
Aggregation Support for Modern Graph Analytics in
TigerGraph

Alin Deutsch

deutsch@cs.ucsd.edu

UC San Diego and TigerGraph

Yu Xu

yu@tigergraph.com

TigerGraph

Mingxi Wu

mingxi.wu@tigergraph.com

TigerGraph

Victor E. Lee

victor@tigergraph.com

TigerGraph

ABSTRACT

We describe how GSQL, TigerGraph’s graph query language,

supports the specification of aggregation in graph analytics.

GSQL makes several unique design decisions with respect

to both the expressive power and the evaluation complexity

of the specified aggregation. We detail our design showing

how our ideas transcend GSQL and are eminently portable

to the upcoming graph query language standards as well as

to existing pattern-based declarative query languages.

CCS CONCEPTS

• Information systems→ Query languages for non-

relational engines; Graph-based database models.

KEYWORDS

Graph Databases; Graph Query Languages; Aggregation

ACM Reference Format:

Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2020. Ag-

gregation Support for Modern Graph Analytics in TigerGraph. In

Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD’20), June 14–19, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/

3318464.3386144

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06.

https://doi.org/10.1145/3318464.3386144

1 INTRODUCTION

The evolution of declarative query languages for graph data

has recently reached an inflection point marking a prolifera-

tion of commercial systems [8, 26, 27], the G-CORE research

manifesto [3], open-source projects [28], and two ISO/ANSI

standardization projects: SQL/PGQ [22], a standard for ex-

tension of SQL with graph query capabilities and with the

ability to view relational data as graphs, and GQL [23], a just-

approved standard project aimed at standardizing a graph

query language for arbitrary property graphs (not necessar-

ily views of relational data).

The main focus of the research manifesto and the stan-

dardization process is on the paradigm of specifying queries

declaratively via patterns, from the point of view of expres-

sivity and semantics.

This submission focuses on a complementary topic, namely

that of aggregating the values retrieved via pattern match-

ing. Our interest is prompted by extensive experience with

real customer use cases showing the importance of expres-

sive and flexible aggregation capabilities for modern graph

analytics support.

The manifesto, the standard, and the existing graph query

languages treat aggregation conventionally, in the following

sense. The query pattern yields a match table whose column

names are given by the pattern variables, and in which each

row provides a binding of these variables to graph elements

(vertices, edges, paths), where the binding conforms to a

match of the pattern against the graph. In all cases, the match

table is aggregated using the equivalent of a conventional

SQL GROUP BY clause.

In this work we describe an alternative paradigm for spec-

ifying aggregation in declarative queries, which we call the

accumulator-based aggregation paradigm. The paper substan-

tiates our claims that the accumulator-based specification of

aggregation has both expressivity and performance advan-

tages. From an expressivity point of view, the accumulator-

based specification of aggregation

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

377

https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3318464.3386144&domain=pdf&date_stamp=2020-05-31


• supports a powerful composition effect by allowing

query blocks to compute and attach state to the graph

as a whole and to its individual vertices, and subse-

quent query blocks to read/modify it;

• supports the inclusion of aggregation results into the

computed state, whose specification subsumes the ex-

pressive power of conventional aggregation;

• can be significantly more concise than conventional

aggregation;

• synergizes with control flow primitives to express

an important class of iterative graph algorithms that

are left out by the current standard drafts and the

representative languages informing them, and whose

specification in state-of-the-art products complicates

application development by forcing the addition of

a client process, imperatively programmed using a

low-level general-purpose programming language like

C++/Java/Python.

Performance-wise, accumulator-based aggregation

• narrows the gap between declarative specification and

efficient query plans that achieve single-pass aggre-

gation of the same data according to multiple disjoint

grouping criteria;

• supports iterative graph algorithms by enabling, within

the same server process, cross-iteration query block

composition via the contents of accumulators. Con-

trast this with the alternative of implementing the loop

in a separate client process running a C++/Java/Python

program that repeatedly emits the iterated query using

a JDBC-style interface. This would require either the

transmission of state between query server and client

process (at high communication overhead per itera-

tion), or making state persistent at the server between

JDBC calls and re-joining vertices with their associ-

ated state on each JDBC call (at high server processing

overhead).

• is particularly well-suited to parallel graph processing,

enabling several graph traversal threads to proceed in

parallel, synchronizing via the accumulators.

Our design is underpinned by the following concrete tech-

nical contributions:

• We show how to harmonize the paradigm of declara-

tive pattern-based graph querying with the paradigm

of accumulation-based aggregation by providing a

declarative semantics of a pattern-based graph query

language enriched with accumulator-based aggrega-

tion.

• We discuss the interference of pattern match and ag-

gregation semantics, define a space of possible design

choices, survey state of the art solutions, and present

the one adopted uniquely by TigerGraph. Essentially,

this semantics calls for limiting the paths matched by

a pattern to only the shortest ones (in contrast to al-

ternative state-of-the-art matching semantics, which

also limit matched paths but use other criteria such as

disallowing repeated vertices/edges).

• We identify a large and practically relevant class of

queries that use accumulators and patterns but do not

bind variables to entire paths in the graph (and don’t

simulate such variables by accumulating paths in ac-

cumulators). This class admits polynomial-time execu-

tion under TigerGraph’s all-shortest-paths semantics.

Counter-intuitively, this result holds even when the

pattern matches exponentially many paths, which all-

shortest-paths semantics allows. The result exploits

the fact that it is possible to avoid thematerialization of

the exponentially many paths, instead counting them

in polynomial time and using these counts to short-cut

aggregation by generating appropriate inputs into the

accumulators. This result is in stark contrast to the

exponential-time evaluation yielded by the semantics

of the other languages in circulation (a prominent rep-

resentative is the Cypher language’s default semantics,

in which patterns match only paths with non-repeated

edges).

• We confirm experimentally that TigerGraph evaluates

queries from the tractable class in polynomial time,

even in the worst case when exponentially many paths

match the query pattern, and that alternative seman-

tics such as Cypher’s non-repeated edge semantics

indeed yield exponential-time evaluation even when

the legal paths – and therefore the query results – coin-

cide under the two semantics. (We use Neo4j’s engine

as reference for the non-repeated edge semantics.)

• More surprisingly, our experiments show that Neo4j’s

engine still evaluates in exponential time even when

we request matching under the tractable all-shortest-

paths semantics (which Neo4j supports, but as it turns

out, sub-optimally). This measurement, as well as per-

sonal communication with members of the standard

committee, convinced us that the tractability result we

present here is ignored by the industrial graph query-

ing community. We seek to disseminate it in this forum

as a public service.

• Keeping the matching semantics unchanged, we exper-

imentally compare accumulator-based with conven-

tional SQL-style aggregation on the reference bench-

mark provided by the leading independent graph bench-

marking authority, the Linked Data Benchmarking

Consortium (LDBC) [16]. We show that, on graph sizes

ranging from 1GB to 1TB, accumulators speed up ag-

gregation by a factor of up to 3x when compared to

SQL-style aggregation.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

378



Applicability beyond GSQL. While GSQL is the vehicle

we use to illustrate the discussed aggregation-related con-

cepts, these are eminently portable to the upcoming graph

query language ANSI/ISO standards and particularly rele-

vant to both of them, as they are currently under construction.

TigerGraph is an active member of both standard bodies, to

which we have submitted our ideas as official contributions.

Our ideas are also relevant to existing languages which, to-

gether with GSQL, currently inform the standardization de-

bate (Cypher [25], G-CORE [3], PGQL [29] and SparQL [14]).

2 DECLARATIVITY VIA PATTERNS

GSQL supports declarative patterns for specifying paths in

the graph. In doing so, we follow the tradition instituted

by a line of classic work on querying graph data (at the

time known as semi-structured data), which yielded such

reference query languages as WebSQL [18], StruQL [12] and

Lorel [1]. Common to all these languages is the ability to

specify patterns that match paths whose structure is con-

strained by a regular path expression (RPE). This tradition

is so well established that it is preserved in current query

language standards, such as the W3C SparQL 1.1 [14] stan-

dard for querying RDF graphs and the XPath [30] standard

for querying XML graphs, in the upcoming SQL/PGQ [22]

and GQL [23] standards, and in the G-CORE manifesto [3].

Example 1 (Joining across Graphs and Relational

Tables). Assume Company ACME maintains a human re-
source database stored in an RDBMS containing a relational
table “Employee”. It also has access to the “LinkedIn" graph
containing the professional network of LinkedIn users.

The query in Figure 1 joins relational HR employee data with
LinkedIn graph data to find the employees who have made the
most LinkedIn connections outside the company since 2016. No-
tice the pattern Person:p -(Connected:c)- Person:outsider, to
be matched against the “LinkedIn“ graph. The pattern variables
are “p”, “c” and “outsider”, binding respectively to a “Person”
vertex, a “Connected” edge and a “Person” vertex. Once the pat-
tern is matched, its variables can be used just like standard SQL
tuple aliases. The lack of an arrowhead accompanying the edge
subpattern -(Connected: c)- requires the matched “Connected”
edge to be undirected. □

Example 1 illustrates a pattern that matches paths con-

sisting of single “Connected” edges. In general, patterns can

specify multi-edge paths using regular path expressions.

