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ABSTRACT
In emerging applications such as blockchains and collab-
orative data analytics, there are strong demands for data
immutability, multi-version accesses, and tamper-evident
controls. To provide e�cient support for lookup and merge
operations, three new index structures for immutable data,
namely Merkle Patricia Trie (MPT), Merkle Bucket Tree
(MBT), and Pa�ern-Oriented-Split Tree (POS-Tree), have
been proposed. Although these structures have been adopted
in real applications, there is no systematic evaluation of
their pros and cons in the literature, making it di�cult for
practitioners to choose the right index structure for their
applications.

To alleviate the above problem, we present a comprehen-
sive analysis of the existing index structures for immutable
data, and evaluate both their asymptotic and empirical perfor-
mance. Speci�cally, we show that MPT, MBT, and POS-Tree
are all instances of a recently proposed framework, dubbed
Structurally Invariant and Reusable Indexes (SIRI). We propose
to evaluate the SIRI instances on their index performance
and deduplication capability. We establish the worst-case
guarantees of each index, and experimentally evaluate all
indexes in a wide variety of se�ings. Based on our theoreti-
cal and empirical analysis, we conclude that POS-Tree is a
favorable choice for indexing immutable data.

1 INTRODUCTION
Accurate history of data is required for auditing and track-

ing purposes in numerous practice se�ings. In addition, data
in the cloud is o�en vulnerable to malicious tampering. To
support data lineage veri�cation and mitigate malicious data
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Figure 1: Data storage and transmission time im-
proved by deduplication

manipulation, data immutability is essential for applications,
such as banking transactions and emerging decentralized
applications (e.g., blockchain, digital banking, and collabora-
tive analytics). From the data management perspective, data
immutability leads to two major challenges.

First, it is challenging to cope with the ever-increasing
volume of data caused by immutability. An example is the
sharing and storage of the data for healthcare analytics. Data
scientists and clinicians o�en make relevant copies of current
and historical data in the process of data analysis, cleansing,
and curation. Such replicated copies could consume an enor-
mous amount of space and network resources. To illustrate,
let us consider a dataset that has 100,000 records initially,
and it receives 1,000 record updates in each modi�cation.
Figure 1 shows the space and time required to handle the in-
creasing number of versions1. Observe that (i) the space and
time overheads are signi�cant if all versions are stored sepa-
rately, and (ii) such overheads could be considerably reduced
if we can deduplicate the records in di�erent versions.

�e second challenge is that in case a piece of data is tam-
pered with (e.g., malicious manipulation of crypto-currency
wallets or unauthorized modi�cations of patients’ lab test
data), we have to detect it promptly. To address this chal-
lenge, the system needs to incorporate tamper-resistant tech-
niques to support the authentication and recovery of data,
to ensure data immutability. Towards this end, a typical

1Run with Intel(R) Xeon(R) E5-1620 v3 CPU and 1 Gigabit Ethernet card.
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approach is to adopt cryptographic methods for tamper miti-
gation, which, however, considerably complicates the system
design.

Most existing data management solutions tackle the above
two challenges separately, using independent orthogonal
methods. In particular, they typically (i) ensure tamper evi-
dence using cryptographic �ngerprints and hash links [30],
and (ii) achieve deduplication with delta encoding [23, 27].
Such decoupled design incurs unnecessary overheads that
could severely degrade the system performance. For example,
in state-of-the-art blockchain systems such as Ethereum [3]
and Hyperledger [7], tamper evidence is externally de�ned
and computed on top of the underlying key-value store (e.g.,
LevelDB [8] or RocksDB [11]), which leads to considerable
processing costs. In addition, delta-encoding-based dedupli-
cation (e.g., in Decibel [27]) requires a reconstruction phase
before an object can be accessed, which renders data access-
ing rather ine�cient.

Motivated by the above issues, recent work [7, 44, 45] has
explored data management methods to provide native sup-
ports for both tamper evidence and deduplication features.
�is results in three new index structures for immutable data,
namely, Merkle Patricia Trie (MPT) [45], Merkle Bucket Tree
(MBT) [7], and Pa�ern-Oriented-Split Tree (POS-Tree) [44]. To
the best of our knowledge, there is no systematic compari-
son of these three index structures in the literature, and the
characteristics of each structure are not fully understood.
�is renders it di�cult for practitioners to choose the right
index structure for their applications.

To �ll the aforementioned gap, this paper presents a com-
prehensive analysis of MPT, MBT, and POS-Tree. Speci�cally,
we make the following contributions:

• We show that MPT, MBT, and POS-Tree are all in-
stances of a recently proposed framework, named
Structurally Invariant and Reusable Indexes (SIRI )
[44]. Based on this, we identify the common char-
acteristics of them in terms of tamper evidence and
deduplication.
• We propose a benchmarking scheme to evaluate SIRI

instances based on �ve essential metrics: their e�-
ciency for four index operations (i.e., lookup, update,
comparison, and merge), as well as their deduplica-
tion ratios, which is a new metric that we formulate
to quantify each index’s deduplication e�ectiveness.
We establish the worst-case guarantee of each index
in terms of these �ve metrics.
• We experimentally evaluate all three indexes in a va-

riety of se�ings. We demonstrate that they perform
much be�er than conventional indexes in terms of
the e�ectiveness of deduplication. Based on our ex-
perimental results, we conclude that POS-Tree is a
favorable choice for indexing immutable data.

�e rest of the paper is organized as follows. Section 2
presents the background and prior researches on the core
application properties. Section 3 presents SIRI , along with an
extended discussion on its signi�cance and the explanation
of three SIRI representatives. A theoretical analysis is con-
ducted in Section 4 to reveal the operational bounds of SIRI
while the experimental evaluation is reported in Section 5.
We conclude this paper in Section 6.

2 RELATEDWORK
We �rst discuss the background and several primary mo-

tivations leading to the de�nition of SIRI .

2.1 Versioning and Immutability
Data versioning has been widely employed for tolerating

failures, errors, and intrusions, as well as for analysis of
data modi�cation history. ElephantFS [38] is one of the �rst-
generation �le systems with built-in multi-version support.
Successor systems like S4 [42], CVFS [40], RepareStore [47]
and OceanStore [25] improve the early design by maintain-
ing all versions in full scope and upon each update operation.
In databases, data versioning techniques are used for trans-
actional data access. Postgres [17, 41], for example, achieved
comparable performance to the database systems without
versioning support. Fastrek [19] enhanced Postgres with
intrusion tolerance by maintaining an inter-transaction de-
pendency graph based on the versioned data and relying on
the graph to resolve data access con�icts. Multi-versioning is
also used to provide snapshot isolation in database systems
[16, 33] although such systems usually do not store the full
history versions. To directly access multi-versioned data, a
number of multi-version data structures can be applied from
the literature, such as multi-version B-tree [26, 35], temporal
hashing [24] and persistent data structures [31, 34].

