
ar
X

iv
:2

00
4.

03
49

3v
3

 [
cs

.D
S]

 1
8

Ju
n

20
20

Exact Single-Source SimRank Computation on Large
Graphs

[Technical Report]

Hanzhi Wang
hanzhi_wang@ruc.edu.cn
School of Information

Renmin University of China

Zhewei Wei∗

zhewei@ruc.edu.cn
Gaoling School of Artificial

Intelligence
Renmin University of China

Ye Yuan
yuan-ye@bit.edu.cn

School of Computer Science and
technology

Beijing Institute of Technology

Xiaoyong Du
duyong@ruc.edu.cn
MOE Key Lab DEKE

Renmin University of China

Ji-Rong Wen
jrwen@ruc.edu.cn

Beijing Key Lab of Big Data
Management and Analysis

Method
Renmin University of China

ABSTRACT

SimRank is a popular measurement for evaluating the
node-to-node similarities based on the graph topology. In
recent years, single-source and top-k SimRank queries have
received increasing attention due to their applications in
web mining, social network analysis, and spam detection.
However, a fundamental obstacle in studying SimRank has
been the lack of ground truths. The only exact algorithm,
PowerMethod, is computationally infeasible on graphswith
more than 106 nodes. Consequently, no existing work has
evaluated the actual trade-offs between query time and
accuracy on large real-world graphs.
In this paper, we present ExactSim, the first algorithm

that computes the exact single-source and top-k SimRank
results on large graphs. With high probability, this algo-
rithm produces ground truths with a rigorous theoretical
guarantee.We conduct extensive experiments on real-world
datasets to demonstrate the efficiency of ExactSim. The
results show that ExactSim provides the ground truth for

∗Zhewei Wei is the corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACMmust be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389781

any single-source SimRank query with a precision up to 7
decimal places within a reasonable query time.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; •
Information systems → Data mining.

KEYWORDS

SimRank, Exact computation, Ground truths

ACM Reference Format:

Hanzhi Wang, Zhewei Wei, Ye Yuan, Xiaoyong Du, and Ji-

Rong Wen. 2020. Exact Single-Source SimRank Computation on

Large Graphs: [Technical Report]. In Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data

(SIGMOD’20), June 14–19, 2020, Portland, OR, USA.ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3318464.3389781

1 INTRODUCTION

Computing link-based similarity is an overarching problem
in graph analysis and mining. Amid the existing similarity
measures [26, 32, 41, 42], SimRank has emerged as a popular
metric for assessing structural similarities between nodes in
a graph. SimRank was introduced by Jeh and Widom [12]
to formalize the intuition that “two pages are similar if they
are referenced by similar pages.” Given a directed graphG =
(V , E) with n nodes {v1, . . . ,vn} andm edges, the SimRank
matrix S defines the similarity between any two nodes vi

http://arxiv.org/abs/2004.03493v3
https://doi.org/10.1145/3318464.3389781
https://doi.org/10.1145/3318464.3389781

and vj as follows:

S(i, j) =




1, for i = j;
∑

vi′ ∈I(vi)

∑

vj′ ∈I(vj)

c · S(i ′, j ′)
din(vi) · din(vj)

, for i , j .

(1)
Here, c is a decay factor typically set to 0.6 or 0.8 [12, 22].
I(vi) denotes the set of in-neighbors of vi , and din(vi)
denotes the in-degree ofvi . SimRank aggregates similarities
of multi-hop neighbors of vi and vj to produce high-
quality similarity measure, and has been adopted in various
applications such as recommendation systems [17], link
prediction [23], and graph embeddings [30].
A fundamental obstacle for studying SimRank is the

lack of ground truths on large graphs. Currently, the only
methods that compute the SimRankmatrix is PowerMethod
and its variations [12, 21], which inherently takes O(n2)
space and at least O(n2) time as there are O(n2) node
pairs in the graphs. This complexity is infeasible on large
graphs (n ≥ 106). Consequently, the majority of recent
works [9, 13–15, 18, 20, 24, 27, 29, 31, 37] focus on single-

source and top-k queries. Given a source node vi , a single-
source query asks for the SimRank similarity between every
node and vi , and a top-k query asks for the k nodes
with the highest SimRank similarities to vi . Unfortunately,
computing ground truths for the single-source and top-k
queries on large graphs still remains an open problem. To
the best of our knowledge, Power Method is still the only
way to obtain exact single-source and top-k results, which
is not feasible on large graphs. Due to the hardness of exact
computation, existing works on single-source and top-k
queries focus on approximate computations with efficiency
and accuracy guarantees.
The lack of ground truths has severely limited our

understanding towards SimRank and SimRank algorithms.
First of all, designing approximate algorithms without the
ground truths is like shooting in the dark. Most existing
works take the following approach: they evaluate the
accuracy on small graphs where the ground truths can
be obtained by the Power Method with O(n2) cost. Then
they report the efficiency/scalability results on large graphs
with consistent parameters. This approach is flawed for the
reason that consistent parameters may still lead to unfair
comparisons. For example, some of the existing methods
generate a fixed number of random walks from each node,

while others fix the maximum error ε and generate
logn

ε 2

random walks from each node. If we increase the graph
size n, the comparison becomes unfair as the latter methods
require more random walks from each node. Secondly, it is
known that the structure of large real-world graphs can be
very different from that of small graphs. Consequently, the

accuracy results on small graphs can only serve as a rough
guideline for accessing the actual error of the algorithms in
real-world applications. We believe that the only right way
to evaluate the effectiveness of a SimRank algorithm is to
evaluate its results against the ground truths on large real-
world graphs.

Exact Single-Source SimRank Computation. In this
paper, we study the problem of computing the exact single-
source SimRank results on large graphs. A key insight is
that exactness does not imply absolutely zero error. This is
because SimRank values may be infinite decimals, and we
can only store these values with finite precision. Moreover,
we note that the ground truths computed by Power Method
also incur an error of at most cL , where L is the number of
iterations in Power Method. In most applications, L is set to
be large enough such that cL is smaller than the numerical
error and thus can be ignored. In this paper, we aim to
develop an algorithm that answers single-source SimRank
queries with an additive error of at most εmin = 10−7.
Note that the float type in various programming languages
usually support precision of up to 6 or 7 decimal places, so
by setting εmin = 10−7, we guarantee the algorithm returns
the same answer as the ground truths in the float type. Aswe
shall see, this precision is extremely challenging for existing
methods. To make the exact computation possible, we are
also going to allow a small probability to fail. We define
the probabilistic exact single-source SimRank algorithm as
follows.

Definition 1. With probability at least 1− 1/n, for every
source node vi ∈ V , a probabilistic exact single-source

SimRank algorithm answers the single-source SimRank query

of vi with additive error of at most εmin = 10−7.

Our Contributions. In this paper, we propose ExactSim,
the first algorithm that enables probabilistic exact single-
source SimRank queries on large graphs.We show that exist-
ing single-sourcemethods share a common complexity term

O
(
n logn

ε 2min

)
, and thus are unable to achieve exactness on large

graphs. However, ExactSim runs in O
(
logn

ε 2min

+m log 1
εmin

)

time, which is feasible for both large graph size m and
small error guarantee εmin . We also apply several non-trivial
optimization techniques to reduce the query cost and space
overhead of ExactSim. In our empirical study, we show
that ExactSim is able to compute the ground truth with
a precision of up to 7 decimal places within one hour on
graphs with billions of edges. Hence, we believe ExactSim is
an effective tool for producing the ground truths for single-
source SimRank queries on large graphs.

Table 1: Table of notations.

Notation Description

n,m the numbers of nodes and edges inG

I(vi),O(vi) the in/out-neighbor set of node vi

S, S(i, j) the SimRank matrix and the SimRank simi-

larity of vi and vj

c the decay factor in the definition of Sim-

Rank

ε, εmin additive error parameter and error required

for exactness (εmin = 10−7)

P , D the transition matrix and the diagonal

correction matrix

®πi , ®π ℓ
i , the Personalized PageRank and ℓ-hop Per-

sonalized PageRank vectors of node vi

®hℓi the ℓ-hop Hitting Probability vector of vi

2 PRELIMINARIES AND RELATEDWORK

In this section, we review the state-of-the-art single-
source SimRank algorithms. Our ExactSim algorithm is
largely inspired by three prior works: Linearization [24],
PRSim [31] and pooling [20], and we will describe them in
details. Table 1 summaries the notations used in this paper.