Regular path expressions (RPEs) are regular expressions

over the alphabet of edge types. They conform to the context-

free grammar

rpe → _ | EdgeType | ′(′ rpe ′)′ |rpe ′ ∗′ bounds?
| rpe ′.′ rpe | rpe ′ |′ rpe

bounds → N ?
′..′ N ?

where EdgeType and N are terminal symbols representing

respectively the name of an edge type and a natural number.

The wildcard symbol “_” denotes any edge type, “.” denotes

the concatenation of its pattern arguments, and “|” their

disjunction. The ‘*’ terminal symbol is the standard Kleene

star specifying several (possibly 0 or unboundedly many)

repetitions of its RPE argument. The optional bounds can

specify a minimum and a maximum number of repetitions

(to the left and right of the “..” symbol, respectively).

A path p in the graph is said to satisfy (or match) an RPE

R if the sequence of edge types read from the source vertex

of p to the target vertex of p spells out a word in the lan-

guage accepted by R when interpreted as a standard regular

expression over the alphabet of edge type names.

Direction-Aware Regular Path Expressions. To date,

only TigerGraph’s and the upcoming GQL standard’s data

model support graphs that mix directed and undirected edges

(the SQL/PGQ standard and the other products it is informed

by work on directed graphs only). To the best of our knowl-

edge, GSQL is the only product to feature an extension of

the RPE formalism to support mixed-kind edges. We call this

extension Direction-Aware RPEs (DARPEs).1

DARPEs. DARPEs extend RPEs with the ability to specify

the edge kind (directed vs undirected) and, for directed edges,

to specify their orientation.

Example 2 (Mixed edge kind DARPE ). The DARPE

E> .(F> | <G ) ∗ .H . <J

matches paths that start by traversing an outgoing E-edge,
followed by a sequence of zero or more traversals of either
outgoing F -edges or incomingG-edges, next by the traversal
of an undirected H -edge and finally ending in the traversal of
an incoming J -edge. □

To specify the syntax of DARPEs, we reuse the RPE gram-

mar above, allowing the terminal symbol EdgeType to range

over the alphabet of direction-adorned edge types defined as

follows: for each edge type E, the direction-adorned alphabet
includes the symbols E, E>, and <E.
The notion of satisfaction of a DARPE by a path extends

classical RPE satisfaction in the natural way: given a path p
oriented from source node x to target node y, an E-edge e
on p is adorned with

• the symbol E> if e is directed in the direction of p,

1
The upcoming GQL standard has recently decided that it will also support

co-existence of directed and undirected, but since the initial design of pat-

terns was inspired by the directed-only graph variety, at the time of this

writing GQL pattern syntax has not yet been extended to treat undirected

edges as first-class citizens. Since neither of the other languages supported

by the vendors on the standard body supports such syntax, we have submit-

ted our DARPE design as a proposal to the standard body and active debate

on this topic is underway.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

379



SELECT e.email , e.name , count (outsider)
FROM Employee AS e,

LinkedIn AS Person: p -(Connected: c)- Person: outsider
WHERE e.email = p.email and

outsider.currentCompany NOT LIKE 'ACME' and
c.since >= 2016

GROUP BY e.email , e.name

Figure 1: Query for Example 1, Illustrates DARPE-based Patterns and Joins Across Relational Table and Graph

• the symbol <E if e is directed in the opposite direction,

or

• the symbol E if e is undirected.

We say that path p satisfies a DARPE D if p’s edge adorn-
ments spell out a word in the language accepted by D when

viewed as a standard regular expression over the alphabet of

direction-adorned edge types. When p satisfies D, we also
say that p is a match for D, and that D matches p.

3 AGGREGATION VIA ACCUMULATORS

In Example 1, we specified aggregation in the conventional

SQL-inspired style, which is adopted (modulo superficial

syntactic variations) by virtually all major declarative graph

query languages in circulation, whether they address unre-

stricted graphs (Neo4j’s Cypher [25], Oracle’s PGQL [29],

W3C’s SparQL [14]) or the special case of tree-shaped graphs

corresponding to JSON-class nested data models (like Face-

book’s GraphQL [11], CouchBase’s N1QL [7], UC SanDiego’s

SQL++ [20], Amazon’s PartiQL [2]).

We now introduce an alternative means to specify aggre-

gation, via the concept of accumulators. As we show below,

the benefits of doing so include the remarkably high-level

and concise specification of (i) single-pass computation of

multiple aggregations of the same data by distinct grouping

criteria, (ii) the computation of vertex-stored side effects to

support a large class of multi-pass and iterative algorithms,

and (iii) straightforwardly parallelizable aggregation.
2

Accumulators. These are data containers that store an

internal value and take inputs that are aggregated into this

internal value using a binary operation. GSQL distinguishes

among two flavors:

• Vertex accumulators are attached to vertices, with each

vertex storing its own local accumulator instance.

• Global accumulators have a single instance and are

useful in computing global aggregates.

Accumulators are polymorphic, being parameterized by the

type of the internal valueV , the type of the inputs I , and the

binary combiner operation

⊕ : V × I → V .

2
One may ask in what sense a declarative specification supports a certain

kind of evaluation, given that an optimizer can in theory choose any query

plan. Our answer stresses the difference between theory and practice.

Accumulators implement two assignment operators. De-

noting with a.val the internal value of accumulator a,

• a = i sets a.val to the provided input i;
• a += i aggregates the input i into acc .val using the

combiner, i.e. sets a.val to a.val ⊕ i .

Accumulator Types. GSQL offers several built-in accumu-

lator types. TigerGraph’s experience with the deployment of

GSQL has yielded the short list below, that covers most use

cases we have encountered in customer engagements. Notice

that accumulator types are parameterized by the type of the

data they aggregate, while the binary combinator operation

is encoded in the name.

SumAccum<N>, where N is a numeric type. This accumula-

tor holds an internal value of type N, accepts inputs of type N
and aggregates them into the internal value using addition.

MinAccum<O>, where O is an ordered type. It computes the

minimum value of its inputs of type O.
MaxAccum<O>, as above, swapping max for min aggrega-

tion.

AvgAccum<N>, where N is a numeric type. This accumula-

tor computes the average of its inputs of type N. It is imple-

mented in an order-invariant way by internally maintaining

both the sum and the count of the inputs seen so far.

OrAccum, which aggregates its boolean inputs using logical
disjunction.

AndAccum, which aggregates its boolean inputs using log-

ical conjunction.

Set-, Bag-, Array- , ListAccum<T> insert their in-

puts of type T into a collection of corresponding kind.

MapAccum<K,V> stores an internal value ofmap type, where

K is the type of keys and V the type of values. V can itself

be an accumulator type, thus specifying how to aggregate

values mapped to the same key.

HeapAccum<T>(capacity, field_1 [ASC|DESC], . . . ,
field_n [ASC|DESC]) implements a priority queue where T
is a tuple typewhose fields include field_1 through field_n,
each of ordered type, capacity is the integer size of the

priority queue, and the remaining arguments specify a lexi-

cographic order for sorting the tuples in the priority queue

(each field may be used in ascending or descending order).

For details on GSQL’s accumulators and more supported

types, see the online documentation.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

380

https://en-doc.graphtiger.com/dev/gsql-ref/querying/accumulators


Accumulator Declarations. Accumulator declarations de-

fine the accumulator instances to be created by a query,

specifying their type and name. When prefixed by a single @
symbol, a name denotes vertex-attached accumulators (one

instance per vertex) while accumulator names prefixed by

@@ denote a global accumulator (a single instance per query).

Example 3 (Accumulator Declaration). The accumu-
lator declaration below defines a global accumulator called
totalRevenue (a single instance), a family of vertex-
attached accumulators called revenuePerToy (one instance
per vertex), and a family of vertex-attached accumulators
called revenuePerCust (one instance per vertex). They all
share the same type, which specifies that all instances hold an
internal floating point value and expect floating point inputs
aggregated using the floating point addition operation.

SumAccum <float > @@totalRevenue ,
@revenuePerToy ,
@revenuePerCust;

□

ACCUMClause. We add this novel clause to SQL to specify

assignment to accumulators. It consists essentially of a list

of assignments of form A+ = E, where A is an accumulator

and E an expression depending on the variables introduced

by the FROM clause pattern. We describe its semantics by

example first, detailing it in Section 4.3.

Example 4 (Single-Pass Multi-Aggregation by Dis-

tinct Grouping Criteria). Consider a graph named “Sales-
Graph” in which the sale of a product p to a customer c is mod-
eled by a directed “Bought”-edge from the “Customer”-vertex
modeling c to the “Product”-vertex modeling p. The number
of product units bought, as well as the discount at which they
were offered are recorded as attributes of the edge. The list
price of the product is stored as attribute of the corresponding
“Product” vertex.

We wish to simultaneously compute the sales revenue per
product from the “toy” category, the toy sales revenue per cus-
tomer, and the overall total toy sales revenue.