Immutable data are becoming versatile in emerging appli-
cations. For example, blockchains [3, 7, 20, 21, 30, 36] main-
tain immutable ledgers, which keep all historical versions of
the system status. Similarly, collaborative applications [6, 18]
maintain the whole evolutionary history of datasets and
derived analytic results, which enables provenance-related
functionalities, such as tracking, branching, and rollback. A
direct consequence of data immutability is that all stored
data are inherently multi-versioned upon being amended.
�ere exist a wide range of storage systems handling such
data in either a linear manner, such as multi-version �le
systems [38, 40, 42] and temporal databases [14, 37, 43], or a
non-linear manner, such as version control systems including
git [4], svn [12] and mercurial [9], and collaborative manage-
ment databases including Decibel [27] and OrpheusDB [23].
Git and Git-like systems are also used to manage the history
and branches of datasets to achieve e�cient query and space
utilization [5, 18, 39].
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2.2 Data-Level Deduplication
Deduplication approaches have been proposed to reduce

the overhead of storage consumption when maintaining
multi-versioned data. For example, Decibel [27] uses delta
encoding, whereby the system only stores the di�erences,
called delta, between the new version and the previous ver-
sion of data. Consequently, it is e�ective to manage data
versions when the deltas are small, despite the extra cost in-
curred during data retrieval for reconstructing the speci�ed
version of data. However, it is ine�ective in removing dupli-
cates among non-consecutive versions or di�erent branches
of the data. �ough some algorithms choose a more prece-
dent version that has the smallest di�erences as the parent
to improve the e�ciency of the deduplication, it involves
additional complexity to reconstruct a version.

To enable the removal of duplicates among any data ver-
sions, chunk-based deduplication can be applied. Unlike delta
encoding, this approach works across independent objects. It
is widely used in �le systems [32, 46], and is a core principle
of git. In this approach, �les are divided into chunks, each
of which is given a unique identi�er calculated from algo-
rithms like collision-resistant hashing. chunks with the same
identi�er can be eliminated. Chunk-based deduplication is
highly e�ective in removing duplicates for large �les that
are rarely modi�ed. In case an update leads to a change of all
subsequent chunks, i.e., the boundary-shi�ing problem [22],
content-de�ned chunking [29] can be leveraged to avoid
expensive re-chunking.

2.3 Tamper Evidence
Applications such as digital banking [13] and blockchain [3,

7, 30] demand the system should maintain the accurate his-
tory of data, protect their data from malicious tampering, and
trigger alerts when malicious tampering occur. To serve such
purposes, veri�able databases (i.e., Concerto [15], QLDB [1])
and blockchain services (i.e., Microso� Azure Blockchain [2])
o�en use cryptographic hash functions (e.g., SHA) and Merkle
trees [28] to verify the data integrity. SIRI , with the built-in
support for tamper evidence, is a good candidate for the
above systems.

A Merkle tree is a tree of hashes, where the leaf nodes
are the cryptographic hashes calculated from blocks of data
while the non-leaf nodes are the hashes of their immediate
children. �e root hash is also called the “digest” of the
data. To verify a record, it requires a “proof” of data, which
contains the nodes on the path to the root. �e new root
hash is recalculated recursively and equality is checked with
the previously saved digest.
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Figure 2: TwoB+-trees containing the same entries but
with di�erent internal structures [44]

3 STRUCTURALLY INVARIANT AND
REUSABLE INDEXES

Structurally Invariant and Reusable Indexes (SIRI ) are a
new family of indexes recently proposed [44] to e�ciently
support tamper evidence and e�ective deduplication.

3.1 Background and Notations
In addition to basic lookup and update operations, the ulti-
mate goal of SIRI is to provide native data versioning, dedu-
plication and tamper evidence features. Consequently, data
pages in SIRI must not only support e�cient deduplication
(to tackle the amount of replication arising from version-
ing) but also cryptographic hashing (to facilitate tamper
evidence).

To be�er elaborate the SIRI candidates, we use the follow-
ing notations in the remaining of this paper. �e indexing
dataset is denoted as D = {D0,D1, ...,Dn} where Di rep-
resents its i-th version. I is employed to represent SIRI
structures, and I stands for one of its instances. �e key set
stored in I is set as R(I ) = {r1, r2, ..., rn}, where ri denotes
the i-th key. P(I ) = {p1,p2, ...,pn} stands for the internal
node set of I , where pi represents the i-th node.

3.2 Formal De�nition
We provide a formal and precise de�nition of SIRI adapted

from [44] as follows.

De�nition 3.1. An index class I belongs to SIRI if it has
the following properties:

(1) Structurally Invariant. If I and I ′ are two instances
of I, then P(I ) = P(I ′) ⇐⇒ R(I ) = R(I ′).

(2) Recursively Identical. If I and I ′ are two instances
of I and R(I ) = R(I ′) + r , where r < R(I ′), then
|P(I ) ∩ P(I ′)| � |P(I ) − P(I ′)|.

(3) Universally Reusable. For any instance I of I, there
always exists node p ∈ P(I ) and another instance I ′
such that |P(I ′)| > |P(I )|) and p ∈ P(I ′).

De�nition 3.1 states that SIRI must possess three proper-
ties. �e �rst property, Structurally Invariant, ensures that
the order of update operations does not a�ect the internal

3



structure of the index, while the second property, Recursively
Identical, guarantees the e�ciency when constructing a large
instance from small ones. �e third property, Universally
Reusable, secures that the nodes of the index could be shared
among di�erent instances. In practice, these properties can
be exploited to make SIRI time- and space-e�cient.

3.3 Extended Discussion
Recursively Identical and Universally Reusable are both

aimed at making the pages share-able among various in-
stances. However, they focus on di�erent aspects. �e former
a�ribute concentrates on providing performance improve-
ment when designing the indexes – updates do not bring in
harmful impacts since the performance is o�en dominated
by accessing a vast number of shared pages. �e la�er is to
secure the theoretical boundary of SIRI ’s performance. �e
higher the ratio of shared pages each instance gets, the be�er
performance SIRI could reach in terms of deduplication. In
the limiting case, where the dataset and indexing operations
are in�nite, every page in a SIRI instance could �nd its copy
used by other instances.

It is non-trivial to construct a SIRI instance from con-
ventional structures. Take the multi-way search tree as an
example. Such a structure is Recursively Identical since only
a small part of nodes is changed in the new version of the in-
stance when an update operation is performed. Further, the
usage of copy-on-write implementation naturally enables
node sharing among versions and branches. Hence, it can
be Globally Reusable when applying this technique. How-
ever, it may not be Structurally Invariant. Take B+-tree as
an example, Figure 2 illustrates that identical sets of items
may lead to variant structures. Meanwhile, hash tables are
not Recursively Identical when they require periodical recon-
structions as the entire structure may be updated and none
of the nodes can be reused.

Surprisingly, tries, or radix trees, can meet all the three
properties with copy-on-write implementation. Firstly, they
are Structurally Invariant since the position of the node only
depends on the sequence of the stored key bytes and conse-
quently, the same set of keys always leads to the same tree
structure. Secondly, being a multi-way search tree, they can
be Recursively Identical and Globally Reusable as mentioned
above. However, they may end up in higher tree heights,
leading to poor performance caused by increasing traversal
cost, as shown in Section 5.