MC [8] A popular interpretation of SimRank is the meeting

probability of random walks. In particular, we consider a
random walk from node u that, at each step, moves to a
random in-neighbor with probability

√
c , and stops at the

current node with probability 1 − √
c . Such a random walk

is called a
√
c-walk. Supposewe start a

√
c-walk from nodevi

and a
√
c-walk from nodevj , we call the two

√
c-walksmeet

if they visit the same node at the same step. It is known [29]
that

S(i, j) = Pr[two
√
c-walks from vi and vj meet]. (2)

MC makes use of this equation to derive a Monte-Carlo
algorithm for computing single-source SimRank. In the
preprocessing phase, we simulate R

√
c-walks from each

node inV . Given a source nodevi , we compare the
√
c-walks

from vi and from each node vj ∈ V , and use the fraction of√
c-walks that meet as an estimator for S(i, j). By standard

concentration inequalities, the maximum error is bounded

by ε with high probability if we set R = O
(
logn

ε 2

)
, leading to

a preprocessing time ofO
(
n logn

ε 2

)
.

Linearization and ParSim. Given a graph G = (V , E), let
P denote the (reverse) transition matrix, that is, P(i, j) =
1/din(vj) for vi ∈ I(vj) and P(i, j) = 0 otherwise. Let
S denote the SimRank matrix with S(i, j) = s(vi ,vj). It is
shown in two independent works, Linearization [24] and

ParSim [38], that S can be expressed as the following linear
summation:

S =

+∞∑

ℓ=0

cℓ
(
Pℓ

)⊤
DPℓ
, (3)

whereD is the diagonal correction matrixwith each diagonal
element D(k,k) taking value from 1 − c to 1. Consequently,
a single-source query for node vi can be computed by

S · ®ei =
+∞∑

ℓ=0

cℓ
(
Pℓ

)⊤
DPℓ · ®ei , (4)

where ®ei denotes the one-hot vector with the i-th element
being 1 and all other elements being 0. Assuming the
diagonalmatrixD is correctly given, the single-source query
for node vi can be computed by

SL · ®ei =
L∑

ℓ=0

cℓ
(
Pℓ

)⊤
DPℓ · ®ei , (5)

where L is the number of iterations. After L iterations, the
additive error reduces to cL , so setting L = O

(
log 1

ε

)
is

sufficient to guarantee a maximum error of ε . At the ℓ-th
iterations, the algorithms performs 2ℓ+1matrix-vector mul-

tiplications to calculate cℓ
(
Pℓ

)⊤
DPℓ · ®ei , and each matrix-

vector multiplication takes O(m) time. Consequently, the

total query time is bounded by O
(∑L

ℓ=1mℓ
)
= O(mL2) =

O
(
m log2 1

ε

)
. [24] and [38] also show that if we first compute

and store the transition probability vectors ®ui = Pℓ · ®ei for
ℓ = 0, . . . , L, then we can use the following equation to
compute

SL · ®ei = D · ®u0+cP⊤(D · ®u1+· · ·+cP⊤(D · ®uT−1+cP⊤ ·D · ®uT) · · ·),
(6)

However, this optimization requires a memory size ofO(nL)
= O

(
n log 1

ε

)
, which is usually several times larger than

the graph sizem. Therefore, [24] only uses theO
(
m log2 1

ε

)

algorithm in the experiments.
Besides the large space overhead, another problem with

Linearization and ParSim is that the diagonal correction
matrix D is hard to compute. Linearization [24] formulates
D as the solution to a linear system, and propose a

Monte Carlo solution that takes O
(
n logn

ε 2

)
to derive an ε-

approximation of D. On the other hand, ParSim directly
sets D = (1 − c)I , where I is the identity matrix. This
approximation basically ignores the first meeting constraint
and has been adopted in many other SimRank works [10, 11,
14, 16, 34, 35, 37]. It is shown that the similarities calculated
by this approximation are different from the actual SimRank
[14]. However, the quality of this approximation is still a
myth due to the lack of ground truths on large graphs.

PRSim [31] introduces a partial indexing and a probe

algorithm. Let ®π ℓ
i = (1−√

c)®hℓi = (1−√
c) (√cP) ℓ · ®ei denote

the ℓ-hop Personalize PageRank vector of vi . In particular,
®π ℓ
i (k) is the probability that a

√
c-walk from nodevi stops at

node vk in exactly ℓ steps. PRSim suggests that equation (4)
can be re-written as

S(i, j) = 1

(1 − √
c)2

∞∑

ℓ=0

n∑

k=1

®π ℓ
i (k) · ®π ℓ

j (k) · D(k,k). (7)

PRSim precomputes ®π ℓ
j (k) with additive error ε for each ℓ

and vj ,vk ∈ V , using a local push algorithm [3]. To avoid
overwhelming space overhead, PRSim only precomputes
®π ℓ
j (k) for a small subset of vk . Furthermore, PRSim

computes D by estimating the product ®π ℓ
i (k) · D(k,k)

together with an O
(
logn

ε 2

)
time Monte-Carlo algorithm.

Finally, PRSim proposes a new Probe algorithm that samples
each node vj according to ®π ℓ

j (k). The average query time

of PRSim is bounded by O
(
n ·∑n

k=1 ®π (k)2
ε 2

logn
)
, where ®π (k)

denotes the PageRank of vk . It is well-known that on scale-
free networks, the PageRank vector ®π follows the power-
law distribution, and thus ‖ ®π ‖2 = ∑n

k=1 ®π (k)2 is a value
much smaller than 1. However, for worst-case graphs or
even some "bad" source nodes on scale-free networks, the

running time of PRSim remains O
(
n logn

ε 2

)
.

2.1 Other Related Work

Besides the state-of-the-art methods that we discuss above,
there are several other techniques for SimRank computa-
tion, which we review in the following. Power method [12]
is the classic algorithm that computes all-pair SimRank
similarities for a given graph. Let S be the SimRank matrix
such that Si j = s(i, j), and P be the transition matrix of G .
Power method recursively computes the SimRank Matrix
S using the formula [14] S = (cP⊤SP) ∨ I , where ∨ is the
element-wise maximum operator. Several follow-up works
[22, 36, 40] improve the efficiency or effectiveness of the
power method in terms of either efficiency or accuracy.
However, these methods still incur O(n2) space overheads,
as there are O(n2) pairs of nodes in the graph. For single-
source queries, READS [13] and TSF [27] are MC-based
algorithms supporting dynamic graphs. Both of them incurs

of O
(
n logn

ε 2

)
query time for ε additive error. SLING [29] is

an index-based SimRank algorithm that support fast single-
source and top-k queries on static graphs. Its preprocessing

phase using O
(
n logn

ε 2

)
time which is infeasible for large

graphs. ProbeSim [20] and TopSim [15] are both index-
free solutions based on local exploitation. Their query

time is also bounded by O
(
n logn

ε 2

)
. Besides, Li et al. [18]

propose a distributed version of the Monte Carlo approach
in [9], but it achieves scalability at the cost of significant
computation resources. Finally, there is existing work on
SimRank similarity join [25, 28, 44], variants of SimRank
[4, 8, 19, 39, 43] and graph applications [6, 33], but the
proposed solutions are inapplicable for top-k and single-
source SimRank queries.

Pooling. Finally, pooling [20] is an experimental method
for evaluating the accuracy of top-k SimRank algorithms
without the ground truths. Suppose the goal is to compare
the accuracy of top-k queries for ℓ algorithms A1, . . . ,Aℓ .
Given a query nodevi , we retrieve the top-k nodes returned
by each algorithm, remove the duplicates, and merge them
into a pool. Note that there are at most ℓk nodes in the
pool. Then we estimate S(i, j) for each node vj in the pool
using the Monte Carlo algorithm. We set the number of

random walks to be O
(
logn

ε 2min

)
so that we can obtain the

ground truth of S(i, j) with high probability. After that, we
take the k nodes with the highest SimRank similarity to vi
from the pool as the ground truth of the top-k query, and
use this “ground truth” to evaluate the precision of each
of the ℓ algorithms. Note that the set of these k nodes is
not the actual ground truth. However, it represent the best
possible k nodes that can be found by the ℓ algorithms that
participate in the pool and thus can be used to compare the
quality of these algorithms.
Although pooling is proved to be effective in our scenario

where ground truths are hard to obtain, it has some
drawbacks. First of all, the precision results obtained by
pooling are relative and thus cannot be used outside the
pool. This is because the top-k nodes from the pool are not
the actual ground truths. Consequently, an algorithm that
achieves 100% precision in the pool may have a precision of
0% when compared to the actual top-k result. Secondly, the

complexity of pooling ℓ algorithms isO
(
ℓk logn

ε 2min

)
, so pooling

is only feasible for evaluating top-k queries with small k .
In particular, we cannot use pooling to evaluate the single-
source queries on large graphs.