We define a vertex accumulator type for each kind of revenue.
The revenue for toy product p will be aggregated at the ver-
tex modeling p by vertex accumulator revenuePerToy, while
the revenue for customer c will be aggregated at the vertex
modeling c by the vertex accumulator revenuePerCust. The
total toy sales revenue will be aggregated in a global accu-
mulator called totalRevenue. With these accumulators, the
multi-grouping query is concisely expressible (Figure 2).

Note the leading accumulator declaration, explained in Ex-
ample 3. Also note the novel ACCUM clause, which specifies
the generation of inputs to the accumulators. Its first line in-
troduces a local variable “salesPrice”, whose value depends on
attributes found in both the “Bought” edge and the “Product”

vertex. This value is computed once and aggregated twice, by
input into both the revenuePerCust accumulator instance
attached to the Customer vertex denoted by variable c , and
into the revenuePerToy accumulator instance attached to the
Product vertex denoted by variable p. The “+=” operator ex-
pressed the input operation. □

Multi-Output SELECT Clause. GSQL’s accumulators al-

low the simultaneous specification of multiple aggregations

of the same data. To take full advantage of this capability,

GSQL complements it with the ability to concisely specify

simultaneous outputs into multiple tables for data obtained

by the same query body. This can be thought of as evaluating

multiple independent SELECT clauses.

Example 5 (Multi-Output SELECT). While the query
in Example 4 outputs the customer vertex ids, in that exam-
ple we were interested in its side effect of annotating vertices
with the aggregated revenue values and of computing the total
revenue. If instead we wished to create two tables, one associ-
ating customer names with their revenue, and one associating
toy names with theirs, we would employ GSQL’s multi-output

SELECT clause as follows (preserving the FROM, WHERE and
ACCUM clauses of Example 4).

SELECT c.name , c.@revenuePerCust INTO PerCust;
t.name , t.@revenuePerToy INTO PerToy;
@@totalRevenue AS rev INTO Total

This query populates three tables, PerCust and PerToy and
Total. □

ExtensibleAccumulator Library. In addition to pre-defined

accumulators, GSQL allows users to define their own accumu-

lators by implementing a simple C++ interface that declares

the binary combiner operation ⊕ used for aggregation of in-

puts into the stored value. This facilitates the development of

accumulator libraries towards an extensible query language.

4 SEMANTICS

The semantics of GSQL queries can be given in a declarative

fashion analogous to SQL semantics: for each distinct match

of the FROM clause pattern that satisfies the WHERE clause

condition, the ACCUM clause is executed precisely once. Af-

ter the ACCUM clause executions complete, the multi-output

SELECT clause executes each of its semicolon-separated in-

dividual fragments independently, as standard SQL clauses.

Note that we do not specify the order in which matches are

found and consequently the order of ACCUM clause applica-

tions. We leave this to the engine implementation to support

optimization and parallel execution. See the extended ver-

sion [9] for the formal GSQL semantics, described informally

below.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

381



SumAccum <float > @revenuePerToy , @revenuePerCust , @@totalRevenue;

SELECT c
FROM SalesGraph AS Customer: c -(Bought >: b)- Product:p
WHERE p.category = 'toys'
ACCUM float salesPrice = b.quantity * p.listPrice * (100 - b.percentDiscount )/100.0 ,

c.@revenuePerCust += salesPrice ,
p.@revenuePerToy += salesPrice ,
@@totalRevenue += salesPrice;

Figure 2: Query for Example 4, Illustrates Single-Pass Treeway Aggregation via Accumulators

CREATE QUERY TopKToys (vertex <Customer > c, int k) FOR GRAPH SalesGraph {

SumAccum <float > @lc , @inCommon , @rank;

SELECT DISTINCT o INTO OthersWithCommonLikes
FROM Customer:c -(Likes >)- Product:t -(<Likes)- Customer:o
WHERE o <> c and t.category = 'Toys'
ACCUM o.@inCommon += 1
POST_ACCUM o.@lc = log (1 + o.@inCommon );

SELECT t.name , t.@rank AS rank INTO Recommended
FROM OthersWithCommonLikes:o -(Likes >)- Product:t
WHERE t.category = 'Toy' and c <> o
ACCUM t.@rank += o.@lc
ORDER BY t.@rank DESC
LIMIT k;

RETURN Recommended;
}

Figure 3: Recommender Query for Example 6, Illustrates Composition via @lc Accumulator

CREATE QUERY PageRank (float maxChange , int maxIteration , float dampingFactor) {

MaxAccum <float > @@maxDifference; // max score change in an iteration
SumAccum <float > @received_score; // sum of scores received from neighbors
SumAccum <float > @score = 1; // initial score for every vertex is 1.

AllV = {Page .*}; // start with all vertices of type Page

WHILE @@maxDifference > maxChange LIMIT maxIteration DO
@@maxDifference = 0;

S = SELECT v
FROM AllV:v -(LinkTo >)- Page:n
ACCUM n.@received_score += v.@score/v.outdegree ()
POST-ACCUM v.@score = 1-dampingFactor + dampingFactor * v.@received_score ,

v.@received_score = 0,
@@maxDifference += abs(v.@score - v.@score ');

END;
}

Figure 4: PageRank Query for Example 7, Illustrates Cross-Iteration Composition via Accumulators

4.1 FROM Clause

The FROM clause defines a binding table whose columns

are named after the variables occurring in the FROM clause

patterns. Each row of the binding table corresponds to a

binding β of the variables, i.e. a function from variables to

vertices or edges, such that for each conjunct S :s − (d ) −T :t
of the FROM clause, where d is a DARPE mentioning edge

variables e1, . . . ,ek , vertex β (s ) has type S , vertex β (t ) has
type T , and β (e1), . . . ,β (ek ) correspond to edges on a path

from β (s ) to β (t ) that satisfies d [9].

4.2 SQL-Borrowed Clauses

The clauses borrowed from SQL (SELECT, WHERE, GROUP

BY, HAVING, ORDER BY, LIMIT) inherit SQL semantics

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

382



when interpreting each occurrence of a global accumulator

@@a as a constant equal to the internal value of a, and each

vertex-attached accumulator reference v .@a by interpreting

v as a tuple alias and @a as its attribute named a.

4.3 ACCUM Clause

The effect of the ACCUM clause is to modify accumulator

values. It is executed exactly once for every variable binding

yielded by the WHERE clause (every row of the binding ta-

ble). We call each individual execution of the ACCUM clause

an acc-execution.
Since multiple acc-executions may refer to the same accu-

mulator instance, they do not write the accumulator value

directly, to avoid setting up race conditions in which acc-

executions overwrite each other’s writes non-deterministically.

Instead, each acc-execution yields a bag of input values for

the accumulators mentioned in the ACCUM clause. The cu-

mulative effect of all acc-executions is to aggregate all gen-

erated inputs into the appropriate accumulators, using the

accumulator’s ⊕ combiner.

Snapshot Semantics. Note that all acc-executions start

from the same snapshot of accumulator values and the effect

of the accumulator inputs produced by each acc-execution

are not visible to the acc-executions. These inputs are aggre-

gated into accumulators only after all acc-executions have

completed. We therefore say that the ACCUM clause exe-

cutes under snapshot semantics, and we conceptually struc-

ture this execution into two phases: in the Map Phase, all
acc-executions compute accumulator inputs starting from

the same accumulator value snapshot. After the Map Phase

completes, the Reduce Phase aggregates the generated inputs
into the accumulators they are destined for. The result of the

Reduce Phase is a new snapshot of the accumulator values.

Order-invariance. The result of the Reduce Phase is well-
defined (input-order-invariant) for an accumulator instance

a whenever the binary aggregation operation a.⊕ is commu-

tative and associative. This is certainly the case for addition,

which is used in Example 4. In general, order-invariance

applies to the built-in accumulator types Set-, Bag-, Heap-,
Or-, And-, Max-, Min-, Sum-, and even to AvgAccum (imple-

mented in an order-invariant way by having the storing

computing internally the pair of sum and count of inputs).

Order-invariance also holds recursively for the MapAccum
accumulator type if the nested accumulators are in turn

order-invariant. The exceptions to order-invariance are the

List-, Array- and SumAccum<string> accumulator types.

Potential for Parallelization. The snapshot semantics is

compatible with bulk-synchronous parallel execution of GQL

queries, a fact that we exploit in implementation for per-

formance reasons while guaranteeing deterministic seman-

tics in all order-invariant use cases. If the user decides to

deploy the three order-dependent accumulator types, it is

with the understanding that the result is in general non-

deterministically ordered. Users typically accept this case in

applications that sample a random solution among a large

space of candidates (such as exhibiting any one among the

multitude of paths connecting two given nodes, as proof of

connectivity).

4.4 POST_ACCUM Clause

The purpose of the POST_ACCUM clause is to specify com-

putation that takes place after accumulator values have been

set by the ACCUM clause. The computation is specified by

a sequence of acc-statements, whose syntax and semantics

coincide with that of the sequence of acc-statements in an

ACCUM clause. The POST_ACCUM clause does not add ex-

pressive power to GSQL, it is syntactic sugar introduced for

convenience and conciseness.

5 COMPOSITION VIA ACCUMULATORS

The scope of the accumulator declaration may cover a se-

quence of query blocks, in which case the accumulated val-

ues computed by a block can be read (and further modified)

by subsequent blocks. This enables powerful composition

effects that support the concise specification of multi-pass

algorithms, with each pass specified declaratively.