Due to the appearance of the three properties, the adoption
of the aforementioned data-level deduplication approaches
can be seamlessly applied in index-level for SIRI . �e identi-
cal pages from di�erent index instances for multiple versions
of the data can be shared and therefore, the system can per-
sist only one copy to save space. Another bene�t of applying
index-level deduplication is that the system can access a

Search(8) Insert(10) encode(‘0’)   = 0x30 g
encode(‘1’)   = 0x31 g
…
encode(‘9’)   = 0x39 g
encode(‘10’) = 0x31 30 g

Node 5BN

0 1 2 3 4 5 6 7 8 9 a b c d e f g(value)
v1

Node 4
EP value

LN

g v8

Node 1
EP child hash
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3 Hash(Node 2)

Node 3
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LN

g v1

Node 2BN
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Null

Node 6
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LN

0g v10

… … …

EN
BN
LN

Extension Node
Branch Node

Leaf Node

EP Encoded Path

Figure 3: Merkle Patricia Trie (MPT)
version of the data directly from di�erent indexes and data
pages instead of experiencing a reconstruction phase from
the deltas. Overall, the nature of SIRI renders e�ective detec-
tion and removal of duplicates without prohibitive e�orts,
which conventional index structures can hardly o�er.

3.4 SIRI Representatives
In this section, we elaborate on the three representatives

of SIRI , namely MPT, MBT, and POS-Tree. As mentioned in
section 3.3, all representatives are Recursively Identical and
Globally Reusable being multi-way search trees and leverag-
ing a copy-on-write implementation of their nodes. Mean-
while, they are Structurally Invariant as stated in Section
3.4.1, 3.4.2, and 3.4.3.

3.4.1 Merkle Patricia Trie.
Merkle Patricia Trie (MPT) is a radix tree with crypto-

graphic authentication. Similar to the traditional radix tree,
the key is split into sequential characters, namely nibbles.
�ere are four types of nodes in MPT, namely branch, leaf ,
extension and null. �e structures of those nodes are illus-
trated in Figure 3: (1) branch node consists of a 16-element
array and a value. Each element, called “branch”, of the array
is indexing a corresponding child node and stores a nibble.
(2) leaf node contains a byte string, i.e., a compressed path
called “encodedPath”, and a value. (3) extension node also
contains encodedPath and a pointer to the next node. (4)
null node includes an empty string indicating that the node
contains nothing. Similar to Merkle Tree, the whole MPT
can be rolled up to a single cryptographic hash for tamper
evidence. �e most well-known usage of this data structure
is in Ethereum [3], one of the largest blockchain systems in
the world.

Lookup. �e lookup procedure for key “8” is illustrated
in Figure 3. �e key is �rst encoded as “0x38 g”. �en,
each character of the encoded key is used to match with the
encodedPath in an extension node, or to select the path in
a branch node, from le� to right. For this example, the �rst
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Node 1
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Node 6
h(B5) h(B6)

Node 7
h(B7) h(B8)

Search(8) Insert(10) hash(8) % 8 = 4
hash(10) % 8 = 7

Figure 4: Merkle Bucket Tree (MBT)

character “3” matches the root node’s encodedPath, therefore,
it navigates to its child, Node 2. �en it takes the branch “8”
since “8” equals to the second character in the encoded key.
Finally, the traversal reaches the leaf node and ends with the
value “v8” output.

Insert. To insert data in MPT, the index �rst locates the
position of the given key as in the lookup operation. Once
it reaches a null node, a leaf node containing the remain-
ing part of the encoded key and the value is created. For
example, in Figure 3, when we insert key “1” (“0x31 g”), if
branch “1” in Node 2 is empty, a new node (“g”, v1) is created
and pointed by branch “1”. In case there is a partial match
at extension node, a new branch node at diverging byte is
created, appended with original and new child. �e insertion
of key “10” in the �gure can illustrate this procedure, where
the path is diverged at Node 3. Hence, Node 3 is replaced by
Node 5 with a newly created Node 6 a�ached.

3.4.2 Merkle Bucket Tree.
Merkle Bucket Tree (MBT) is a Merkle tree built on top of

a hash table as shown in Figure 4. �e bo�om most level of
MBT is a set of buckets and the cardinality of the bucket set is
called capacity. Data entries are hashed to these buckets, and
the entries within each bucket are arranged in sorted order.
�e internal nodes are formed by the cryptographic hashes
computed from their intermediate children. �e number
of children an internal node has is called fanout. In MBT,
capacity and fanout are pre-de�ned and cannot be changed
in its life cycle.

Lookup. To perform an MBT index lookup, we �rst cal-
culate the hash of the target key and obtain the index of the
bucket where the data resides. Due to the copy-on-write
restrictions, we are unable to fetch the bucket directly and
hence we then use the bucket number to calculate the traver-
sal path from the root node to the leaf node. �e calculation
is generally a trivial reverse simulation of the complete multi-
way search tree search algorithm. For example in Figure 4,
key “8” falls into Bucket 4 a�er the hashing, and we accord-
ingly get all node index on the path starting from the leaf.

Finally, we follow the path to reach the bucket. �e records
in the bucket are scanned using binary search to �nd the
target key a�er the retrieval of the bucket node.

Insert. �e insert operation of MBT undergoes similar
procedures. It �rst performs a lookup to check the existence
of the target key. For example, the inserting key “10” falls
into Bucket 7. �en Bucket 7 is fetched following the lookup
process, and the key is inserted to Bucket 7 in ascending
order. Finally, the hashes of the bucket and the nodes are
recalculated recursively.

�e design of MBT undoubtedly takes the advantages of
Merkle tree and the hash table. On the one hand, MBT o�ers
tamper evidence with a low update cost since only the set of
nodes lying on the lookup path needs to be recalculated. On
the other hand, the data entries can be evenly distributed
due to the nature of the hash buckets in the bo�om level.

3.4.3 Pa�ern-Oriented-Split Tree.
Pa�ern-Oriented-Split Tree (POS-Tree) is a probabilis-

tically balanced search tree proposed in [44]. �e struc-
ture can be treated as a customized Merkle tree built upon
pa�ern-aware partitions of the dataset, as shown in Fig-
ure 5. �e bo�om most data layer is an ordered sequence
of data records. �e records are partitioned into blocks us-
ing a sliding-window approach and such blocks form the
leaf nodes. �at is, for a byte sequence within a �xed-sized
window, starting from the �rst byte of the data, a Rabin
�ngerprint is computed to match a certain boundary pat-
tern. An example pa�ern can be the last 8 bits of Rabin
�ngerprint equaling to “1”. �e window shi�s forward to
repeat the process until it �nds a match, where the node
boundary is set to create the leaf node. �e internal layers
are formed by a sequence of split keys and cryptographic
hashes of the nodes in the lower layer. Since the contents in
the internal layers already contain hash values, we directly
use the hashes to match the boundary pa�ern instead of
repeatedly computing the hashes within a sliding window.
Such strategy improves the performance of POS-Tree by re-
ducing the number of hash computations, while preserving
the randomness of chunking.

Lookup. �e lookup procedure of POS-Tree is similar
to B+-tree. Starting from the root node, it performs binary
search to locate the child node containing the target key.
When it reaches the leaf node, a binary search is performed
to �nd the exact key. As the example shown in Figure 5, the
key “8” is fetched through the orange path. It goes through
Node 2, which has a key range of (-∞, 351], and Node 4,
which has a key range of (-∞, 89].