2.2 Limitations of Existing Methods

We now analyze the reasons why existing methods are
unable to achieve exactness (a.k.a an error of at most εmin =

10−7). First of all, ParSim ignores the first meeting constraint
and thus incurs large errors. For other methods that enforce
the first meeting constraint, they all incur a complexity

term of O
(
n logn

ε 2

)
, either in the preprocessing phase or

in the query phase. In particular, SLING and Linearization

simulate O
(
n logn

ε 2

)
random walks to estimate the diagonal

correction matrix D. For ProbeSim, MC, READS and PRSim,

this complexity is causing by simulating random walks in

the query phase or the preprocessing phase. TheO
(
n logn

ε 2

)

complexity is infeasible for exact SimRank computation on
large graphs, since it combines two expensive terms n and

1
ε 2min

. As an example, we consider the IT dataset used in

our experiment, with 4 ∗ 107 nodes and over1 billion edges.
In order to achieve a maximum error of εmin = 10−7, we
need to simulate

n logn

ε 2
≈ 1023 randomwalks. This may take

years, even with parallelization on a cluster of thousands of
machines.

3 THE EXACTSIM ALGORITHM

In this section, we present ExactSim, a probabilistic
algorithm that computes the exact single-source SimRank
results within reasonable running time. We first present a
basic version of ExactSim, and then introduce some more
advanced techniques to optimize the query and the space
cost.

3.1 Basic ExactSim Algorithm

Our ExactSim algorithm is largely inspired by three prio
works: pooling [20], Linearization [24] and PRSim [31]. We
now discuss how ExactSim extends from these existing
methods in details. These discussions will also reveal the
high level ideas of the ExactSim algorithm.

(1) Despite its limitations, pooling [20] provides a key

insight for achieving exactness: while an O
(
n logn

ε 2

)

algorithm is not feasible for exact SimRank compu-
tation on large graphs, we can actually afford an

O
(
logn

ε 2

)
algorithm. The 1

ε 2
term is still expensive

for ε = εmin = 10−7, however, the new complexity
reduces the dependence on the graph size n to
logarithmic, and thus achieves very high scalability.

(2) Linearization [24] and ParSim [38] show that if the
diagonal correction matrix D is correctly given, then
we can compute the exact single-source SimRank

results in O
(
m log 1

c

1
εmin

)
time and O

(
n log 1

c

1
εmin

)

extra space. For typical setting of c (0.6 to 0.8), the
number of iterations log 1

c

1
εmin

= log 107 ≤ 73

is a constant, so this complexity is essentially the
same as that of performing BFS multiple times on the
graphs. The scalability of the algorithm is confirmed
in the experiments of [38], where D is set to be
(1 − c)I . Moreover, the exact algorithms [26] for
Personalized PageRank and PageRank also incurs a

running time of O
(
m log 1

εmin

)
, and has been widely

used for computing ground truths on large graphs.

Algorithm 1: Basic ExactSim Algorithm

Input: GraphG with transition matrix P , source node vi ,

maximum error ε

Output: Estimated single-source SimRank vector S · ®ei
1 L =

⌈
log 1

c

2
ε

⌉
;

2 ®π0i , ®πi = (1 − √
c)®ei ;

3 for ℓ from 1 to L do

4 ®π ℓ
i =

√
cP · ®π ℓ−1

i ;

5 ®πi = ®πi + ®π ℓ ;

6 R =
6 logn

(1−√c)4ε 2 ;

7 for k from 1 to n do

8 Invoke Algorithm 2 with R(k) = ⌈R · ®πi (k)⌉ to obtain an

estimator D̂(k,k) for D(k,k);
9 ®s0 = 1

1−√c D̂ · ®πLi ;
10 for ℓ from 1 to L do

11 ®sℓ = √
cP⊤ · ®sℓ−1 + 1

1−√c D̂ · ®πL−ℓi ;

12 Clear ®sℓ−1;
13 return ®sL ;

(3) While the O
(
n logn

ε 2

)
complexity seems unavoidable

as we need to estimate each entry in the diagonal
correction matrix D with additive error ε , PRSim [31]

shows that it only takes O
(
logn

ε 2

)
time to estimate

the product ®π ℓ
i (k) · D(k,k) with additive error ε

for each k = 1, . . . ,n and ℓ = 0, . . . ,∞, where
®π ℓ
i is the ℓ-hop Personalized PageRank vector of vi .

This result provides two crucial observations: 1) It is
possible to answer an single-source query without an
ε-approximation of each D(k,k); 2) The accuracy of
eachD(k,k) should depend on ®πi (k), the Personalized
PageRank of vk with respect to the source node vi .

We combine the ideas of PRSim and Linearization/ParSim
to derive the basic ExactSim algorithm. Given an error
parameter ε , ExactSim fixes the total number of

√
c-

walk samples to be R = O
(
logn

ε 2

)
, and distribute a

fraction of R ®πi (k) samples (note that
∑n

k=1 ®πi (k) = 1) to
estimate D(k,k). It performs Linearization/ParSim with the
estimated D to obtain the single-source result. The algo-

rithm runs in O
(
logn

ε 2
+m log 1

ε

)
time and uses O

(
n log 1

ε

)

extra space. Since both complexity terms O
(
logn

ε 2

)
and

O
(
m log 1

ε

)
are feasible for εmin = 10−7 and large graph

sizem, we have a working algorithm for exact single-source
SimRank queries on large graphs.
Algorithm 1 illustrates the pseudocode of the basic

ExactSim algorithm. Note that to cope with Personalized

Algorithm 2: Basic method for estimating D(k,k)
Input: GraphG, node vk , number of samples R(k)
Output: D̂(k,k) as an estimation for D(k,k)

1 D̂(k,k) = 0;

2 for x from 1 to R(k) do
3 Sample two independent

√
c-walks from vk ;

4 if The two
√
c-walks do not meet then

5 D̂(k,k) = D̂(k,k) + 1/R(k);

6 return D̂(k,k);

PageRank, we use the fact that ®π ℓ
i =

(
1 − √

c
) · (√cP) ℓ · ®ei

and re-write equation (4) as

S · ®ei =
1

1 − √
c

∞∑

ℓ=0

(√
cP⊤

)ℓ
D · ®π ℓ

i . (8)

Given a source node vi and a maximum error ε , we first set

the number of iterations L to be L =
⌈
log 1

c

2
ε

⌉
(line 1). We

then iteratively compute the ℓ-hop Personalized PageRank

vector ®π ℓ
i =

(√
cP

) ℓ · ®ei for ℓ = 0, . . . , L, as well as the

Personalized PageRank vector ®πi =
∑L

ℓ=0 ®π ℓ
i (lines 2-5). To

obtain an estimator D̂ for the diagonal correction matrix D,

we set the total number of samples to be R =
6 logn

(1−√c)4ε 2 (line

6). For each D(k,k), we set R(k) = ⌈R ®πi (k)⌉ and invoke
Algorithm 2 to estimate D(k,k) (lines 7-8). Algorithm 2
essentially simulates R(k) pairs of

√
c-walks from node

vk and uses the fraction of pairs that do not meet as an

estimator D̂(k,k) for D(k,k). Finally, we use equation (8) to

iteratively compute ®s0 = 1
1−√c D̂ · ®π L

i , ®s1 =
√
cP⊤ · ®s0+ 1

1−√c D̂ ·
®π L−1
i =

1
1−√c

(√
cP⊤ · D̂ · ®π L

i + D̂ · ®π L−1
i

)
(lines 9-12), ..., and

®sL =

(√
cP⊤

(
· · · (√cP⊤ · D̂ · ®π L

+ D̂ · ®π L−1) + · · ·
)
+ D̂ · ®π 0

)

1 − √
c

=

1

1 − √
c

L∑

ℓ=0

(√
cP⊤

)ℓ
D̂ · ®π ℓ

i . (9)

We return ®sL as the single-source query result (line 13).

Analysis. To derive the running time and space overhead
of the basic ExactSim algorithm, note that computing and
storing each ℓ-hop Personalized PageRank vector ®π ℓ

i takes
O(m) time and O(n) space. This results a running time
of O(mL) and a space overhead of O(nL). To estimate
the diagonal correction matrix D, the algorithm simulates
R pairs of

√
c-walks, each of which takes 1√

c
= O(1)

time. Therefore, the running time for estimating D can be
bounded by O(R). Finally, computing each ®sℓ also takes
O(m) time, resulting an additional running time of O(mL).