Example 6 (Two-PassRecommenderQuery). Assume
we wish to write a simple toy recommendation system for a
customer c given as parameter to the query. The recommenda-
tions are ranked in the classical manner: each recommended
toy’s rank is a weighted sum of the likes by other customers.

Each like by an other customero is weighted by the similarity
ofo to customer c . In this example, similarity is the standard log-
cosine similarity [24], which reflects how many toys customers
c and o like in common. Given two customers x and y, their
log-cosine similarity is defined as

loд(1 + count of common likes for x and y).

The query is shown in Figure 3. The query header declares
the name of the query and its parameters (the vertex of type
“Customer” c , and the integer value k of desired recommenda-
tions). The header also declares the graph for which the query is
meant, thus freeing the programmer from repeating the name
in the FROM clauses. Notice also that the accumulators are not
declared in a WITH clause. In such cases, the GSQL convention
is that the accumulator scope spans all query blocks. Query
TopKToys consists of two blocks.

The first query block computes for each other customer o
their log-cosine similarity to customer c , storing it in o’s ver-
tex accumulator @lc. To this end, the ACCUM clause first
counts the toys liked in common by aggregating for each such
toy the value 1 into o’s vertex accumulator @inCommon. The

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

383



POST_ACCUM clause then computes the logarithm and stores
it in o’s vertex accumulator@lc.

Next, the second query block computes the rank of each toy t
by adding up the similarities of all other customers o who like t .
It outputs the top k recommendations into table Recommended,
which is returned by the query.

Notice the input-output composition due to the second query
block’s FROM clause referring to the set of vertices
OthersWithCommonLikes (represented as a single-
column table) computed by the first query block. Also notice
the side-effect composition due to the second block’s ACCUM
clause referring to the @lc vertex accumulators computed by
the first block. Finally, notice how the SELECT clause outputs
vertex accumulator values (t.@rank) analogously to how it
outputs vertex attributes (t.name). □

Example 6 illustrates the POST_ACCUM clause (recall

Section 4.4) as a convenient way to post-process accumulator

values after the ACCUM clause finishes computing them.

Iterated Composition. GSQL’s design reflects our philos-

ophy that a graph query language should admit declara-

tive pattern-based specification whenever possible, yet be

sufficiently expressive to specify the sophisticated iterative

algorithms required by modern graph analytics (e.g. PageR-

ank [5], shortest-paths [13], weakly connected components [13],

recommender systems, etc.).

Traditionally, these algorithms are coded in general-purpose

programming languages like C++ and Java and offered as

built-in function calls in existing languages. Consequently,

whenever an application requires a variation of a built-in

graph algorithm that is not expressible by manipulating the

provided parameters, a new implementation needs to be

developed outside the query language, as a user-defined

function (UDF).

While GSQL supports UDFs written in C++, our customer

engagements have shown that the need for them is greatly

diminished by minimally extending the declarative core of

the language with two control flow primitives (if-then-else

and the while loop). We illustrate the loop by expressing the

classic PageRank [5] algorithm in GSQL.

Example 7 (PageRank). Figure 4 shows a GSQL query
implementing a simple version of PageRank.
Notice the while loop that runs a maximum number of it-

erations provided as parameter maxIteration. Each vertex
v is equipped with a @score accumulator that computes the
rank at each iteration, based on the current score at v and the
sum of fractions of previous-iteration scores of v’s neighbors
(denoted by vertex variable n). v.@score’ refers to the value
of this accumulator at the previous iteration.
According to the ACCUM clause, at every iteration each

vertex v contributes to its neighbor n’s score a fraction of v’s
current score, spread over v’s outdegree. The score fractions

contributed by the neighbors are summed up in the vertex
accumulator @received_score.

As per the POST_ACCUM clause, once the sum of score frac-
tions is computed at v , it is combined linearly with v’s current
score based on the parameter dampingFactor, yielding a new
score for v .
The loop terminates early if the maximum difference over

all vertices between the previous iteration’s score (accessible as
v.@score’) and the new score (now available in v.@score)
is within a threshold given by parameter maxChange. This
maximum is computed in the @@maxDifference global ac-
cumulator, which receives as inputs the absolute differences
computed by the POST_ACCUM clause instantiations for every
value of vertex variable v . □

6 INTERFERENCE OF PATTERN AND

AGGREGATION SEMANTICS

A well-known semantic issue arises from the tension be-

tween RPE expressivity and well-definedness. Regarding

expressivity, applications need to sometimes specify reacha-

bility in the graph via RPEs comprising unbounded (Kleene)

repetitions of a path shape (e.g. to find which target users

are influenced by source users on Twitter, we seek the paths

connecting users directly or indirectly via a sequence of

tweets or retweets). Applications also need to express vari-

ous aggregate statistics over the graph, many of which are

multiplicity-sensitive (e.g. count, sum, average). Therefore,

pattern matches must preserve multiplicities, being inter-

preted under bag semantics. That is, a pattern

: s − (RPE)− : t

should have as many matches of variables (s,t ) to a given

pair of vertices (n1,n2) as there are distinct paths from n1
to n2 satisfying the RPE. In other words, the count of these

paths is the multiplicity of the pair (n1,n2) in the bag of

matches of the pattern.

The two requirements conflict withwell-definedness: when

the RPE contains Kleene stars, cycles in the graph can yield

an infinity of distinct paths satisfying the RPE (one for each

number of times the path wraps around the cycle), thus

yielding infinite multiplicities in the query output.

Example 8 (Infinitely many matching paths). The
pattern Person: p1 -(Knows>*)- Person: p2 matches an infin-
ity of distinct paths in a social network with cycles through
“Knows” edges. □

Gremlin’s default semantics [28] falls in this category, thus

allowing developers to specify potentially non-terminating

graph traversals.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

384



6.1 Path Legality Flavors

State-of-the-art solutions limit the kind of paths that are

considered legal, so as to yield a finite number of legal paths

in any graph, and thus a finite number of possible pattern

matches.

Well-defined, Aggregation-friendly, but Intractable.

Two popular approaches allow only paths with non-repeated
vertices (as illustrated in Gremlin tutorials

3
) or with non-

repeating edges (this is the default semantics of Cypher pat-

terns [25]). However, under these definitions of path legality

the evaluation of RPEs is in general notoriously intractable:

even checking existence of legal paths that satisfy the RPE

(without counting them) is NP-hard, and counting such paths

is #P-complete [17, 19]. Since these worst-case complexity

lower bounds refer to the size of the data, the resulting se-

mantics does not always scale to large graphs.

Well-defined, Tractable but Aggregation-Unfriendly.

The SparQL [14] W3C-standardized query language for RDF

graphs adopts the following semantics: SparQL regular path

expressions that are Kleene-starred are interpreted as boolean

tests whether any path exists between two vertices, without

counting how many such paths exist. This yields a multi-

plicity of 1 on the pair of path endpoints. This design choice

is a twist on a semantic variation introduced in [4] to guar-

antee tractability, namely the non-deterministic choice of

one among the possible shortest paths connecting a given

pair of vertices. These semantics however defeat the purpose

of supporting aggregation, and we discuss them no further

given our focus on aggregation.

Well-defined, Aggregation-friendly and Tractable. In

contrast, GSQL adopts the all-shortest-paths legality crite-

rion. That is, among the paths from s to t satisfying a given

DARPE, GSQL considers legal all the shortest ones, where

the length of a path is the count of its edges. There can of

course exist several shortest paths between a given pair of

vertices, due to ties. The advantage of this design choice

is that checking existence of a shortest path that satisfies a

DARPE and connects a given pair of vertices, and even count-

ing all such shortest paths, is tractable, i.e. has polynomial

data complexity (see Theorem 6.1 below).

Example 9 (Contrasting Legality Flavors). To contrast
the various path legality flavors, consider the graphG1 in Fig-
ure 5, assuming that all edges are typed “E”. Among all paths
from source vertex 1 to target vertex 5 that satisfy the DARPE
“E> ∗”, there are

3
While Gremlin’s default semantics allows all unrestricted paths (and there-

fore possibly non-terminating graph traversals), virtually all the documenta-

tion and tutorial examples involving unbounded traversal use non-repeated-

vertex semantics (by explicitly invoking a built-in simplePath predicate to

filter paths).

1	 2	 3	 4	 5	

6	

7	8	

9	 10	 11	 12	

Figure 5: Graph G1 for Example 9

1	 2	 3	 4	

5	6	

E	 E	 E	
E	 E	

F	

Figure 6: Graph G2 for Example 10

• Infinitely many unrestricted paths, depending on how
many times they wrap around the 3-7-8-3 cycle (as per
the default gremlin semantics);
• Three non-repeated-vertex paths, 1-2-3-4-5, 1-2-6-4-5,
and 1-2-9-10-11-12-4-5 (as per the gremlin query style
used in the Tinkerpop tutorials);
• Four non-repeated-edge paths, 1-2-3-4-5, 1-2-6-4-5, 1-2-
9-10-11-12-4-5, and 1-2-3-7-8-3-4-5 (as per the default
Cypher semantics);
• Two shortest paths, 1-2-3-4-5 and 1-2-6-4-5, (as per the
default GSQL semantics).