Insert. To perform an insert operation, POS-Tree �rst
�nds the position of the inserting key and then inserts it into
the corresponding leaf node. Next, it starts the boundary
detection from the �rst byte of the leaf node, and stops when
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Figure 5: Pattern-Oriented-Splitting Tree (POS-Tree)
Table 1: Notation table

Symbol Description
N �e total number of records
m �e fanout of POS-Tree and MBT
B �e capacity of MBT (Number of buckets)
L �e key length of a record
δ �e number of di�erent records

between two versions
α �e ratio of the number of di�erent

records and the number of total records
r �e average size of a record
c �e size of cryptographic hash value

detecting an existing boundary or reaching the last byte of
the layer. For example, when insert key “91” into the tree
shown in Figure 5, a boundary detection is performed from
Node 5. It ends upon reaching the existing boundary of
Node 5. Another instance in the �gure is the insertion of
key “531”. A new boundary is found at element 531, and the
traverse stops when �nding the existing boundary of Node
6. �erefore, Node 6 splits into Node 7 and Node 8, and the
new split keys are propagated to the parent node.

�e pa�ern-aware partitioning of POS-Tree enhances the
deduplication capabilities, and making the structure of the
tree depending only on the data held. Such Structurally In-
variant property supports e�cient di� and merge. Moreover,
the B+-tree-like node structure enables e�cient indexing by
comparing the split keys to navigate the paths.

4 THEORETICAL ANALYSIS
In this section, we provide a comprehensive theoretical

analysis of the three SIRI representatives discussed previ-
ously. We �rst calculate the theoretical bounds for common
index operations like lookup and update, as well as complex
operations needed by emerging applications including di�
and merge. In addition, we de�ne the deduplication ratio
as a metric for measuring the e�ciency of deduplication
provided by SIRIs.

In the following subsections, N denotes the maximum
capacity of distinct keys in an index; L denotes the maxi-
mum length of a key string; B denotes the number of buck-
ets in MBT. m denotes the expected number of entries per
page/node in MBT or POS-Tree. δ denotes the di�erent
records between two instances. r denotes the average stor-
age size for a sole record.

4.1 Operation Bounds
In this section, the bounds of common operations are calcu-
lated accordingly.

4.1.1 Index Lookup.
We �rst evaluate the lookup complexity of the three can-

didates.

• MPT – �e traversal upon MPT is the same as a nor-
mal radix tree with path compaction. �e computing
bound for lookup is the maximum betweenO(L) and
O(logm N ). Since L is o�en larger than logm N in
the real systems (L equals to 64-byte in Ethereum’s
zeroith variable), the lookup complexity in MPT is
O(L) in most of the time.
• MBT – Unlike other structures having constant leaf

node scanning time, the size of MBT’s leaf node
is N

B and it therefore costs O(log2
N
B ) with binary

search to scan the node. As a result, the total lookup
cost, consisting of node traversing part and leaf node
scanning part, is O(logm B + log2

N
B ).

• POS-Tree – Being a probabilistically balanced search
tree, the complexity of POS-Tree is O(logm N ).

4.1.2 Index Update.
In all candidates, an update operation �rstly incurs a

lookup for the updating keys, and then leads to the cre-
ation of the copy of a�ected nodes and the calculation of
their hash values. In our analysis, we treat the number of
entries in each nodem, the length of each record r and the
length of hashed value len(h) as constant values. �at is to
say, the size of internal nodes m · len(h), and the size of leaf
nodesm · r are constant unless explicitly stated. �erefore,
the cost of new node creation and the crypto-hash function
is constant, and the cost of the update mainly depends on
the cost of the lookup.

�e calculation and comparison among the three candi-
dates are listed below:

• MPT – max(O(L),O(logm N )). In most cases, the
complexity of the update in MPT is O(L).
• MBT – For leaf nodes, as the size increases linearly

with N , the complexity of hash function and node
copying is O(NB ). Hence, the complexity of the up-
date in MBT is O(logm B + N

B ).
6



• POS-Tree – Similar to crypto-hash function, the
cost of the rolling hash function p for detecting node
boundary is also constant. �is results in the update
complexity of O(logm N ).

4.1.3 Indexes Di�.
Di� is the operation that compares two index instances. It

returns all records that are either present in only one index
or di�erent in both indexes. �erefore, Di� can be seen
as multiple lookups in a naive implementation of the three
candidates. �e following bounds are calculated under this
assumption. We directly give the results due to its triviality.

• MPT – O(δ · L) or O(δ · logm N ). As discussed pre-
viously, in most cases the complexity is the former.
• MBT – O(δ · (logm B + N

B ))
• POS-Tree – O(δ · logm N )

4.1.4 Indexes Merge.
Merge is the operation that combines all records from

either indexes. �e entire process of Merge contains two
steps. �e �rst step is to do a Di� operation between the
instance to merge and the original instance, mark the di�er-
ent pages/nodes. �e second step is to merge all the di�er-
ent nodes into the original instance. If there exist con�icts,
namely a key in both instances with di�erent values, the
process must be interrupted and a selection strategy must
be given by the end user to continue. �e following calcu-
lation is based on the worst case when the merge process
can be �nished without interruption. Since the second step
of the merge process is treated as O(1) operations in our
analysis, the complexity of the merge is dominated by the
“di�” operation in the �rst step.

• MPT – O(δ · L) or O(δ · logm N ). In most cases, the
complexity should be O(δ · L).
• MBT – O(δ · (logm B + N

B ))
• POS-Tree – O(δ · logm N )

In the worst case, MPT has higher tree height than a bal-
anced search tree, i.e., L ¿O(logm N ), and therefore performs
worse than POS-Tree. For MBT, the traverse cost logm B is
lower than other structures when in assumption of B < N
while the node scanning time log2

N
B and creation time N

B
are dominating when N >> B. We can conclude from the
table that POS-Tree is e�cient in general cases, while MBT is
a good choice when the dataset maintains a proper N

B ratio.

4.2 Deduplication Ratio
Persistent (or immutable) data structures demand a large

amount of space for maintaining all historical versions of
data. To alleviate space consumption pressure, the feasibility
of detecting and removing duplicated data portions plays a

critical role. In this section, we aim to quantify the e�ective-
ness of such properties in indexes by de�ning a measurement
called deduplication ratio.

4.2.1 Definition.
Suppose there is a set of index instances S = {I1, I2, ...Ik },

and each Ix is composed of a set of pages Px . �e byte size
of a page p is denoted as byte(p), we can derive byte count
of set P as:

byte(P) =
∑
p∈P

byte(p).

�e deduplication ratio η of S is de�ned as follows:

η(S) = 1 − byte(P1 ∪ P2 ∪ ... ∪ Pk )
byte(P1) + byte(P2) + ... + byte(Pk )

,

or

η(S) = 1 −
byte(⋃k

i=1 Pi )∑k
j=1 byte(Pj )

.

�e η quanti�es the e�ectiveness of page-level data dedu-
plication (i.e., sharing) among related indexes. It is the ratio
between the overall bytes that can be shared between di�er-
ent page sets and the total bytes used for all the page sets.
With a high η, the storage is capable of managing massive
“immutable” data versions without bearing space consump-
tion pressure. In the following subsections, we will use this
metric to evaluate the three candidates accordingly.

4.2.2 Continuous Di�erential Analysis.
In this part, we analyze a simple case that S consists n

sequentially evolved indexes, i.e., the ith instance is derived
from the i−1th instance. Each instance Si can be represented
as a page set Pi or a record set Ri . �e analysis of more com-
plicated scenarios is treated as our future work. To ease our
analysis, we assume that each instance di�ers its predecessor
by ratio α of a continuous key range δ , such that:

|Di | = α · |Ri−1 |,

∀k ∈ (Ri − Di ) ∪ (Ri−1 − Di ), (k < min(Di ) ∨ k > max(Di ))
where |X | denotes the record count in set X , andmin/max
denotes the minimum/maximum key in a set.