Summing up all costs, and we have the total running time is

bounded byO(mL + R) = O
(
logn

ε 2
+m log 1

ε

)
, and the space

overhead is bounded byO(nL) = O
(
n log 1

ε

)
.

We now analyze the error of the basic ExactSim algorithm.
Recall that ExactSim returns ®sL(j) as the estimator for S(i, j),
the SimRank similarity between the source nodevi and any
other node vj . We have the following Theorem.

Theorem 1. With probability at least 1 − 1/n, for any

source node vi ∈ V , the basic ExactSim provide an single-

source SimRank vector ®sL such that, for any node vj ∈ V , we

have
��®sL(j) − S(i, j)

�� ≤ ε .

Theorem 1 essentially states that with high probability,
the basic ExactSim algorithm can compute any single-
source SimRank query with additive ε . The proof of
Theorem 1 is fairly technical shown in appendix, however,
the basic idea is to show that the variance of the estimator
®sL(j) can be bounded by O(1

R
) = O(ε2). In particular, we

have the following Lemma.

Lemma 1. The variance of ®sL(j) is bounded by

Var[®sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

®πi (k)2 ®πj (k)2
ρ(k) · D(k,k). (10)

In particular, by setting ρ(k) = R(k)/R = ⌈R ®πi (k)⌉/R in the

basic ExactSim algorithm, we have

Var[®sL(j)] ≤ 1

(1 − √
c)4R
. (11)

Note that we only need inequality (11) to derive the error
bound for the basic ExactSim algorithm. The more complex
inequality (10) will be used to design various optimization
techniques.

3.2 Optimizations

Although the basic ExactSim algorithm is a working
algorithm for exact single-source SimRank computation on
large graphs, it suffers from some drawbacks. First of all, the
O(n log 1

ε
) space overhead can be several times larger than

the actual graph sizem. Secondly, we still need to simulate

R = O
(
logn

ε 2

)
of pairs of

√
c-walks, which is a significant

cost for εmin = 10−7. Although parallelization can help, we
are still interested in developing algorithmic techniques that
reduces the number of random walks. In this section, we
provide three optimization techniques that address these
drawbacks.

Sparse Linearization. We design a sparse version of
Linearization that significantly reduces the O

(
n log 1

ε

)

space overhead while retaining the O(ε) error guarantee .
Recall that this space overhead is causing by storing the
ℓ-hop Personalized PageRank vectors ®π ℓ

i for ℓ = 0, . . . , L.

We propose to make the following simple modification:
Instead of storing the dense vector ®π ℓ

i , we sparsify the vector

by removing all entries of with ®π ℓ
i (k) ≤ (1 − √

c)2ε . To
understand the effectiveness of this approach, recall that a
nice property of the ℓ-hop Personalized PageRank vectors
is that all possible entries sum up to

∑∞
ℓ=0

∑n
k=1 ®π ℓ

i (k) =∑n
k=1 ®π ℓ(k) = 1. By the Pigeonhole principle, the number

of ®π ℓ
i (k)’s that are larger than (1 − √

c)2ε is bounded by
1

(1−√c)2ε . Thus the space overhead is reduced to O
(
1
ε

)
. This

overhead is acceptable for exact computations where we set
ε = εmin = 10−7, as it does not scale with the graph size.

The following Lemma proves that the sparse Lineariza-
tion will only introduce an extra additive error of ε . If we
scale down ε by a factor of 2, the total error guarantee and
the asymptotic running time of ExactSim will remain the
same, and the space overhead is reduced to O

(
1
ε

)
.

Lemma 2. The sparse Linearization introduces an extra

additive error of ε and reduces the space overhead to O
(
1
ε

)
.

Sampling according to ®πi (k)2. Recall that in the basic
ExactSim algorithm, we simulate R pairs of

√
c-walks in

total, and distribute ®πi (k) fraction of the R samples to
estimate D(k,k). A natural question is that, is there a better
scheme to distribute these R samples? It turns out if we
distribute the samples according to ®πi (k)2, we can further
reduce the variance of the estimator and hence achieve a
better running time. More precisely, we will set R(k) =
R

⌈
®πi (k)2
‖ ®πi ‖2

⌉
, where ‖ ®πi ‖2 =

∑n
k=1 ®πi (k)2 is the squared norm of

the Personalized PageRank vector ®πi . The following Lemma,
whose proof can be found in appendix, shows that by
sampling according to ®πi (k)2, we can reduce the number of
sample R by a factor of ‖ ®πi ‖2.
Lemma 3. By sampling according to ®πi (k)2, the number of

random samples required is reduced to O
(
‖ ®πi ‖2 logn

ε 2

)
.

To demonstrate the effectiveness of sampling according
to ®πi (k)2, notice that in the worst case, ‖ ®πi ‖2 is as
large as ‖ ®πi ‖21 = 1, so this optimization technique is
essentially useless. However, it is known [5] that on scale-
free networks, the Personalized PageRank vector ®πi follows
a power-law distribution: let ®πi (kj) denote the j-th largest

entry of ®πi , we can assume ®πi (kj) ∼ j−β

n1−β for some power-

law exponent β ∈ (0, 1). In this case, ‖ ®πi ‖2 can be bounded

by O

(
∑n

j=1

(
j−β

n1−β

)2)
= O

(
max

{
lnn
n
, 1
n2−2β

})
, and the ‖ ®πi ‖2

factor becomes significant for any power-law exponent β <
1.

Local deterministic exploitation for D.

The inequality (10) in Lemma 1 also suggests that we can
reduce the variance of the estimator ®sL(j) by refining the

Algorithm 3: Improved method for estimating D(k,k)
Input: GraphG, node vk , sample number R(k)
Output: An estimator D̂(k,k) for D(k,k)

1 if din(vk) = 0 then

2 return D̂(k,k) = 1;

3 else if din(vk) = 1 then

4 return D̂(k,k) = 1 − c;

5 Pℓ(x,k) = 0 for ℓ ≥ 0,x ∈ V ;

6 P0(k,k) = 1;

7 Ek = 0;

8 for ℓ from 0 to∞ do

9 for each vq with non-zero
(
P⊤

)ℓ (k,q) do
10 Calculate Zℓ(k,q) using equation (13);

11 for ℓ′ from 0 to ℓ do

12 for each vq′ with non-zero
(
P⊤

)ℓ−ℓ′ (k,q′) do
13 for each vx with non-zero

(
P⊤

)ℓ′ (q′, x) do
14 for each vq ∈ I(vx) do

15
(
P⊤

)ℓ′+1 (q′,q)+ = (P⊤)ℓ′ (q′,x)
din (vx) ;

16 Ek+ = 1;

17 if Ek ≥ 2R(k)√
c

then

18 ℓ(k) = ℓ and goto OUTLOOP;

19 ℓ = ℓ + 1;

20 OUTLOOP;

21 D̂(k,k) = 1 − ∑ℓ(k)
ℓ=1

∑n
q=1 Zℓ(k,q);

22 for z from 1 to R(k) do
23 Sample two independent non-stop random walks from

vk ;

24 if Two random walks reaches nodes vx and vy at the ℓ(k)
steps without meeting then

25 Sample a
√
c-walks from vx and vy ;

26 if the two
√
c-walks meet then

27 D̂(k,k) = D̂(k,k) − cℓ(k)/R(k);

28 return D̂(k,k);

Bernoulli estimator D̂(k,k). Recall that we sample R(k) =
⌈R ®πi (k)⌉ or R(k) = R

⌈
®πi (k)2
‖ ®πi ‖2

⌉
pairs of

√
c-walks to estimate

D(k,k). If ®πi (k) is large, we will simulate a large number of√
c-walks from vk to estimate D(k,k). In that case, the first

few steps of these random walks will most likely visit the
same local structures aroundvk , so it makes sense to exploit
these local structures deterministically, and use the random
walks to approximate the global structures. More precisely,
let Zℓ(k) denote the probability that two

√
c-walks from vk

first meet at the ℓ-th step. Since these events are mutually

exclusive for different ℓ’s, we have

D(k,k) = 1 − Pr[two
√
c-walks from vk meet] = 1 −

∞∑

ℓ=1

Zℓ(k).

The idea is to deterministically compute
∑ℓ(k)

ℓ=1
Zℓ(k) for

some tolerable step ℓ(k), and using random walks to
estimate the other part

∑∞
ℓ=ℓ(k)+1 Zℓ(k). It is easy to see that

by deterministically computingZℓ(k) for the first ℓ(k) levels,
we reduce the variance Var(D(k,k)) by at least cℓ(k).