Therefore, pattern : s − (E> ∗)− : t will return the binding
(s 7→ 1,t 7→ 5) with multiplicity 3, 4, or 2 under the non-
repeated-vertex, non-repeated-edge respectively shortest-path
legality criterion. In addition, under SparQL 1.1 semantics, the
multiplicity is 1. □

While in Example 9 the shortest paths are a subset of the

non-repeated-vertex paths, which in turn are a subset of

the non-repeated-edge paths, this inclusion does not hold in

general, as shown in Example 10 below, where shortest-path

yields strictly more matches than the two non-repeating

semantics.

Example 10 (More Shortest-Path than Non-Repeat-

ing Matches). Consider Graph G2 from Figure 6, and the
pattern

:s − (E>∗. F>. E>∗)− :t

and note that it does not match any path from vertex 1 to
vertex 4 under either non-repeated vertex or non-repeated edge
semantics, while it does match one such path under shortest-
path semantics: 1-2-3-5-6-2-3-4, which repeats both the vertices
2 and 3, and the edge between them. □

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

385



V0	

E	

V1	

w1	

z1	

V2	

w2	

z2	

Vn	
…	

E	

E	

E	

Figure 7: Diamond Chain Graph for Example 11

In general, the different classes of legal paths are incompa-

rable with respect to inclusion [4]. However they all coincide

on large classes of graphs, such as tree- and forest- shaped

graphs, as well as on many other acyclic graphs. Moreover,

all of them can define sets of paths of cardinality exponential

in the size of the graph.

Example 11 (Coinciding Semantics, Exponential-Size

Match Set). Consider the well-known directed graph in Fig-
ure 7, which consists of a chain of diamond-shaped graphs
that connect vertex vi to vertex vi+1 via two paths, for each
0 ≤ i ≤ n. Let DARPE d be E>∗, which denotes paths consist-
ing exclusively of E edges, all oriented in the same direction.
Observe that non-repeating vertex, non-repeating edge and
all-shortest-paths semantics coincide on this graph, yielding
the same set of paths. Also notice that for every 1 ≤ k ≤ n,
there are 2k paths from v0 to vk and satisfying d . □

Fixed-Unique-Length Patterns. The pattern match se-

mantic flavors in circulation today constitute various ways

to solve the problem of ensuring finitely manymatches when

the graph contains cycles and the pattern specifies variable-

length paths via the Kleene star operator of unbounded rep-

etition. Each flavor introduces its own limitation on the ad-

missible paths, and in many applications this limitation is

artificial. As shown above, the limitations are incomparable,

in the sense that for each flavor there are graphs where one

flavor admits paths that others do not.

The all-shortest-paths flavor stands out as the only one to

not impose any restrictions on paths when the pattern be-

longs to awidely used class whichwe call fixed-unique-length.
These are Kleene-free, and specify paths of a unique length

that can be read off from the pattern. They are constructed by

unrestricted application of the pattern concatenation opera-

tor “.”, while the pattern disjunction operator “|” applies only

to patterns with the same length. A typical, widely-used rep-

resentative pattern subclass has general form D1.D2. · · · .Dn
where each Di is a possibly direction-annotated edge type-

/wildcard (or a disjunction thereof). Notice that the length

of all paths specified by such patterns is fixed uniquely to n.
For fixed-unique-length patterns, all-shortest-path seman-

tics coincides with unrestricted semantics, since all satisfying

paths are shortest. This means that all unrestricted paths are

considered, even if they form a cycle, because not following
the cycle leads to failure to match the pattern In contrast,

both non-repeated-vertex and non-repeated-edge semantics

rule out unrestricted paths that follow cycles.

Consider the pattern : x − ( A > .(B > |D >).> .A > )− : y.
Clearly, it matches only paths of length 4. Apply this pattern

against a cyclev
A
−→ u

B
−→ w

C
−→ v . All-shortest-paths finds

the match {x 7→ v,y 7→ u} as witnessed by a path starting

from v , going around the cycle once and recrossing the A
edge. Non-repeated-vertex finds no match, disqualifying this

path because it revisits vertex v , while non-repeated-edge
also finds no match, disqualifying the path because it revisits

the A edge.

Tractability of All-Shortest-Paths Semantics. The re-

markable property of all-shortest-paths semantics is that,

despite that fact that (just like non-repeating vertex and non-

repeating edge semantics) it may yield exponentially many

paths in the size of the graph, it is the only one that admits

polynomial-time counting of these paths by avoiding their

enumeration.

Let’s call the Shortest DARPE Match Count (SDMC) the
problem of counting all shortest paths that satisfy a DARPE,

where the path length is defined as edge count. Variations

include:

• the single-pair SDMC flavor, where the source vertex

s and target vertex t of the desired shortest paths are

given, as well as the DARPE d they must satisfy, and

SDMCd (s,t ) denotes their count;
• the single-source SDMC flavor, where only the source

vertex s andDARPEd are given and SDMCd (s ) denotes
the set

SDMCd (s ) = {(s,t ,SDMCd (s,t )) | t is a vertex};

• the all-paths SDMC flavor, in which only the DARPE d
is given, and SDMCd denotes

SDMCd =
⋃

s is a vertex

SDMCd (s ).

Notice that the problem of checking the existence of a short-

est path from vertex s to vertex t that satisfies DARPE d can

be reduced to the test SDMCd (s,t ) > 0, and it thus inherits

the complexity upper bound of single-pair SDMC.

The following result is known from semi-structured data-

base research folklore, as corroborated in [4], but we could

not find its proof published in the literature. For complete-

ness, we provide the proof in the extended version [10].

Theorem 6.1. The Single-Pair, Single-Source and All-Paths
flavors of the SDMC problem are solvable in polynomial time
in the size of the graph.

Given the incomparability of matching semantics, as ex-

posed by Examples 9 and 10 above, we subscribe to the goal

of allowing users to select the desired matching semantics on

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

386



a per-query basis, coupled with that of educating users that

alternative semantics are potentially intractable and that, for

fixed-unique-length patterns all-shortest-paths considers all

possible paths, without technically-driven restrictions. Since

GSQL is Turing complete, it can implement any desired se-

mantics, but it currently lacks the concise syntactic sugar for

specifying semantic alternatives. We plan to support such

syntactic sugar by the third quarter of 2020.

7 AVOIDING PATH MATERIALIZATION

VIA PATH COUNTING

In the design of GSQL, we opted for the default pattern

matching semantics based on the all-shortest-path legality

criterion (recall Section 6) because

• it is the only one that amounts to unrestricted seman-

tics for the practically relevant class of fixed-unique-

length patterns

• it admits the polynomial-time evaluation of a very

large class of queries that involves both DARPE-based

patterns and accumulator-based aggregation, even in

the case when the query pattern matches exponen-

tially many paths in the size of the graph. This class

of queries covers a majority of the use cases we have

encountered in customer engagements.

The idea behind the efficient evaluation of queries from this

tractable class is to avoid the materialization of the paths

matching the query pattern, only counting them instead.

The latter can be done in polynomial time by exploiting

Theorem 6.1.

A Tractable Class of Queries. The tractable class disal-

lows

• path variables bound to the matches of Kleene-starred

DARPEs,

• vertex/edge variables bound in the scope of Kleene

star, and

• accumulators of type ListAccum<T>,
ArrayAccum<T> (for any type T),
as well as SumAccum<string>.

Path variables can bind to an entire path, as opposed to indi-

vidual edges or vertices. An example syntax (inspired by the

Cypher, PGQL and Gremlin languages), is p = :s − (E> . <
D)− :t , where p is a variable binding to each of the paths that

satisfy the pattern on the right hand side of the assignment.

Support for path variables was advocated by the G-CORE

manifesto [3], it is provided by the above-mentioned lan-

guages, and it is adopted in the SQL/PGQ and GQL standard

drafts. GSQL does not yet support them, but we plan to do

so in early 2020 towards alignment with the standards. So

far, we felt little pressure to introduce path variables due

to the existence of accumulators in GSQL: they often allow

one to avoid the manipulation of paths as first-class citi-

zens and when unavoidable, ListAccum, ArrayAccum and

SumAccum<string> accumulators can simulate them.

An example of variables inside the scope of Kleene stars

is the pattern :s − (E>: e ) ∗ − :t , where edge variable e has
multiple bindings for any satisfying path p, namely one for

each edge of p.

Theorem 7.1. Under all-shortest-paths semantics, the tract-
able class admits polynomial time evaluation in the size of the
graph.

Note that the expression complexity is exponential (i.e. eval-
uation may be exponential in the size of the query), but the

query size is negligible compared to the graph size and can

be treated as a constant. This is no worse than relational

query evaluation, from which we inherit this lower bound.

The proof is sketched in Appendix A.

7.1 All-Shortest-Path Semantics in Practice

We report on a simple experiment that illustrates the benefit

of selecting the all-shortest-paths semantics and accumulator-

based aggregation, showing that it is possible to exploit the

potential for efficient evaluation given by Theorem 7.1. We

also show that this potential is currently not exploited in

state of the art.
4

The experiment confirms that for the tractable class, Tiger-

Graph query execution scales polynomially with the size of

the graph even when accounting for exponentially many

paths, because instead of materializing them it only counts

them, which is a polynomial task according to Theorem 6.1.