In the following analysis, we consider two scenarios:
• Insertion of new records.

|Ri | = (1 + α) · |Ri−1 |.

• Update of existing records.

|Ri | = |Ri−1 |.

Merkle Bucket Tree. Since in MBT, the bucket size de-
pends on the number of contained records, i.e.,

E =
N

B
.
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We denote the number of a�ected nodes on level x in MBT
as Nx . Hence, the number of buckets (the leaf level) a�ected
by α di�erential is expressed as:

N0 = α · B.
We can roughly summarize the total number of a�ected

tree nodes, Ntr ee , as following:

Ntr ee =

⌈
B

m

⌉
+

⌈
B

m2

⌉
+ ... +

⌈
B

mlogm B

⌉
≈ B

m
+

B

m2 + ... +
B

mlogm B

=
B − 1
m − 1 .

�e number of a�ected nodes in the continuous update
can be calculated as:

logm B∑
i=1

Ni =

⌈
α · B

m

⌉
+

⌈
α · B

m2

⌉
+ ... +

⌈
α · B

mlogm B

⌉
≈ α · B

m
+ α · B

m2 + ... + α ·
B

mlogm B

= α · B − 1
m − 1 .

�us, the deduplication ratio for MBT is:

η(MBT ) = 1 − bytes in modi�ed nodes
total bytes

= 1−

α · N · r +m · c ·∑logm B
i=1 Ni + N · r +m · c · Ntr ee

2 · (N · r +m · c · Ntr ee )

≈ 1
2 −

α · N · r +m · c · α · B−1
m−1

2 · (N · r +m · c · B−1
m−1 )

=
1
2 −

α

2 .

Surprisingly, the deduplication ratio is highly related to α
and has no direct connection with B according to the analysis
result.

Merkle Patricia Trie. In a simple MPT without any path
compaction optimization, we have:

η(MPT ) = 1 − bytes in modi�ed nodes
total bytes

=
1
2 −

α · N · (L · c + r )
2 · (N · r + N · L̄ · c)

,

which indicates that

η(MPT ) ≥ 1
2 −

α

2 (L ≥ L̄)
,

η(MPT ) ≤ 1
2 −

α

2 (L ≤ L̄)

Table 2: Parameter table for experiments

Parameter Value
Dataset size(104) 1, 2, 4, 8, 16, 32, 64,

128, 256
Batch size(103) 1, 2, 4, 8, 16
Overlap Ratio 0, 10, 20, 30, 40, 50, 60,

70, 80, 90, 100
Write Ratio(%) 0, 50, 100
Zip�an parameter θ 0, 0.5, 0.9

Inferred from the result, η(MPT ) is a�ected by the distri-
bution of stored keys since the length of the average length
of the keys highly relate to the �nal deduplication ratio. In
detail, the relationship between L and L̄ determines whether
the deduplication ratio of MPT is greater than or less than
that of MBT.

POS-Tree. Similar to MBT, the calculation is as follows:

η(POS) = 1 − bytes in modi�ed nodes
total bytes

≈ 1
2 −

α · N · r +m · c ·∑logm N
f

j=1 Nj

2 · (N · r +
N
f −1
m−1 ·m · c)

≈ 1
2 −

α · N · r +m · c · α ·
N
f −1
m−1

2 · (N · r +
N
f −1
m−1 ·m · c)

=
1
2 −

α

2 .

If we compare the analysis results of the three representa-
tives, we can conclude that MPT has the best deduplication
ratio under proper query workloads and datasets (meaning
L ≥ L̄). Meanwhile, POS-Tree and MBT have equal bound
for the deduplication ratio in this se�ing.

5 EXPERIMENTAL BENCHMARKING
In this section, we evaluate three SIRI representatives,

namely POS-Tree, MBT and MPT, through di�erent experi-
ments. First, the throughput and the latency of the indexes
are measured to have an overview of how these structures
perform in general cases. Second, the storage consumption,
the deduplication ratio and the node sharing ratio are evalu-
ated to investigate the space e�ciency among the candidates.
�ird, a breakdown analysis is given to show how each SIRI
property a�ects the performance of the index. Finally, we
integrate the structures in an existing database management
system, Forkbase [44], to show how SIRI structures behave
in real applications.
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Our experiments are conducted on a server with Ubuntu
14.04, which is equipped with an Intel Xeon Processor E5-
1650 processor (3.5GHz) and 32GB RAM. To fairly compare
the e�ciency of the index structures in terms of node quan-
tity and size, we tune the size of each index node to be
approximately 1 KB. For each experiment, the reported mea-
surements are averaged over 5 runs.

5.1 Dataset
We use a synthesized YCSB dataset and two real-world

datasets, Wikipedia data dump and Ethereum transaction
data, to conduct a thorough evaluation of SIRI.

5.1.1 YCSB. We generate the key-value dataset using
YCSB according to the parameters shown in Table 2. �e
lengths of the keys range from 5 bytes to 15 bytes, while the
values have an average length of 256 bytes. �e total num-
ber of records varies from 10,000 to 2,560,000. �e dataset
contains three types of workloads, read, write and mixed
workload with 50% write operations. We use Zip�an dis-
tribution to simulate the scenarios where the data in the
workload is skewed to di�erent degrees, where the Zip�an
parameter θ equals 0 represents all records have an equal
possibility to be selected into the workload, while higher
θ value means only a smaller range of the records have ex-
tremely high possibilities to be selected. We also generate
the overlapped workloads to test the capability of deduplica-
tion with increasing similarity in the contents, as described
in Section 5.4.2.

5.1.2 WIKI. �e wiki dataset is real-world Wikipedia data
dumps2 of the extracted page abstracts. �e key of the dataset
is the URL of the Wikipedia page, the length of which ranges
from 31 bytes to 298 bytes and has an average of 50 bytes.
While the value of the dataset is the extracted abstract in
plain text format, the length of which ranges from 1 byte to
1036 bytes, having an average of 96 bytes. We collect 6 data
dumps covering the data changes in three months and divide
the data into 300 versions. Each version has an average
size of 855MB. We generate the read and write workload
using keys uniformly selected from the dataset to test the
throughput.

5.1.3 EthereumTransactions. We use real-world Ethereum
transaction data3 from Block 8900000 to 9200000, where the
key is the 64-bytes block hash and the value is the RLP (Re-
cursive Length Pre�x) encoded raw transaction data. �e
length of the raw transaction ranges from 100 bytes to 57738
bytes with an average of 532 bytes. RLP is the main encoding
method used to serialize objects in Ethereum, which is also

2h�ps://dumps.wikimedia.org/enwiki/
3h�ps://cloud.google.com/blog/products/data-analytics/
ethereum-bigquery-public-dataset-smart-contract-analytics

used to encode raw transactions. In Ethereum, each block
naturally makes a new version.