A simple algorithm to compute Zℓ(k) is to list all possible
paths of length ℓ from vk and aggregate all meeting
probabilities of any two paths. However, the number of
paths increases rapidly with the length ℓ, which makes
this algorithm inefficient on large graphs. Instead, we will
derive the close form for Zℓ(k) in terms of the transition
probailities. In particular, let Zℓ(k,q) denote the probability
that two

√
c-walks first meet at node vq at their ℓ-th steps.

We have Zℓ(k) =
∑n

q=1 Zℓ(k,q), and hence

D(k,k) = 1 −
∞∑

ℓ=1

n∑

q=1

Zℓ(k,q) (12)

Recall that Pℓ (the ℓ-th power of the (reverse) transition
matrix P) is the ℓ-step (reverse) transition matrix. We
have the following Lemma that relates Zℓ(k,q) with the
transition probabilities.

Lemma 4. Zℓ(k,q) satisfies the following recursive form:

Zℓ(k,q) =cℓ
(
P⊤

)ℓ (k,q)2

−
ℓ−1∑

ℓ′=1

n∑

q′=1

cℓ
′ (
P⊤

)ℓ′ (q′,q)2Zℓ−ℓ′(k,q′).
(13)

Given a node vk and a pre-determined target level ℓ(k),
Lemma 4 also suggests a simple algorithm to compute
Zℓ(k,q) for all ℓ ≤ ℓ(k). We start by performing BFS from
node vk for up to ℓ(k) levels to calculate the transition

probabilities
(
P⊤

)ℓ (k,q) for ℓ = 0, . . . , ℓ(k) and vq ∈ V .
For each node q′ visited at the ℓ′-th level, we start a BFS

from q′ for ℓ(k) − ℓ′ levels to calculate (
P⊤

)ℓ(k)−ℓ′ (q′,q) for
ℓ = 1, . . . , ℓ(k) and vq ∈ V . Then we use equation (13)
to calculate Zℓ(k,q) for ℓ = 0, . . . , ℓ(k) and q ∈ V . Note
that this approach exploits strictly less edges than listing
all possible paths of length ℓ(k), as some of the paths are
combined in the computation of the transition probabilities.
However, a major problem with the above method is that

the target level ℓ(k) has to be predetermined, which makes
the running time unpredictable. An improper value of ℓ(k)
could lead to the explosion of the running time. Instead, we
will use an adaptive algorithm to compute Zℓ(k).

Algorithm 3 illustrates the new method for estimating
D(k,k). Given a node vk and a sample number R(k), the

goal is to give an estimator for D(k,k). For the two trivial
case din(k) = 0 and din(k) = 1, we return D(k,k) = 1 and
1 − c accordingly (lines 1-4). For other cases, we iteratively

compute all possible transition probabilities
(
P⊤

)ℓ′+1 (q′,q)
for all vq′ that is reachable from k with ℓ − ℓ′ steps
(lines 5-10). Note that these vq′’s are the nodes with
(
P⊤

)ℓ−ℓ′ (k,q′) > 0. To ensure the deterministic exploitation
stops in time, we use a counter Ek to record the total
number of edges traversed so far (line 11). If Ek exceeds
2R(k)√

c
, the expected number of steps for simulatingR(k) pairs

of
√
c-walks, we terminate the deterministic exploitation

and set ℓ(k) as the current target level for vk (lines 12-13).

After we fix ℓ(k) and compute
∑ℓ(k)

ℓ=1
Zℓ(k) (lines 14-17), we

will use random walk sampling to estimate
∑∞

ℓ=ℓ(k)+1 Zℓ(k)
(lines 18-23). In particular, we start two special random
walks from vk . The random walks do not stop in its first
ℓ(k) steps; after the ℓ(k)-th step, each random walk stops
with probability

√
c at each step. It is easy to see that the

probability of the two special random walks meet after ℓ(k)
steps is 1

c ℓ(k)
∑∞

ℓ=ℓ(k)+1 Zℓ(k). Consequently, we can use the

fraction of the random walks that meet multiplied by cℓ(k)

as an unbiased estimator for
∑∞

ℓ=ℓ(k)+1 Zℓ(k).
Parallelization. The ExactSim algorithm is highly paral-
lelizable as it only uses two primitive operations: matrix-
(sparse) vector multiplication and random walk simulation.
Both operations are embarrassingly parallelizable on GPUs
or multi-core CPUs. The only exception is the local
deterministic exploitation for D(k,k). To parallelize this
operation, we can apply Algorithm 3 to multiple vk
simultaneously. Furthermore, we can balance the load of
each thread by applying Algorithm 3 to nodes vk ’s with
similar number of samples R(k) in each epoch.

4 EXPERIMENTS

In this section, we experimentally study ExactSim and the
other single-source algorithms. We first evaluate ExactSim
against other methods to prove ExactSim’s ability of exact
computation (i.e., εmin = 10−7) both on small and large
graphs. Then we conduct an ablation study to demonstrate
the effectiveness of the optimization techniques.

Datasets and Environment. We use four small datasets
and four large datasets, obtained from [1, 2]. The details of
these datasets can be found in Table 2. All experiments are
conducted on a machine with an Intel(R) Xeon(R) E7-4809
@2.10GHz CPU and 196GB memory.

Methods and Parameters. We evaluate ExactSim and
other four single-source algorithms, including MC [8],
Linearization [24], ParSim [38] and PRSim [31], Among
them, ExactSim, ParSim are index-free methods, and the

10-7 10-5 10-3 10-1 101 103 105

query time(s) -GQ

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

G
Q

ExactSim
MC
ParSim
Linearization
PRSim

10-7 10-5 10-3 10-1 101 103 105

query time(s) -HT

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

H
T

ExactSim
MC
ParSim
Linearization
PRSim

10-7 10-5 10-3 10-1 101 103 105

query time(s) -WV

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

W
V

ExactSim
MC
ParSim
Linearization
PRSim

10-7 10-5 10-3 10-1 101 103 105

query time(s) -HP

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

H
P

ExactSim
MC
ParSim
Linearization
PRSim

Figure 1: MaxError v.s. Query time on small graphs

10-4 10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -GQ

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si

on
@

50
0

-G
Q

ExactSim
MC
ParSim
Linearization
PRSim

10-4 10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -HT

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si

on
@

50
0

-H
T

ExactSim
MC
ParSim
Linearization
PRSim

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -WV

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si

on
@

50
0

-W
V

ExactSim
MC
ParSim
Linearization
PRSim

10-4 10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -HP

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si

on
@

50
0

-H
P

ExactSim
MC
ParSim
Linearization
PRSim

Figure 2: Precision@500 v.s. Query time on small graphs

10-3 10-2 10-1 100 101 102 103 104 105

preprocessing time(s) -GQ

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

G
Q

MC
PRSim
Linearization

10-3 10-2 10-1 100 101 102 103 104 105

preprocessing time(s) -HT

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

H
T

MC
PRSim
Linearization

10-3 10-2 10-1 100 101 102 103 104 105

preprocessing time(s) -WV

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

W
V

MC
PRSim
Linearization

10-3 10-2 10-1 100 101 102 103 104 105

preprocessing time(s) -HP

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

H
P

MC
PRSim
Linearization

Figure 3: MaxError v.s. Preprocessing time on small graphs

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

index size(GB) -GQ

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

G
Q

MC
PRSim
Linearization

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

index size(GB) -HT

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

H
T

MC
PRSim
Linearization

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

index size(GB) -WV

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

W
V

MC
PRSim
Linearization

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

index size(GB) -HP

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

H
P

MC
PRSim
Linearization

Figure 4: MaxError v.s. Index size on small graphs

others are index-based methods; ExactSim and ParSim can
handle dynamic graphs, and the other methods can only
handle static graphs. In this paper, we only focus on static
graphs. For a fair comparison, we run each algorithm in the
single thread mode.
MC has two parameters: the length of each random walk

L and the number of randomwalks per node r .We vary (L, r)
from (5, 50) to (5000, 50000)on small graphs and from (5, 50)

to (50, 500)on large graphs. ParSim has one parameter L, the
number of iterations. We vary it from 50 to 5× 105 on small
graphs and from 10 to 500 on large graphs. Linearization,
PRSim and ExactSim share the same error parameter ε , and
we vary ε from 10−1 to 10−7 (if possible) on both small and
large graphs. We evaluate the optimized ExactSim unless
otherwise stated. In all experiments, we set the decay factor
c of SimRank as 0.6.