In contrast, non-repeating semantics (the edge flavor, as rep-

resented by the default semantics of the reference system

Neo4j) scales exponentially.

Our findings also suggest an explanation for the fact that

all-shortest-paths semantics has not yet emerged as the clear

preference for a default semantics in either Neo4j’s Cypher

or in the standardization debate (which uses the experiences

of Neo4j’s developer community as a significant data point).

Indeed in Neo4j’s enterprise edition, all-shortest-paths se-

mantics is supported if explicitly demanded by the developer,

but with a warning that it might be expensive (no such warn-

ing is given for the default semantics). This gives developers

4
We remark that the goal of this paper is not the comprehensive perfor-

mance evaluation of TigerGraph, which depends on much more than its

aggregation support and pattern semantics. Nor is it the comparison with

its peer systems. Our focus is limited to describing aggregation support

in TigerGraph and on showing how our design choices are applicable to

any pattern-based declarative graph query language. See [21] for a third-

party-conducted, comprehensive evaluation of TigerGraph and Neo4j using

the Linked Data Benchmark Council’s (LDBC) Social Network Benchmark

(SNB) [16]. While TigerGraph is shown to generally outperform Neo4j,

often significantly, the benchmark results do not isolate the contribution of

aggregation performance.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

387



the impression that non-repeated edge semantics is more

efficient than all-shortest-paths, an impression strengthened

by the actually observed running time performance: in our

experiment, Neo4j always runs queries significantly faster

under non-repeated edge semantics than under all-shortest-

paths semantics.

Data. The experiment was conducted on a Diamond Chain

graph like the one described in Example 11 and depicted in

Figure 7. We loaded a 30-diamond graph, which is by all stan-

dards toy-sized: 91 vertices, 120 edges, with vertices carrying

only a ’name’ attribute of type string, and edges carrying

no attributes. All involved vertices had type V (“label” V in

Neo4j terminology) and all involved edges had type E.

Queries. Wedefined the family of queries {Qn }1≤n≤30, where

Qn counts the paths from v0 to vn . Recall from Example 11

that for this graph and for each queryQn , the three semantics

(non-repeated vertex/edge and all-shortest-paths) coincide

and yield 2
n
paths, thus facilitating the check for query eval-

uation correctness.

Varying n from 1 to 30, we measured the running time

of Qn on the diamond graph in Neo4j under the default

non-repeated edge semantics, and compared it with the run-

ning time in TigerGraph under the all-paths-semantics, to

confirm their the different growth rates predicted by their

asymptotic complexity. We next ran the queries in Neo4j

under all-shortest-path semantics, expecting to see a similar

growth rate as in TigerGraph.

The query family is expressible in GSQL as a parameter-

ized query, with the parameters providing the names of the

desired source, respectively target vertex.

CREATE QUERY Qn(string srcName, string tgtName) {

SumAccum<int> @pathCount;

R = SELECT t

FROM V:s -(E>*)- V:t

WHERE s.name = srcName AND t.name = tgtName

ACCUM t.@pathCount += 1;

PRINT R[ R.name, R.@pathCount ];

}

The Cypher queries are given below, instantiated for Qn ,

with Qnre
n denoting the query used to specify Qn under non-

repeated edge semantics, and with Q
asp
n the query used to

specify Qn under all-shortest-paths semantics.

Qnre
n : MATCH (x0{name:’v0’})-[:E*]->(xn{name:’vn’})

RETURN xn.name, sum(1) as pathCount

Q
asp
n : MATCH allShortestPaths (

(x0{name:’v0’})-[:E*]->(xn{name:’vn’})

)

RETURN xn.name, sum(1) as pathCount

n path Qnre
n Qasp

n n path Qnre
n Qasp

n
count (ms) (ms) count (ms) (ms)

1 2 2 2 14 16384 161 206

2 4 2 2 15 32768 340 407

3 8 2 2 16 65536 661 870

4 16 2 3 17 131072 1356 1841

5 32 2 3 18 262144 2743 3911

6 64 2 3 19 524288 5631 8345

7 128 4 4 20 1048576 11618 17475

8 256 4 5 21 2097152 23119 42749

9 512 7 10 22 4194304 50189 –

10 1024 12 14 23 8388608 103970 –

11 2048 22 23 24 16777216 205575 –

12 4096 39 42 25 33554432 417026 –

13 8192 75 83

Table 1: Neo4j running times in milliseconds

What We Measured. In all cases, we report the warm-

cache running times observed after the initial loading of the

graph into memory (where it fits easily), without flushing

the cache between queries. We set the timeout at 10 minutes.

Results. To study the growth ratewithn under non-repeated
edge semantics, we ran each Qnre

n in Neo4j. The observed

running times start at 2 ms for Q1, initially remaining in the

range of a few milliseconds. Once n exceeds 8, for each incre-

ment of n we clearly observe a doubling of the running time,

from 4 milliseconds for Qnre
8

to 6.95 minutes for Q25. For

n ≥ 25, the queries timed out. This confirms the exponential

growth rate of the evaluation algorithm under non-repeated

edge semantics. See Table 1, column 3.

We repeated the experiment in TigerGraph, where the

queries ran under all-shortest-paths semantics. All queries

completed within 10 ms. This is not surprising, as careful

analysis reveals that for this graph, our evaluation algorithm

runs in linear time in the graph size.

We next returned to Neo4j, running the family Q
asp
n of

queries under all-shortest-paths semantics. We observed that

the Neo4j browser issues a warning that this is an expensive

semantics and the recommendation to set a bound on the

length of the desired path. Indeed when running the queries,

we observed the curve in column 4, which grows significantly

faster than for the non-repeating edge semantics, reaching

timeout at n = 22, with Q
asp
21

running in roughly 42 seconds.

See Table 1, column 4.

Platform. The experiment was run on a dedicatedMacBook

Pro produced in 2018, with 1 Intel Core i5 processor with

4 cores, 16GB or RAM, running MacOS Mojave. We used

a Neo4j Desktop 1.2.1 downloaded in October 2019, with

Neo4j’s Enterprise Edition Server 3.5.6 and Browser version:

3.2.20. We made sure to disable the maximum heap and page

buffer limits, allowing Neo4j server to use the entire avail-

able RAM. We ran the pre-release version of TigerGraph 3.0,

scheduled for release in early Q2 of 2020.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

388



Large-Scale Experiments. We confirmed the observed

trend by running experiments over the Social Network Bench-

mark (SNB) provided by the leading independent graph

benchmarking authority, the Linked Data Benchmarking

Consortium (LDBC) [16]. SNB provides a graph generator

whose schema and statistics reflect real-life social networks.

We ran the IC family of queries from the benchmark under

both semantics (using TigerGraph for all-shortest-paths and

Neo4j for non-repeated-edges). To observe the effect of the

path length, we modified those queries that mention cross

KNOWS edges between person, from the original 2 to 4 (queries

were not modified it they didn’t cross this edge type). The

queries were run on graphs of scale factor 1 (1GB), 10 (10

GB) and 100 (100GB), on an Amazon EC2 instance of type

r4.8xlarge.

TG size hops ic3 ic5 ic6 ic9 ic11

1 2 0.5s 0.52s 1.39s 1s 0.34s

3 1.2s 1.03s 1.70s 3.5s 0.47s

4 0.60s 1.03s 1.77s 3.49s 0.44s

10 2 2.03s 2.13s 4.13s 4.71s 0.52s

3 9.15s 7.51s 2m27s 42.63s 0.5s

4 2.16s 7.6s 2m30s 43.80s 0.62s

100 2 5.8s 5.15s 4.8s 8.88s 0.9s

3 1m6s 1m26s 2m13s 4m21s 1.57s

4 8.96s 2m20s 2m34s 6m55s 1.13s

Neo size hops ic3 ic5 ic6 ic9 ic11

1 2 1.6s 3.7s 1.9s 6.1s 1s

3 3s 8.6s 3.8s 15.7s 1.7s

4 31s 8.5s 43s 15.5s 1.4s

10 2 8.44s 18.00s 1.9s 38.6s 1s

3 28.78s 1m16s 3m52s 2m26s 1.8s

4 5m56s 1m20s 9m22s 2m31s 5.5s

100 2 4m52s 33.47s 36m57s 1m32s 1.12s

3 - 12m49s - 24m49s 5.88s

4 - 14m23s - 24m58s 39.73s

We observe that the results of the queries are the same

under both semantics for this data set, yet the non-repeated-

edge evaluation leads to repeated (60 minute) timeout on

the largest graph, and in general to exponential trends on

queries ic3 and ic11, which are those affected by the increased

number of KNOWS hops.

8 ACCUMULATOR-BASED VS SQL-STYLE

AGGREGATION

Themain focus of this paper is not on comparing accumulator-

based aggregation against relational SQL-style aggregation.

Accumulators are meant as a means to achieve powerful

and efficient composition results by adorning vertices and

graphs with computed state shared between query blocks.

