
the vector xT = (t1[Team], t1[City], . . . , t2[Team],
. . . , t6[Place]). To sample a cell coalition, we take a
random permutation of xT – the coalition is the set
of all of the cells that precede t5[City]. Values of
cells that are not part of the coalition will be replaced
with a sample value from their column distribution.
Once the cell coalition was formed we generate two
instances of vectorized tables: one with the original
value of t5[City], and the second where the t5[City]
value is replaced with random value. We then com-
pute the difference in the result of Alg|t5[Country] for
these two instances and add it to ϕ. We repeat this
m times and output ϕ

m .

3 System Overview

T-REx is implemented in Python 3.6 and an un-
derlying database engine in PostgreSQL 10.6. Its
web-based GUI was built using JavaScript, CSS and
HTML. The three screens of the system are shown
in Figure 3 and the general architecture of T-REx is
shown in Figure 4. Users first input a database ta-
ble and a set of DCs to the HoloClean system (Fig-
ure 3a and the arrow 1 in Figure 4). HoloClean [5]
is a holistic data repair system, that supports DCs,
among other forms of constraints, and repairs the in-
put table based on a probabilistic model involving

4

(a) Input Screen (b) Repair Screen (c) Explanation Screen
Figure 3: T-REx User Interface

Figure 4: T-REx Architecture

machine learning techniques. After clicking the “Re-
pair” button, users are presented with the repaired
table, where repaired cells are highlighted (Figure
3b). Furthermore, when hovering over a repaired cell,
the system shows its value before the repair. Now,
T-REx allows users to choose any cell, td[A], from
the original table, T d, whose value was changed, and
mark it as a cell of interest and click the “Explain”
button. The system then computes the Shapley val-
ues w.r.t. the chosen options by querying HoloClean

as part of the computation. Once done, T-REx dis-
plays the DCs and table cells ranked from highest
to lowest in terms of their Shapley value w.r.t. td[A],
where influencing DCs and cells are highlighted green
and the darker the color, the more influencing the
DC/cell is (Figure 3c). Again, when hovering over
the DCs/cells users can also see their Shapley val-
ues. The user can continue the process by changing
the DCs or values in T d, and inputting it again to
HoloClean to infer another repair, thus improving
the repair iteratively.

4 Demo Scenario

Our demonstration will show that explaining repairs
through Shapley values assists in understanding the
repair process and debugging it. We will use a soccer
database, scraped from Wikipedia, similarly to Fig-

ure 2a, and errors will be manually added into the
table. We will start with an initial set of DCs. To
get the repair, we will employ HoloClean that will
output a clean table. Then, we will indicate a re-
paired cell of interest and show the most influential
table cells and DCs involved in this repair, ranked
according to their Shapley value. We will show how
removing or changing the highest ranked DCs im-
proves the repair of the specified table cell. We will
use a similar scenario for table cells, where the DCs
will be appropriate but some of the cells will cause a
specific cell to be repaired in the wrong manner. Af-
ter showing the obtained repair, we will invoke T-REx
to rank the influencing table cells. We will then allow
users to change values in the initial table and the DCs
and choose different cells of interest to them. Users
could then use T-REx to compute the Shapley value
of the table cells and DCs that influenced the repair
of their chosen cell and explore the system.

Acknowledgements This research has been funded
by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 804302), the Israeli Sci-
ence Foundation (ISF) Grant No. 978/17, and the Google
Ph.D. Fellowship. The contributions of Nave Frost and
Amir Gilad are part of their respective Ph.D. thesis re-
search conducted at Tel Aviv University.

5

References

[1] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Ke-
mentsietsidis. Conditional functional dependencies for
data cleaning. In ICDE, pages 746–755, 2007.

[2] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[3] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data
cleaning: Putting violations into context. In ICDE,
pages 458–469, 2013.

[4] S. M. Lundberg and S. Lee. A unified approach to
interpreting model predictions. In NIPS, pages 4765–
4774, 2017.

[5] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holo-
clean: Holistic data repairs with probabilistic infer-
ence. PVLDB, 10(11):1190–1201, 2017.

[6] L. SHAPLEY. A value for n-person games. Contri-
butions to the Theory of Games, (28):307–317, 1953.

[7] E. Strumbelj and I. Kononenko. Explaining predic-
tion models and individual predictions with feature
contributions. Knowl. Inf. Syst., 41(3):647–665, 2014.

[8] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller.
Continuous data cleaning. In ICDE, pages 244–255,
2014.

6

	1 Introduction
	2 Technical Details
	2.1 Database Repair
	2.2 Shapley Value
	2.3 Computing Shapley Values

	3 System Overview
	4 Demo Scenario