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -DB

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

D
B

ExactSim
MC
ParSim
Linearization
PRSim

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -IC

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

IC

ExactSim
MC
ParSim
Linearization
PRSim

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -IT

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

IT

ExactSim
MC
ParSim
Linearization
PRSim

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -TW

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

T
W

ExactSim
MC
ParSim
Linearization
PRSim

Figure 5: MaxError v.s. Query time on large graphs

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -DB

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

P
re

ci
si

on
@

50
0

-D
B

ExactSim
MC
ParSim
Linearization
PRSim

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -IC

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

P
re

ci
si

on
@

50
0

-I
C

ExactSim
MC
ParSim
Linearization
PRSim

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -IT

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

P
re

ci
si

on
@

50
0

-I
T

ExactSim
MC
ParSim
Linearization
PRSim

10-3 10-2 10-1 100 101 102 103 104 105

query time(s) -TW

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

P
re

ci
si

on
@

50
0

-T
W

ExactSim
MC
ParSim
Linearization
PRSim

Figure 6: Precision@500 v.s. Query time on large graphs

10-1 100 101 102 103 104 105 106

preprocessing time(s) -DB

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

D
B

MC
PRSim
Linearization

10-1 100 101 102 103 104 105 106

preprocessing time(s) -IC

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

IC

MC
PRSim
Linearization

10-1 100 101 102 103 104 105 106

preprocessing time(s) -IT

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

IT

MC
PRSim
Linearization

10-1 100 101 102 103 104 105 106

preprocessing time(s) -TW

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

T
W

MC
PRSim
Linearization

Figure 7: MaxError v.s. Preprocessing time on large graphs

10-3 10-2 10-1 100 101 102 103

index size(GB) -DB

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

D
B

MC
PRSim
Linearization

10-3 10-2 10-1 100 101 102 103

index size(GB) -IC

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

IC

MC
PRSim
Linearization

10-3 10-2 10-1 100 101 102 103

index size(GB) -IT

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

IT

MC
PRSim
Linearization

10-3 10-2 10-1 100 101 102 103

index size(GB) -TW

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

E
rr

or
 -

T
W

MC
PRSim
Linearization

Figure 8: MaxError v.s. Index size on large graphs

Metrics. We use MaxError and Precision@k to evaluate
the quality of the single-source and top-k results. Given
a source node vi and an approximate single-source result

with n similarities Ŝ(i, j), j = 1, . . . ,n, MaxError is defined
to be the maximum error over n similarities: MaxError =

maxnj=1
��Ŝ(i, j) − S(i, j)

��. Given a source node vi and an

approximate top-k result Vk = {v1, . . . ,vk }, Precision@k is
defined to be the percentage of nodes in Vk that coincides

with the actual top-k results. In our experiment, we set k
to be 500. Note that this is the first time that top-k queries
with k > 100 are evaluated on large graphs. On each dataset,
we issue 50 queries and report the average MaxError and
Precision@500.

Table 2: Data Sets.

Data Set Type n m

ca-GrQc (GQ) undirected 5,242 28,968

CA-HepTh(HT) undirected 9,877 51,946

Wikivote (WV) directed 7,115 103,689

CA-HepPh (HP) undirected 12008 236978

DBLP-Author (DB) undirected 5,425,963 17,298,032

IndoChina (IC) directed 7,414,768 191,606,827

It-2004 (IT) directed 41,290,682 1,135,718,909

Twitter (TW) directed 41,652,230 1,468,364,884

4.1 Experiments on small graphs

We first evaluate ExactSim against other single-source
algorithms on four small graphs. We compute the ground
truths of the single-source and top-k queries using the
Power Method [12]. We omit a method if its query or
preprocessing time exceeds 24 hours.
Figure 1 shows the tradeoffs between MaxError and the

query time of each algorithm. The first observation is that
ExactSim is the only algorithm that consistently achieves
an error of 10−7 within 104 seconds. Linearization is able
to achieve a faster query time when the error parameter ε is
large. However, as we set ε ≤ 10−5, Linearization is troubled

by its O
(
n logn

ε 2

)
preprocessing time and is unable to finish

the computation of the diagonal matrix D in 24 hours.
Figure 2 presents the tradeoffs between Precision@500

and query time of each algorithm.We observe that ExactSim
with ε = 10−7 is able to achieve a precision of 1 on all
four graphs. This confirms the exactness of ExactSim. We
also note that ParSim is able to achieve high precisions
on all four graphs despite its large MaxError in Figure 1.
This observation demonstrates the effectiveness of the D ∼
(1 − c)I approximation on small datasets. Finally, for the
index-based methodsMC, PRSim and Linearization, we also
plot the tradeoffs between MaxError and preprocessing
time/index size in Figure 3 and 4. The index sizes of
Linearization form a vertical line, as the algorithm only
recomputes and stores a diagonalmatrixD. PRSim generally
achieves the smallest error given a fixed amount of
preprocessing time and index size.

4.2 Experiments on large graphs

For now, we have experimental evidence that ExactSim is
able to obtain the exact single-source and top-k SimRank
results on small graphs. On the other hand, the theoretical
analysis in section 3 guarantees that ExactSim with ε =

10−7 can achieve a precision of 7 decimal places with high
probability. Hence, we will treat the results computed by
ExactSim with ε = 10−7 as the ground truths to evaluate
the performance of various algorithms (including ExactSim

with larger ε) on large graphs. We also omit a method if its
query or preprocessing time exceeds 24 hours.
Figure 5 and Figure 6 show the trade-offs between

the query time and MaxError and Precision@500 of each
algorithm. Figure 7 and Figure 8 display the MaxError

and preprocessing time/index size plots of the index-based
algorithms. For ExactSimwith ε = 10−7, we set itsMaxError

as 10−7 and Precision@500 as 1. We observe from Figure 6
that ExactSim with ε = 106 also achieves a precision of 1
on all four graphs. This suggests that the top-500 result of
ExactSim with ε = 10−6 is the same as that of ExactSim with
ε = 10−7. In other words, the top-500 result of ExactSim
actually converges after ε = 10−6. This is another strong
evidence of the exact nature of ExactSim. From Figure 5,
We also observe that ExactSim is the only algorithm that
achieves an error of less than 10−6 on all four large graphs.
In particular, on the TW dataset, no existing algorithm can
achieve an error of less than 10−4, while ExactSim is able to
achieve exactness within 104 seconds.

4.3 Ablation study.

We now evaluate the effectiveness of the optimization
techniques. Recall that we use sampling according to
®πi (k)2 and local deterministic exploitation to reduce the
query time, and sparse Linearization to reduce the space
overhead. Figure 9 shows the time/error tradeoffs of the
basic ExactSim and the optimized ExactSim algorithms.
Under similar actual error, we observe a speedup of 10 −
100 times. Table 3 shows the memory overhead of the
basic ExactSim and the optimized ExactSim algorithms. We
observe that the space overhead of the basic ExactSim
algorithm is usually larger than the graph size, while sparse
Linearization reduces the memory usage by a factor of 5− 6
times. This demonstrates the effectiveness of our optimizing
techniques.

10-3 10-2 10-1 100 101 102 103 104

query time(s) -HP

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

H
P

Optimized ExactSim
Basic ExactSim

10 20 40 80
query time(s) -DB

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

E
rr

or
 -

D
B

Optimized ExactSim
Basic ExactSim

Figure 9: Basic ExactSim v.s. Optimized ExactSim

5 CONCLUSIONS

This paper presents ExactSim, an algorithm that produces
the ground truths for single-source and top-k SimRank

Table 3: Memory overhead on large graphs.

Memory overhead (GB) DB IC IT TW

Basic ExactSim 2.49 3.40 18.95 19.12

ExactSim 0.47 0.58 3.26 3.54

Graph size (GB) 0.48 1.88 10.94 13.30

queries with precision up to 7 decimal places on large
graphs. We also design various optimization techniques to
improve the space and time complexity of the proposed
algorithm. We believe the ExactSim algorithm can be used
to produce the ground truths for evaluating single-source
SimRank algorithms on large graphs. For future work, we

note that the O
(
logn

ε 2

)
complexity of ExactSim prevents it

from achieving a precision of 10−14 (i.e., the precision of the
double type). To achieve such extreme precision, we need an

algorithmwithO
(
logn
ε

)
complexity, which remains a major

open problem in SimRank study.