However, it turns out that, as a side-effect, accumulators

also provide the ability to express flexible aggregation which

can be cumbersome and even inefficient to express in con-

ventional SQL style. First, we substantiate our claim that,

as far as expressive power is concerned, accumulator-based

aggregation subsumes conventional one.

Simulating SQL-style Aggregation. Note that for each

built-in aggregation function of SQL, GSQL features an accu-

mulator type. Moreover, SQL group-by aggregation can be

expressed using GSQL’s GroupByAccum accumulator type,

which specifies the values of the (possibly composite) group

key and a list of nested accumulators, one for each of the

desired aggregates.

Example 12 (SQL-Style Aggregation via Accumula-

tors). Consider a conventional SQL group-by aggregation
specified as

SELECT k1,k2,k3,sum(a1),min(a2),avд(a3)
...
GROUP BY k1,k2,k3

with k1,a1,a2,a3 of floating point, k2 of string and k3 of times-
tamp type. In GSQL, this is achieved by the ACCUM clause

ACCUM A += (k1,k2,k3 → a1,a2,a3)
where A is declared as an accumulator of type
GroupByAccum <float, string, ts,

SumAccum<float>,
MinAccum<float>, AvgAccum<float> >.

Multiple group-by aggregations, such as the CUBE, ROLLUP
and GROUPING SET extensions of the SQL GROUP BY clause
are also eminently expressible using accumulators. They each
compute the aggregation for several subsets of the grouping
attributes, outer unioning the results of each grouping. The
GROUPING SETS extension is the most flexible one, allowing
targeted selection of grouping attribute subsets. For instance,
replacing the above GROUP BY clause with

GROUP BY GROUPING SETS ((k1,k2), (k3))

can be simulated in GSQL by
ACCUM A += (k1,k2,null → a1,a2,a3),

A += (null ,null ,k3 → a1,a2,a3)

Similarly, the CUBE (k1,k2,k3) extension can be simulated with
8 accumulator assignments (one for each subset of {k1,k2,k3}),
and the ROLLUP (k1,k2,k3) extension with 4 accumulator as-
signments, (one each for {k1,k2,k3}, {k1,k2}, {k1}, {}). □

Though the current SQL/PGQ and GQL standard drafts, as

well as the other reference graph query languages they are

informed by support only the equivalent of the unextended

GROUP BY clause, Example 12 shows that accumulators facil-

itate the straightforward addition of the CUBE, ROLLUP and

GROUPING SET keywords as syntactic sugar that preserves

the intended single-pass execution.

Beyond SQL-style Aggregation. Certain accumulation-

based aggregation classes cannot be expressed in SQL style,

or, if expressible, doing so is inefficient as it turns single-pass

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

389

https://aws.amazon.com/ec2/instance-types/


accumulator-based aggregation into multi-pass SQL-style

plans. The inexpressible class includes GSQL queries that do

not aggregate groups into scalars, instead storing them in

nested collections using SetAccum, BagAccum, MapAccum or
HeapAccum accumulators, possibly nested at arbitrary depth

via MapAccum accumulators. The inefficiently expressible

class involves single-pass queries that compute the result

of grouping aggregation directly into separate tables, as de-

scribed in Examples 4 and 5. Simulating these in SQL, even

using the most flexible grouping control offered by GROUP-

ING SETS, still requires the materialization and multi-pass

post-processing of the resulting outer union table to separate

it into the target tables.

We highlight another difference which, despite its appar-

ent subtlety, has considerable impact on performance as

shown experimentally below. Suppose we wish to aggregate

according to several grouping sets, with different aggrega-

tions per grouping set, depositing the results in separate

tables (accumulators). For SQL-style aggregation, we ignore

for now the above-signaled inefficiency of having to post-

process the resulting union table to separate results, and

we focus on a new one. Notice that CUBE and ROLLUP se-

mantics result in wastefully aggregating for many unwanted

grouping sets, (GROUPING SETS avoids this problem). How-

ever, all aggregation flavors suffer from another inefficiency,

namely having to wastefully compute for each grouping

set all aggregates, including the ones destined for another

grouping set.

Example 13 (WastefulAggregationperGrouping Set).

Revisiting Example 12, assumewewish to compute for grouping
sets (k1), (k2), (k3) a sum, min and avg aggregate, respectively.
The GROUPING SET semantics would force the computation of
all three aggregates (of which two are unwanted) per grouping
set. In contrast, in GSQL we can dedicate a separate accumula-
tor Ai to each grouping set i , each Ai performing only the de-
sired aggregation: ACCUMA1 += (k1 → a1),A2 += (k2 → a2),A3

+= (k3 → a3) □

Quantifying Wasteful Aggregation. For an experiment

that quantifies the savings of wasteful aggregation due to

GSQL-style accumulator-based aggregation, see Appendix B.

9 RELATEDWORK

Accumulators. The precursor of GSQL’s accumulator ab-

straction was pioneered in GreenMarl [15], a domain-specific

language for programming graph algorithms. GreenMarl

is an imperative language for specifying graph navigation

via single-edge/breadth-first/depth-first traversal primitives.

The nodes visited during the traversal can be adorned with

fresh, mutable node properties into which values can be ac-

cumulated, towards a well-defined result when the same

node is visited repeatedly during a traversal. The type of

these node properties is restricted to primitive types and

collections of vertices and edges. GSQL of course is highly

declarative so it does not have any notion of “traversal” or

“visited node” as these are inherently imperative. Our design

contribution consists in adapting the concept to work with

a declarative semantics based on pattern matching. An addi-

tional design contribution involves our generalization of the

supported accumulator type to a richer type system includ-

ing, beyond primitive types, all collection types supported by

the ODL [6] object-oriented ODMG standard (sets, bags, lists,

priority queues, maps of recursively nested accumulators)

as well as user-defined accumulators.

Patterns. To date, only TigerGraph’s and the upcoming

GQL standard’s data model support graphs that mix directed

and undirected edges (SQL/PGQ and informing products

work on directed graphs only). Our product is the only one to

adapt the regular expression syntax accordingly, in the shape

of DARPEs. When limiting focus to directed graphs, regular

expression patterns are the samemodulo superficial syntactic

differences but deep semantic differences, as explained in

Section 6.1. Our engine features a unique polynomial-time

implementation of this semantic flavor.

10 CONCLUSIONS

We have described the unique design choices behind ag-

gregation support in TigerGraph’s query language GSQL,

showing that pattern-based declarativity is compatible with

accumulator-based aggregation. Moreover, when combined

with all-shortest-paths semantics, it leads to tractability of

evaluation of an important class of queries.

While the ideas related to the accumulation paradigm are

presented using GSQL as vehicle, they port straightforwardly

to any pattern-based query language in circulation. They are

particularly relevant to the upcoming graph query language

standards SQL/PGQ and GQL.

A PROOF OF THEOREM 7.1

Proof sketch. This result follows from two key observations.

1. Compressed representation of the binding table. While

the binding table used to define the semantics of the FROM

clause (Section 4.1) may conceptually have exponential size,

it can always be represented in compressed form in poly-

nomial space and computed in polynomial time. Indeed, for

tractable-class queries, the number of distinct tuples of the

binding table is bounded by a polynomial in the size of the

graph since variables can bind only to individual vertices

or edges (the polynomial’s degree is the number of vari-

ables, hence the exponential expression complexity). The

only source of exponentiality in the size of the graph is the

multiplicity of a binding tuple β , since the former depends

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

390



on the count of distinct choices of shortest paths that wit-

ness β . This count, though worst-case exponential in the size

of the graph, can be represented in polynomial space and,

according to Theorem 6.1, it can be computed in polynomial

time. One can therefore compute in polynomial time a com-

pressed representation of the binding table that assigns to

each distinct binding tuple its multiplicity.

2. Simulation of duplicate ACCUM clause executions in a
single execution. Query semantics dictates that the ACCUM

clause be executed once for each row of the binding table.

For a binding β occurring with multiplicity µ, that means

running µ identical executions of the ACCUM clause, with

variables instantiated according to the same β . Since µ is

potentially exponential in the size of the graph, we avoid

this, running instead a single, modified execution. Instead

of duplicating µ times the input operation of a value i into
an accumulator A, the modified execution performs a single

input, as follows: ifA is multiplicity-insensitive (e.g. has type

Min-, Max-, Set-, Or-, AndAccum or MapAccum with

multiplicity-insensitive nested accumulators), i is inserted
just once; if A has type SumAccum of numeric type, instead

of i the modified execution inserts µi just once. □

B QUANTIFYINGWASTEFUL SQL-STYLE

AGGREGATION

Over the course of the graph traversal, the overhead wasted

in unwanted aggregate computation can add up to mea-

surable performance penalty. We illustrate this by an ex-

periment that compares the performance of two styles of

multi-aggregation: accumulator-based, and SQL GROUPING

SET (this is the most efficient among the SQL options as it

avoids computing undesirable grouping sets – though, like

all others, it cannot avoid computing unwanted aggregates

per grouping set).

The Data. Towards working with a scalable graph, we

adopted LDBC SNB benchmark, using graphs ranging from

size 1GB to 1TB.

The Queries. We adapted the SNB-provided queries to

compute multiple aggregates. We report here on one such

query (its measured behavior is representative for the others).