5.2 Implementation
In this section, we brie�y describe the implementation of

selected indexes and the baseline. We port the Ethereum’s
implementation [3] of MPT to our experiment environment,
which adopts the path compaction optimization. �e imple-
mentation of MBT is based on the source code provided in
Hyperledger Fabric 0.6 [7]. We further make it immutable
and add index lookup logic, which is missing in the original
implementation. For POS-Tree, we use the implementation
in Forkbase [44]. Moreover, we further apply batching tech-
niques, taking advantage of the bo�om-up build order, to
reduce the number of tree traversal and hash calculations
signi�cantly. Lastly, to compare SIRI and non-SIRI structures,
we implement an immutable B+-tree with tamper evidence
support, called Multi-Version Merkle B+-tree (MVMB+-Tree),
as the baseline. We replace the pointers stored in index nodes
with the hash of their immediate children and maintain an
additional table from the hash to the actual address. For all
the structures, we adopt node-level copy-on-write to achieve
the data immutability.

5.3 �roughput and Latency
We evaluate the three candidates and the baseline from a

traditional view in this part, where throughput and latency
are the major measurements.

5.3.1 Throughput.
First, we evaluate the throughput using the YCSB dataset.

We run the read, the write and the mixed workloads under
diverse data size and skewness. �e results are illustrated in
Figure 6. It can be observed that the throughput of all indexes
decreases as the number of data grows and complies with the
operation bound formulated in Section 4.1. Figure 6(a) shows
the throughput for the read workload with uniform data. �e
throughput of POS-Tree is 0.95x - 1.06x of the baseline while
MPT is only 0.74x - 0.96x of the baseline. �e throughput of
MBT drops quickly from 3.2x to 0.45 of the baseline due to
the dominating leaf loading and scanning process. As it is
shown in Figure 13, the time to traverse the tree and load
the nodes keeps constant, while time to scan leaf node keeps
increasing. For the write workload shown in Figure 6(c), we
can observe a similar trend. However, POS-Tree performs
1.04x-1.9x be�er than the baseline taking advantage of the
batching techniques and the bo�om-up building process.

By comparing Figure 6 horizontally, we can observe that
the throughput of all data structures decreases drastically as
the ratio of write operations increases. �is is due to the cost
of node creation, memory copy and cryptographic function
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(c) θ = 0, write ratio = 1
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(d) θ = 0.5, write ratio = 0
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(e) θ = 0.5, write ratio = 0.5

100

101

102

1 2 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

x1
0

3 )

#Records (x104)

POS-Tree
MBT

MPT
MVMB+-Tree

(f) θ = 0.5, write ratio = 1
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(g) θ = 0.9, write ratio = 0
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(h) θ = 0.9, write ratio = 0.5
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(i) θ = 0.9, write ratio = 1

Figure 6: �roughput on YCSB
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Figure 7: �roughput on real world datasets
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Figure 8: Di� performance

 0

 2

 4

 6

 8

 10

3 4 5 6 7 8

#R
ec

or
ds

 (
x1

03 )

Tree Height

POS-Tree
MBT

MPT
MVMB+-Tree

Figure 9: Tree height

computation. �e absolute throughput drops over 6.6x in the
comparison of the largest dataset for POS-Tree and baseline
while it drops 30x for MBT and 7.3x for MPT. By comparing
Figure 6 vertically, we can observe that there is no change in
throughput for all index structures when θ changes from 0
to 0.9. �erefore, we can conclude that they are all resilient
to data skewness.

It is also worth noting that, compared with MBT, the other
three structures perform much more steady for both read
and write workloads. Meanwhile, POS-Tree outperforms
MPT in all cases and has comparable performance compared
to our baseline index.

Next, we run the experiment on the Wiki dataset. �e
system �rst load the entire dataset batched in 300 versions,
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Figure 10: Latency on YCSB
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Figure 11: Latency on Wiki data
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Figure 12: Latency on Ethereum transaction data
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Figure 14: Performance on single group data access

and then execute the read and write workloads that is uni-
formly selected. Figure 7(a) demonstrates the results that are
aligned with those in the YCSB experiment.

Lastly, for the experiments on Ethereum data, we simulate
the way blockchain stores the transactions. For each block,
we build an index on transaction hash for all transactions
within that block and store the root hash of the tree in a
global linked list. Versions are naturally created at a block
granularity. For write operations, the system appends the
new block of transactions to the global linked list while for
lookup operations, it scans the linked list for the block con-
taining the transaction, and traverses the index to obtain
the value. Figure 7(b) shows the result of this experiment. It
can be observed that POS-Tree outperforms other indexes
in write workloads. �is is because we are building indexes
for each block instead of a global index. Further, instead of
insert/update operations, we perform batch loading from

scratch. In this case, POS-Tree’s bo�om-up building process
is superior to the MPT’s and MVMB+-Tree’s top-down build-
ing process, as it only traverses the tree and creates each
node once. Another di�erence is that the throughput of read
workload is lower than that of the write workload mainly
due to the additional block scanning time.

5.3.2 Latency and Path Length.
In this experiment, we measure the latency of each read

and write operation and calculate the distribution with bal-
anced and skewed data. For the YCSB dataset, read-only
and write-only workloads are fed into the indexes with bal-
anced (θ = 0) and highly skewed (θ = 0.9) distributions. �e
dataset used in this test contains 160,000 keys. We run 10,000
operations and pictured the latency distribution in Figure 10.
�e x-axis is the range of the latency and the y-axis is the
number of records fell in that latency range. It can be seen
from the �gure that the rankings among the indexes coincide
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with the previous conclusion – POS-Tree performs the best
for both read and write workloads while MPT performs the
worst. Meanwhile, MPT has several peak points, represent-
ing operations accessing data stored in di�erent levels of the
tree. MBT experiences the most dramatic changes between
read and write workloads. It outperforms all the candidates
in the read workloads but is worse than POS-Tree in write
workload.

To take a closer observation of how the workloads a�ect
the candidates, we further gather the traversed tree height of
each operation for the write-only workload with the uniform
distribution. �e results are shown in Figure 9(a), where the
x-axis represents the height of the lookup path and the y-axis
indicates the number of operations. Most operations have
to visit 4-level nodes to reach the bo�om-most level of POS-
Tree whilst 5- or 7-level nodes are frequently traversed for
MPT. �e e�ciency in MBT is also veri�ed in the �gure since
all requests only need 3 levels to reach the bo�om of the
structure in both balanced and skewed scenarios.

We can obtain similar results and conclusions on the Wiki
dataset as shown in Figure 11. However, the experiment
on Ethereum transaction data exhibits di�erent trends as
depicted in Figure 12. As can be observed, all the structures
have similar read latency, caused by the dominant block
scanning process.

We also run a di� workload to evaluate the performance
of “di�” operations. In the experiment, each structure loads
two versions of data in random order. A di� operation is
performed between the two versions and the execution time
is taken, as depicted in Figure 8(a). All the candidates outper-
form the baseline due to the structurally invariant property.
Among which, MBT performs the best (4x of baseline) since
the position of the nodes containing a speci�c data is static
among all versions. �e logic of di� operation is the simplest,
i.e., comparing the hash of the nodes at the corresponding
position. MPT performs 2x be�er than the baseline and 1.7x
be�er than POS-Tree due to the simplicity that keys with
the same length always lie in the same level of the tree.

5.4 Storage
In this section, we evaluate the space consumption of the

index structures under di�erent use cases.