6 ACKNOWLEDGEMENTS

This research was supported in part by National Natural Sci-
ence Foundation of China (No. 61832017, No. 61972401, No.
61932001, No. U1711261, No. 61932004 and No. 61622202),
by FRFCU No. N181605012, by Beijing Outstanding Young
Scientist Program NO. BJJWZYJH012019100020098, and
by the Fundamental Research Funds for the Central
Universities and the Research Funds of Renmin University
of China under Grant 18XNLG21.

REFERENCES
[1] http://snap.stanford.edu/data.

[2] http://law.di.unimi.it/datasets.php.

[3] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph

partitioning using pagerank vectors. In FOCS, pages 475–486, 2006.

[4] Ioannis Antonellis, Hector Garcia Molina, and Chi Chao Chang.

Simrank++: query rewriting through link analysis of the click graph.

PVLDB, 1(1):408–421, 2008.

[5] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast

incremental and personalized pagerank. VLDB, 4(3):173–184, 2010.

[6] Mansurul Bhuiyan and Mohammad Al Hasan. Representing graphs

as bag of vertices and partitions for graph classification. Data Science

and Engineering, 3(2):150–165, 2018.

[7] Fan R. K. Chung and Lincoln Lu. Concentration inequalities and

martingale inequalities: A survey. Internet Mathematics, 3(1):79–127,

2006.

[8] Daniel Fogaras and Balazs Racz. Scaling link-based similarity search.

InWWW, pages 641–650, 2005.

[9] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós.

Towards scaling fully personalized pagerank: Algorithms, lower

bounds, and experiments. Internet Mathematics, 2(3):333–358, 2005.

[10] Yuichiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, and Makoto

Onizuka. Efficient search algorithm for simrank. In ICDE, pages 589–

600, 2013.

[11] Guoming He, Haijun Feng, Cuiping Li, and Hong Chen. Parallel

simrank computation on large graphs with iterative aggregation. In

KDD, pages 543–552, 2010.

[12] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-

context similarity. In SIGKDD, pages 538–543, 2002.

[13] Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong.

Reads: a random walk approach for efficient and accurate dynamic

simrank. PPVLDB, 10(9):937–948, 2017.

[14] Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi Kawarabayashi.

Scalable similarity search for simrank. In SIGMOD, pages 325–336,

2014.

[15] Pei Lee, Laks V. S. Lakshmanan, and JeffreyXu Yu. On top-k structural

similarity search. In ICDE, pages 774–785, 2012.

[16] Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu,

and Tianyi Wu. Fast computation of simrank for static and dynamic

information networks. In EDBT, pages 465–476, 2010.

[17] Lina Li, Cuiping Li, Hong Chen, and Xiaoyong Du. Mapreduce-

based simrank computation and its application in social recommender

system. In 2013 IEEE international congress on big data, pages 133–140.

IEEE, 2013.

[18] Zhenguo Li, Yixiang Fang, Qin Liu, Jiefeng Cheng, Reynold Cheng,

and John Lui. Walking in the cloud: Parallel simrank at scale. PVLDB,

9(1):24–35, 2015.

[19] Zhenjiang Lin, Michael R Lyu, and Irwin King. Matchsim: a novel

similaritymeasure based onmaximum neighborhoodmatching. KAIS,

32(1):141–166, 2012.

[20] Yu Liu, Bolong Zheng, Xiaodong He, Zhewei Wei, Xiaokui Xiao, Kai

Zheng, and Jiaheng Lu. Probesim: scalable single-source and top-k

simrank computations on dynamic graphs. PVLDB, 11(1):14–26, 2017.

[21] Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and Denis Turdakov.

Accuracy estimate and optimization techniques for simrank compu-

tation. The VLDB Journal, 19(1):45–66, 2010.

[22] Dmitry Lizorkin, Pavel Velikhov, Maxim N. Grinev, and Denis

Turdakov. Accuracy estimate and optimization techniques for

simrank computation. VLDB J., 19(1):45–66, 2010.

[23] Linyuan Lü and Tao Zhou. Link prediction in complex networks:

A survey. Physica A: statistical mechanics and its applications,

390(6):1150–1170, 2011.

[24] Takanori Maehara, Mitsuru Kusumoto, and Ken-ichi Kawarabayashi.

Efficient simrank computation via linearization. CoRR, abs/1411.7228,

2014.

[25] Takanori Maehara, Mitsuru Kusumoto, and Ken-ichi Kawarabayashi.

Scalable simrank join algorithm. In ICDE, pages 603–614, 2015.

[26] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: bringing order to the web. 1999.

[27] Yingxia Shao, Bin Cui, Lei Chen, Mingming Liu, and Xing Xie. An

efficient similarity search framework for simrank over large dynamic

graphs. PVLDB, 8(8):838–849, 2015.

[28] Wenbo Tao, Minghe Yu, and Guoliang Li. Efficient top-k simrank-

based similarity join. PVLDB, 8(3):317–328, 2014.

[29] Boyu Tian and Xiaokui Xiao. SLING: A near-optimal index structure

for simrank. In SIGMOD, pages 1859–1874, 2016.

[30] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel

Müller. Verse: Versatile graph embeddings from similarity measures.

InWWW, pages 539–548. InternationalWorldWideWebConferences

Steering Committee, 2018.

[31] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Yu Liu,

Xiaoyong Du, and Ji-Rong Wen. Prsim: Sublinear time simrank

computation on large power-law graphs. In SIGMOD, pages 1042–

1059. ACM, 2019.

[32] Wensi Xi, Edward A Fox,Weiguo Fan, Benyu Zhang, Zheng Chen, Jun

Yan, and Dong Zhuang. Simfusion: measuring similarity using unified

http://snap.stanford.edu/data
http://law.di.unimi.it/datasets.php

relationship matrix. In SIGIR, pages 130–137. ACM, 2005.

[33] Qi Ye, Changlei Zhu, Gang Li, Zhimin Liu, and Feng Wang. Using

node identifiers and community prior for graph-based classification.

Data Science and Engineering, 3(1):68–83, 2018.

[34] Weiren Yu, Xuemin Lin, and Wenjie Zhang. Fast incremental simrank

on link-evolving graphs. In ICDE, pages 304–315, 2014.

[35] Weiren Yu, Xuemin Lin, Wenjie Zhang, Lijun Chang, and Jian

Pei. More is simpler: Effectively and efficiently assessing node-pair

similarities based on hyperlinks. PVLDB, 7(1):13–24, 2013.

[36] Weiren Yu and Julie McCann. Gauging correct relative rankings for

similarity search. In CIKM, pages 1791–1794, 2015.

[37] Weiren Yu and Julie A. McCann. Efficient partial-pairs simrank search

for large networks. PVLDB, 8(5):569–580, 2015.

[38] Weiren Yu and Julie AMcCann. Efficient partial-pairs simrank search

on large networks. Proceedings of the VLDB Endowment, 8(5):569–580,

2015.

[39] Weiren Yu and Julie Ann McCann. High quality graph-based

similarity search. In SIGIR, pages 83–92, 2015.

[40] Weiren Yu, Wenjie Zhang, Xuemin Lin, Qing Zhang, and Jiajin Le. A

space and time efficient algorithm for simrank computation. World

Wide Web, 15(3):327–353, 2012.

[41] Jing Zhang, Jie Tang, CongMa, Hanghang Tong, Yu Jing, and Juanzi Li.

Panther: Fast top-k similarity search on large networks. In SIGKDD,

pages 1445–1454. ACM, 2015.

[42] Peixiang Zhao, Jiawei Han, and Yizhou Sun. P-rank: a comprehensive

structural similarity measure over information networks. In CIKM,

pages 553–562. ACM, 2009.

[43] Peixiang Zhao, Jiawei Han, and Yizhou Sun. P-rank: a comprehensive

structural similarity measure over information networks. In CIKM,

pages 553–562, 2009.

[44] Weiguo Zheng, Lei Zou, Yansong Feng, Lei Chen, and Dongyan Zhao.

Efficient simrank-based similarity join over large graphs. PVLDB,

6(7):493–504, 2013.

A INEQUALITIES

A.1 Bernstein Inequality

Lemma 5 (Bernstein ineqality [7]). Let X1, · · · ,XR be

independent random variables with |Xi | < b for i = 1, . . . ,R.

Let X = 1
R
· ∑R

i=1Xi , we have

Pr[|X −E[X]| ≥ λ] ≤ 2 ·exp
(
− λ2 · R
2R · Var[X] + 2bλ/3

)
, (14)

where Var[X] is the variance of X .