The query navigates from persons to the city they live in and

to the comments they liked, as long as published between

2010 and 2012 (persons, cities and comments are modeled as

vertices, the relationships between them as edges). It com-

putes three grouping sets, each with its own aggregations:

(i) per (comment publication year), it computes

• the 20 most recent comments, favoring the longest

ones in tie breaks,

• the 20 earliest comments, favoring the longest,

• the 20 longest comments, favoring the most recent,

• the 20 shortest comments, favoring the most recent,

• the top 10 comments by oldest authors, favoring the

longest,

• the top 10 comments by youngest authors, favoring

the longest.

(ii) per (author’s city, browser type, publication year, month,

comment length), it counts the comments.

(iii) per (author’s city, gender, browser type, publication

year and month), it averages comment length.

We expressed the query in GSQL, conforming to two

styles:

Qдs mimics SQL GROUPING SET aggregation using ac-

cumulators as in Example 12. Conforming to GROUPING

SET semantics,Qдs computes all 8 aggregates for each of the

three grouping sets. The query is published on GitHub.

Qacc computes for each grouping set only the desired

aggregates, using appropriate accumulators as shown in Ex-

ample 13. The query is published on GitHub.

What We Measured. We measured the running times

of Qдs and Qacc on graphs generated by SNB’s generator, at

scale factors SF-1 (1GB), SF-10 (10GB), SF-100 (110GB) and

SF-1000 (1TB). For each graph, we ran each query 5 times,

computing the median running time.

The Results. We observed the following running times

for the queries (all expressed in seconds), showing that, on

graph sizes ranging from 1GB to 1TB, accumulators speed

up aggregation by a factor of up to 3x when compared to

SQL-style aggregation.

scale factor Qдs Qacc speedup

median time median time

1 4.841 1.949 2.483

10 59.87 22.146 2.703

100 440.388 167.417 2.630

1000 2972.684 973.538 3.053

ThePlatform. We loaded the graphs (and ran the queries)

at scale factors 1, 10 and 100 on an Amazon EC2 instance of

type r4.8xlarge. For scale factor 1000, we used a Microsoft

Azure 3-node cluster, with each node of type E64a v4 (both

graph storage and query execution were distributed trans-

parently by TigerGraph’s engine, in the sense that the user

query did not need to be edited).

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

391

https://github.com/tigergraph/ecosys/blob/experiment/sigmod/queries/tigergraph/groupsets/q-groups.gsql
https://github.com/tigergraph/ecosys/blob/experiment/sigmod/queries/tigergraph/groupsets/q-aggs.gsql
https://aws.amazon.com/ec2/instance-types/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/


REFERENCES

[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and

Janet Wiener. 1997. The Lorel Query Language for Semistructured

Data. Int. J. on Digital Libraries 1, 1 (1997), 68–88.
[2] Amazon. [n. d.]. Amazon QLDB PartiQL.

https://docs.aws.amazon.com/qldb/latest/developerguide/ql-

reference.html.

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George

H. L. Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies,

Stefan Plantikow, Juan F. Sequeda, Oskar van Rest, and Hannes Voigt.

2018. G-CORE: A Core for Future Graph Query Languages. In Pro-
ceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018. 1421–
1432. https://doi.org/10.1145/3183713.3190654

[4] Renzo Angles, Marcelo Arenas, Pablo Barcelo, Aidan Hogan, Juan

Reutter, and Domagoj Vrgoc. 2017. Foundations of Modern Query

Languages for Graph Database. Comput. Surveys 50, 5 (2017).
[5] Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Winograd.

1998. What can you do with aWeb in your Pocket? IEEE Data Eng. Bull.
21, 2 (1998), 37–47. http://sites.computer.org/debull/98june/webbase.

ps

[6] R. G.G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David

Jordan, Craig Russell, Olaf Schadow, Torsten Stanienda, and Fernando

Velez (Eds.). 2000. The Object Data Management Standard: ODMG 3.0.
Morgan Kaufmann. ISBN 1-55860-647-5.

[7] CouchBase. [n. d.]. https://www.couchbase.com/products/n1ql.

[8] DataStax. [n. d.]. Gremlin. https://www.datastax.com/products/datastax-

graph.

[9] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. Tiger-

Graph: A Native MPP Graph Database. CoRR abs/1901.08248 (2019).

arXiv:1901.08248 http://arxiv.org/abs/1901.08248

[10] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2020. Aggregation

Support for Modern Graph Analytics in TigerGraph. CoRR (2020).

[11] FaceBook. [n. d.]. GraphQL. https://graphql.org/.

[12] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu.

1997. A Query Language for a Web-Site Management System. ACM
SIGMOD Record 26, 3 (1997), 4–11.

[13] A. Gibbons. 1985. Algorithmic Graph Theory. Cambridge University

Press.

[14] W3C SparQL Working Group. 2018. SparQL.

[15] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. 2012.

Green-Marl: a DSL for easy and efficient graph analysis. In Proceed-
ings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2012, London,
UK, March 3-7, 2012. 349–362. https://doi.org/10.1145/2150976.2151013

[16] Linked Data Benchmark Consortium (LDBC). [n. d.]. Social Network

Benchmark (SNB). http://ldbcouncil.org/developer/snb.

[17] Leonid Libkin, Wim Martens, and Domagoj Vrgoc. 2016. Querying

Graphs with Data. J. ACM 63, 2 (2016), 14:1–14:53. https://doi.org/10.

1145/2850413

[18] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. 1996. Query-

ing the World Wide Web. In PDIS. 80–91.
[19] A. O. Mendelzon and P. T. Wood. 1995. Finding regular simple paths in

graph databases. SIAM J. Comput. 24, 6 (December 1995), 1235–1258.

[20] Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. 2014.

The SQL++ Semi-structured Data Model and Query Language: A Ca-

pabilities Survey of SQL-on-Hadoop, NoSQL and NewSQL Databases.

CoRR abs/1405.3631 (2014). arXiv:1405.3631 http://arxiv.org/abs/1405.

3631

[21] Florin Rusu and Zhiyi Huang. 2019. In-Depth Benchmarking of Graph

Database Systems with the Linked Data Benchmark Council’s (LDBC)

Social Network Benchmark (SNB). UC Merced Technical Report,

arXiv:1907.07405v1 [cs.DB]. https://arxiv.org/pdf/1907.07405.pdf.

[22] ISO SC32/WG3. [n. d.]. SQL Property Graph Query Extension,

SQL/PGQ. Extension of ISO SQL standard.

[23] ISO SC32/WG3. 2019. Graph Query Language GQL.

https://www.gqlstandards.org/.

[24] Amit Singhal. 2001. Modern Information Retrieval: A Brief Overview.

IEEE Data Eng. Bull. 24, 4 (2001), 35–43. http://sites.computer.org/

debull/A01DEC-CD.pdf

[25] Neo Technologies. [n. d.]. The Cypher Graph Query Language.

https://neo4j.com/developer/cypher-query-language/.

[26] Neo Technologies. [n. d.]. Neo4j. https://www.neo4j.com/.

[27] TigerGraph. [n. d.]. TigerGraph. https://www.tigergraph.com/.

[28] Apache TinkerPop. 2018. The Gremlin Graph Traversal Machine and

Language. https://tinkerpop.apache.org/gremlin.html.

[29] Oskar van Rest, Sungpack Hong, Jinha Kim, XumingMeng, and Hassan

Chafi. 2016. PGQL: a property graph query language. In Proceedings
of the Fourth International Workshop on Graph Data Management Ex-
periences and Systems, Redwood Shores, CA, USA, June 24 - 24, 2016. 7.
https://doi.org/10.1145/2960414.2960421

[30] World Wide Web Consortium (W3C). [n. d.]. XPath Language.

https://www.w3.org/TR/xpath-31/.

Industry 1: Graph Databases and Knowledge Base  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

392

https://doi.org/10.1145/3183713.3190654
http://sites.computer.org/debull/98june/webbase.ps
http://sites.computer.org/debull/98june/webbase.ps
https://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2850413
https://doi.org/10.1145/2850413
https://arxiv.org/abs/1405.3631
http://arxiv.org/abs/1405.3631
http://arxiv.org/abs/1405.3631
https://arxiv.org/pdf/1907.07405.pdf
http://sites.computer.org/debull/A01DEC-CD.pdf
http://sites.computer.org/debull/A01DEC-CD.pdf
https://doi.org/10.1145/2960414.2960421

	Abstract
	1 Introduction
	2 Declarativity via Patterns
	3 Aggregation via Accumulators
	4 Semantics
	4.1 FROM Clause
	4.2 SQL-Borrowed Clauses
	4.3 ACCUM Clause
	4.4 POST_ACCUM Clause

	5 Composition via Accumulators
	6 Interference of Pattern and Aggregation Semantics
	6.1 Path Legality Flavors

	7 Avoiding Path Materialization Via Path Counting
	7.1 All-Shortest-Path Semantics in Practice

	8 Accumulator-Based vs SQL-Style Aggregation
	9 Related Work
	10 Conclusions
	A Proof of Theorem 7.1
	B Quantifying Wasteful SQL-Style Aggregation
	References