5.4.1 Single Group Data Access.
We �rst start with a simple case, where a dataset is ac-

cessed by multiple users. �ere is no sharing of data or
cross-department collaborative editing in this se�ing. �ere-
fore, the deduplication bene�t is limited using SIRI . In reality,
such case o�en happens in-house within a single group of
users from the same department. Figure 14(a) shows the stor-
age under di�erent data sizes for the YCSB dataset. �ere
are two main factors a�ecting the space e�ciency, i.e., the

size of the node and the height of the tree. On the one hand,
larger tree height results in more node creations for write
operations, which also increases the space consumption. As
an example, MPT performs badly since it has the largest tree
height in our experiment se�ing. It consumes the storage
up to 1.6x higher than the baseline and up to 1.4x larger
than POS-Tree. On the other hand, a large node size means
that even minor changes to the node could trigger the cre-
ation of a new substantial node, which hence leads to larger
space consumption. As can be seen, MBT performs the worst
due to the largest node size it has in the implementation. It
consumes up to 6.4x the space of that used by the baseline.
POS-Tree, compared to the baseline, also has a larger node
size variance due to content-de�ned chunking, leading to a
greater number of large nodes.

To be�er analyze how the memory space is used by dif-
ferent pages, we further accumulate the number of nodes
for all chosen indexes. �e results are demonstrated in Fig-
ure 14(b) with variant dataset sizes. Typically, they follow
similar trends as Figure 14(a), except that MBT generates the
least number of nodes as the total number of nodes is �xed
for the structure. �e reason is rooted from the nature of
MBT, which has a �xed total number of nodes and increasing
leaf node size as more records are inserted. �erefore, the
number of nodes created keeps constant when updating or
inserting, no ma�er how large the total number of records is.
On the contrary, other structures have a �xed node size and
an increasing number of nodes, causing the number of nodes
created, as well as the height of the tree, increases during
updating or inserting.

�e results for the Wiki dataset and Ethereum transaction
dataset are shown in Figure 15 and Figure 16. Similar to the
results of the YCSB experiment, MBT and MPT consumed
more space than POS-Tree and MVMB+-Tree. A di�erence
is that MPT storage consumption increases very fast as the
number of versions are loaded. �is is because the key length
of the Wiki dataset is much larger than that of YCSB, and
the encoding method used by Ethereum further doubles the
key length. �is makes MPT a very sparse tree. For every
insert/update operation, more nodes need to be re-hashed
and created. Hence, the space e�ciency is worse than it
shows in the YCSB experiment.

Another di�erence is that MBT generates more nodes
compared with other experiments. �is is again because
of the experiment se�ing that a new instance of index will
be created per block. Since each block only contains a few
hundreds of transactions, MBT is less e�cient compared
with other structures.

5.4.2 Diverse Group Collaboration.
We now examine the storage consumption in applications

where di�erent groups of users are collaborating to work on
12
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Figure 15: Storage on Wiki data
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Figure 16: Storage on Ethereum transaction data
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Figure 17: Performance on diverse group collaboration with varying overlap ratio
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Figure 18: Performance on diverse group collaboration with varying batch size

the same dataset. �is o�en occurs in the data cleansing pro-
cess and data analysis procedure, where diverse parties work
on di�erent parts of the same dataset. One signi�cant phe-
nomenon in this use case is that duplicates can be frequently
found. �erefore, the deduplication capability introduced by
SIRI is critical to improving the space e�ciency. To evaluate
the deduplication capability, we de�ne another metric called
node sharing ratio from a di�erent aspect. �e metric can
be formulated as follows:

η(S) = 1 − |P1 ∪ P2 ∪ ... ∪ Pk |
|P1 | + |P2 | + ... + |Pk |

,

where Pi is the set of nodes of an instance i. While the
deduplication ratio evaluates the size of the storage saved,
the node sharing ratio indicates how many duplicate nodes
have been eliminated.

�e YCSB dataset is used in this experiment. We simulate
10 groups of users, each of which initializes the same dataset
of 40,000 records. We generate workloads of 160,000 records
with overlap ratios ranging from 10% to 100% and feed them
to the candidates. Here, 10% overlap ratio means 10% of
the records have the same key and value. �e execution is
processed with default batch size, i.e., 4,000 records.

�e results of the deduplication ratio and the node shar-
ing ratio are shown in Figure 17(c) and Figure 17(d), respec-
tively. Both metrics of all the structures become higher when
the workload overlap ratio increases since more duplicate
nodes can be found due to increasing similarities among
the datasets. Bene�ting from smaller node size and smaller
portion of updating nodes, MPT achieves the highest dedu-
plication ratio (up to 0.96) and node sharing ratio (up to 0.7).
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POS-Tree achieves a slightly be�er deduplication ratio than
the baseline though they both have similar size of nodes
and the height of the tree. �e actual ratios are 0.88 and
0.86, respectively. However, it achieves a much be�er node
sharing ratio compared to the baseline (0.48 vs. 0.27) because
of its content-addressable strategy when chunking the data.
By contrast, MBT’s �xed number of pages and growing leaf
nodes limit the number of duplicates, and therefore it does
not perform as good as the other two SIRI representatives.

To be more precise, we further collect the storage usage
and the number of pages created by the testing candidate
and illustrate the results in Figure 17(a) and Figure 17(b). �e
trends in the �gures match the corresponding deduplication
ratio and node sharing ratio perfectly. With the increasing
overlap ratio, storage reduction of POS-Tree and MPT is
more obvious than the baseline, among which POS-Tree is
the most space-e�cient. MPT is most sensitive to overlap
ratio changes due to the high node sharing ratio introduced
by its structural design. Although it consumes more space
for non-overlapping datasets, MPT outperforms the baseline
for datasets with the overlap ratio above 90%.

We also evaluate the e�ect of query batch size on storage
space. Same as previous experiments’ se�ing, we simulate
10 parties. Each of them initializes the same dataset contains
40,000 records and executes workloads containing 160,000
keys with default overlap ratio 50%. Figure 18(c) depicts how
the deduplication ratio decreases along with the query batch
size increases. �e reason is that larger batch sizes cause a
larger portion of the index structure to be updated, resulting
in fewer nodes to be reused between versions. Figure 18(a)
and Figure 18(b) show the storage usage and Number of
nodes created with di�erent batch sizes. Similar relationships
across the structures can be observed as in Figure 17(a) and
Figure 17(b). Except for both of the metrics decrease when
using a larger batch size due to less versions stored in the
index.

5.4.3 Structure Parameters.
�e parameters of the indexes can a�ect the deduplication

ratio as aforementioned in section 4. �e impact of those
key parameters is veri�ed in this experiment, namely node
size for POS-Tree, number of buckets for MBT and mean
key length for MPT. For POS-Tree, the boundary pa�ern
is varied to change the node size from 512 to 4,096 bytes
probabilistically. For MBT, the number of �xed buckets is
set from 4000 to 10,000. For MPT, the dataset is generated
with di�erent minimum key lengths, which can lead to di-
verse mean key length from 10.2 to 13.7. (�e maximum
key length in the dataset is �xed.) �e results are shown in
Table 3, which coincide with the conclusions in Section 4.
�e deduplication ratio of POS-Tree increases as the average
node size increases. �is is expected as the number of same

large nodes is less than that of small nodes, leading to fewer
occurrences of duplicate pages. Similarly, the deduplication
ratio of MBT increases as the number of buckets increases be-
cause a larger number of buckets results in smaller leaf nodes.
�e deduplication ratio of MPT increases as the mean key
length increases. �is is because longer keys usually have
more con�icting bits and result in a wider tree. �erefore,
the portion of the reusable nodes increases.

5.5 Breakdown Analysis
In this section, we evaluate how each SIRI property a�ects

the storage and deduplication performance. We select POS-
Tree as the testing object and disable the properties one by
one. For each property, we �rst explain how each property is
disabled and then provide the experimental results following
closely. We note that the Universally Reusable property is
common for all immutable tree indexes using copy-on-write
approach. �us, it is ignored in this experiment.

5.5.1 Disabling Structurally Invariant Property.
�e pa�ern-aware partitioning is the key to guarantee

the Structurally Invariant property. �erefore, we disable
the property by forcibly spli�ing the entries at half of the
maximum size when no pa�ern is found within the maxi-
mum size. Consequently, the resulting structure depends
on the data insertion order. We increase the probability of
not �nding the pa�ern by increasing the bits of pa�ern and
lowering the maximum value.

�e result is presented in Figure 19(a). We can observe an
up to 15% decrease in the deduplication ratio when Struc-
turally Invariant property is disabled. For instance, the dedu-
plication ratio drops from 0.67 to 0.52 when the workload
overlap ratio equals to 100%. It is expected as the index per-
forms the operations in di�erent orders, resulting in di�erent
nodes and smaller number of share-able pages. �ough the
records stored are the same, POS-Tree cannot reuse the nodes
with the Structurally Invariant property disabled. Similarly,
Figure 19(b) shows that the node sharing ratio decreases by
up to 17%, i.e. from 0.53 to 0.36, by disabling Structurally
Invariant property.

5.5.2 Disabling Recursively Identical Property.
Originally, only the set of nodes lying in the path from

the root to the leaf node is copied and modi�ed when an
update operation is performed, while the rest of the nodes
are shared between the two versions in POS-Tree. We disable
Recursively Identical property by forcibly copying all nodes
in the tree. �e number of di�erent pages between the two
instances is much larger than the number of intersections,
which is zero.

Figure 20(a) shows that the deduplication ratio for POS-
Tree with Recursively Identical disabled is 0 since the struc-
ture does not allow the sharing of nodes among di�erent
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Table 3: E�ect of structure parameters on the deduplication ratio

Node Size η(POS-Tree)
512 0.722
1024 0.6485
2048 0.5391
4096 0.4108

# Buckets η(MBT)
4000 0.3301
6000 0.4599
8000 0.5433
10000 0.6003

keylen η(MPT)
10.2 0.9685
12 0.9693
13.3 0.9806
13.7 0.9823
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Figure 19: E�ect of Structurally Invariant property
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Figure 20: E�ect of Recursively Identical property
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Figure 21: Performance integrated with Forkbase
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Figure 22: Comparison between Forkbase and Noms

versions. Obviously, the node sharing ratio of non Recur-
sively Identical POS-Tree shown in Figure 20(b) is also 0.
Compared to the �gures in previous sections, we can infer
how this property accelerates the deduplication rate and
ultimately in�uences the �nal storage performance.

Overall, we can conclude that Recursively Identical prop-
erty is the fundamental property to enable indexes with
deduplication and node sharing across di�erent users and
datasets. On top of this, Structurally Invariant property fur-
ther enhances the level of deduplication and node sharing
by making structures history-independent.

5.6 System Experiment

5.6.1 Integration with Forkbase.
To further evaluate the performance of SIRI , we inte-

grate the indexes into Forkbase [44], a storage engine for
blockchain and forkable applications. In this experiment,
we con�gured a single Forkbase servlet and a single client

to benchmark the system-level throughput. �e evaluation
results are demonstrated in Figure 21.

For read operations, the main di�erence between index-
level performance and system integrated performance is the
remote access due to client-server architecture. �e over-
head of remote access becomes the dominant factor of per-
formance. To mitigate such overhead, Forkbase caches the
nodes at clients a�er retrieved from servers. Hence, the fol-
lowing read operations on the same nodes can bene�t from
performing only local access.

Figure 21(a) shows the throughput of read workload. Sim-
ilar to index-level experiments, the throughput decreases
when the total number of records grows. POS-Tree achieves
comparable performance to our baseline MVMB+-Tree, and
it outperforms the other 2 indexes when the total number of
records is large (greater than 2,560,000). MPT performs the
worst among all indexes due to larger tree height, which com-
ply with the operation bound in Section 4.1.1. Di�erent from
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the index-level experiment, MBT performs worse than POS-
Tree and MVMB+-Tree when the number of records is ex-
tremely small (10,000 records). �is is because the hit ratio of
cached nodes for MBT is lower than other indexes. Since all
index nodes of MBT have a �xed number of entries, the num-
ber of repeated reads is less compared with POS-Tree and
MVMB+-Tree, where large nodes contribute more repeated
reads. When the number of records grows larger, the a�ected
portion of POS-Tree and MVMB+-Tree decreases. Conse-
quently, the number of repeated reads decreases. While the
structure of MVMB+-Tree keeps unchanged, leading to a con-
stant number of repeated reads. �erefore, MBT performs
be�er when the number of records is greater than 20,000.
When the number of records is greater than 2,560,000, the
bo�leneck becomes the loading time and the scanning time
of leaf nodes, and the throughput drops below that of other
indexes.

�e write operations will be performed on the server side
completely. Hence they will not be a�ected by the hit ratio
of cached nodes described above. Figure 21(b) shows the
throughput of write workload. We can observe similar results
as that of index-level experiments.

5.6.2 Comparison between Forkbase and Noms.
Next, we perform a comparative study between Forkbase

and Noms [10]. Both systems facilitate data versioning man-
agement using similar indexing concept. As in POS-Tree,
the bo�om most layer of Noms’ Prolly Tree uses the sliding-
window approach to partition the leaf nodes based on the
boundary pa�ern. To match the boundary pa�ern in the in-
ternal layers, POS-Tree directly uses hash values of the child
nodes, while Prolly Tree uses the hash values repeatedly
computed from the sliding-window. Such computational
overhead causes ine�ciency of its write operations.

In the experiment, we directly use the code of Noms from
its Github repository, which is implemented in GO. We use
Noms’ remote setup on top of their own HTTP protocol to
compare with Forkbase’s single server single client setup as
described previously. To make a fair comparison, we con�g-
ure the node size of POS-Tree to 4K with window size of 67
bytes, which is the default se�ing of Noms. �e experiment
is conducted as follows. First, we initialize the systems with
10K to 128K records. �en we execute read and write work-
load of 10K records respectively to measure the throughput.
�e results are shown in Figure 22. We can observe that
Forkbase performs 1.4x-2.7x be�er in read operations and
5.6x-8.4x be�er in write operations than Noms.

6 CONCLUSION
Tamper evidence and deduplication are two properties in-
creasingly demanded in emerging applications on immutable
data, such as digital banking, blockchain and collaborative

analytics. Recent works [7, 44, 45] have proposed three in-
dex structures equipped with these two properties. However,
there have been no systematic comparisons among them. To
address the problem, we conduct a comprehensive analysis
of all three indexes in terms of both theoretical bounds and
empirical performance. Our analysis provides insights re-
garding the pros and cons of each index, based on which
we conclude that POS-Tree [44] is a favorable choice for
indexing immutable data.
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