B PROOFS

B.1 Proof of Lemma 1

Proof of Lemma 1. Note that D̂r (k,k) is a Bernoulli
random variable with expectation D(k,k), and thus has

variance Var[D̂r (k,k)] = D(k,k)(1 − D(k,k)) ≤ D(k,k).
Since D̂r (k,k)’s are independent random variables, we have

Var[®sL(j)]

=

1

(1 − √
c)4R2

n∑

k=1

Rρ (k)∑

r=1

(∑L
ℓ=0 ®π ℓ

i (k) · ®π ℓ
j (k)

ρ(k)

)2
· Var[D̂r (k,k)]

=

1

(1 − √
c)4R

n∑

k=1

(∑L
ℓ=0 ®π ℓ

i (k) · ®π ℓ
j (k)

)2

ρ(k) · D(k,k)(1 − D(k,k)).

By the Cauchy-Schwarz inequality, we have
(

L∑

ℓ=0

®π ℓ
i (k) · ®π ℓ

j (k)
)2

≤
(

L∑

ℓ=0

®π ℓ
i (k)

)2 (
L∑

ℓ=0

®π ℓ
j (k)

)2

≤ ®πi (k)2 ®πj (k)2.
Combining with the fact that 1 − D(k,k) ≤ 1, we have

Var[®sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

®πi (k)2 ®πj (k)2
ρ(k) · D(k,k). (15)

and the first part of the Lemma follows.
Plugging ρ(k) = R(k)/R = ⌈R ®πi (k)⌉/R ≥ ®πi (k) into

Lemma 1, we have

Var[®sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

®πi (k)2 ®πj (k)2
®πi (k)

· D(k,k)

≤ 1

(1 − √
c)4R

n∑

k=1

®πi (k).

For the last inequality, we use the fact that D(k,k) ≤ 1
and ®πj (k) ≤ 1. Finally, since

∑n
k=1 ®πi (k) = 1, we have

Var[®sL(j)] ≤ 1
(1−√c)4R , and the second part of the Lemma

follows. �

B.2 Proof of Theorem 1

Proof. we first note that by equation (9), ®sL(j) can be
expressed as

®sL(j) = ®ej · ®sL =
1

1 − √
c
®e⊤j ·

L∑

ℓ=0

(√
cP⊤

)ℓ
D̂ · ®π ℓ

i

=

1

(1 − √
c)2

L∑

ℓ=0

(
(1 −

√
c)

(√
cP

) ℓ
· ®ej

)⊤
· D̂ · ®π ℓ

i .

Since (1 − √
c) (√cP) ℓ · ®ej = ®π ℓ

j , we have

®sL(j) = 1

(1 − √
c)2

L∑

ℓ=0

(
®π ℓ
j

)⊤
· D̂ · ®π ℓ

i . (16)

Summing up over the diagonal elements of D follows that

®sL(j) = 1

(1 − √
c)2

L∑

ℓ=0

n∑

k=1

®π ℓ
i (k) · ®π ℓ

j (k) · D̂(k,k). (17)

Comparing the equation (17) with the actual SimRank value
S(i, j) given in [31] that

S(i, j) = 1

(1 − √
c)2

∞∑

ℓ=0

n∑

k=1

®π ℓ
i (k) · ®π ℓ

j (k) · D(k,k). (18)

we observe that there are two discrepancies: 1) The

iteration number changes from ∞ to L, and 2) Estimator D̂
replaces actual diagonal correction matrix D. For the first
approximation, we can bound the error by cL ≤ ε/2 if

ExactSim sets L =
⌈
log 1

c

2
ε

⌉
. Consequently, we only need to

bound the error from replacingD with D̂ utilizing Bernstein
inequality given in Lemma 5.
According to Bernstein inequality, we need to express

®sL(j) as the average of independent random variables. In

particular, let D̂r (k,k), r = 1, . . . ,R(k) denote the r -th
estimator of D(k,k) by Algorithm 2. We observe that each

D̂r (k,k) is a Bernoulli random variable, that is, D̂r (k,k) = 1
with probability D(k,k) and D̂r (k,k) = 0 with probability
1 − D(k,k). We have

®sL(j) = 1

(1 − √
c)2

L∑

ℓ=0

n∑

k=1

®π ℓ
i (k) · ®π ℓ

j (k) ·
∑R(k)

r=1 D̂r (k,k)
R(k) .

=

1

(1 − √
c)2

n∑

k=1

R(k)∑

r=1

∑L
ℓ=0 ®π ℓ

i (k) · ®π ℓ
j (k)

R(k) · D̂r (k,k).

(19)
Let ρ(k) = R(k)/R be the fraction of pairs of

√
c-walks

assigned to vk , it follows that

®sL(j) = 1

R
· 1

(1 − √
c)2

n∑

k=1

Rρ (k)∑

r=1

∑L
ℓ=0 ®π ℓ

i (k) · ®π ℓ
j (k)

ρ(k) · D̂r (k,k).

(20)

Wewill treat each
∑L

ℓ=0 ®π ℓ

i (k)· ®π ℓ

j (k)
ρ (k) ·D̂r (k,k) as an independent

random variable. The number of such random variables is∑n
k=1 Rρ(k) = R, so we have expressed ®sL(j) as the average

of R independent random variables. Lemma 1 offers the
variance bound of ®sL(j). To utilize Bernstein inequality, we
also need to bound b, the maximum value of the random

variables
∑L

ℓ=0 ®π ℓ

i (k)· ®π ℓ

j (k)
ρ (k) · D̂r (k,k). We have

∑L
ℓ=0 ®π ℓ

i (k) · ®π ℓ
j (k)

®πi (k)
· D̂r (k,k) ≤

∑L
ℓ=0 ®π ℓ

i (k)
®πi (k)

≤ ®πi (k)
®πi (k)

= 1.

Applying Bernstein inequality with b = 1 and Var[®sL(j)] ≤
1

(1−√c)4R , where R =
6 logn

(1−√c)4ε 2 , we have Pr[|®s
L(j)−E[®sL(j)]| >

ε/2] < 1/n3. Combining with the ε/2 error introduced by
the truncation L, we have Pr[|®sL(j) − S(i, j)| > ε] < 1/n3. By
union bound over all possible target nodes j = 1, . . . ,n and
all possible source nodes i = 1, . . . ,n, we ensure that for all
n possible source node and n target nodes,

Pr[∀i, j, |®sL(j) − S(i, j)| > ε] < 1/n,

and the Theorem follows.
�

B.3 Proof of Lemma 2

Proof. We note that the sparse Linearization introduces
an extra error of (1 − √

c)2ε to each ®π ℓ
i (k), k = 1, . . . ,n, ℓ =

0, . . . ,∞. According to equation (17), the estimator ®sL(j) can
be expressed as

®sL(j) = 1

(1 − √
c)2

L∑

ℓ=0

n∑

k=1

(
®π ℓ
i (k) ± (1 −

√
c)2ε

)
· ®π ℓ

j (k)·D̂(k,k).

(21)
Thus, the error introduced by sparse Linearization can be
bounded by

1

(1 − √
c)2

∞∑

ℓ=0

n∑

k=1

(1 −
√
c)2ε · ®π ℓ

j (k) · D̂(k,k). (22)

Using the facts that
∑∞

ℓ=0

∑n
k=1 ®π ℓ

j (k) = 1 and D̂(k,k) ≤ 1,

the above error can be bounded by 1
(1−√c)2 ·(1−

√
c)2ε = ε . �

B.4 Proof of Lemma 3

Proof. Recall that ρ(k) is the fraction of sample assigned

to D(k,k). We have ρ(k) =
⌈
R ®πi (k)2
‖ ®πi ‖2

⌉
/R ≥ ®πi (k)2

‖ ®πi ‖2 . By the

inequality (10) in Lemma 1, we can bound the variance of
estimator ®sL(j) as

Var[®sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

®πi (k)2 ®πj (k)2
ρ(k) · D(k,k)

≤ 1

(1 − √
c)4R

‖ ®πi ‖2
n∑

k=1

®πj (k)2 =
1

(1 − √
c)4R

‖ ®πi ‖2‖ ®πj ‖2.

Here, we use the facts that ‖ ®πj ‖2 =
∑n

k=1 ®πj (k)2 and
D(k,k) ≤ 1. Since we need to bound the variance for all
possible nodes vj (and hence all possible ‖ ®πj ‖2), we make
the relaxation that ‖ ®πj ‖2 ≤ ‖ ®πj ‖21 = 1, where ‖ ®πj ‖21 =
(∑n

k=1 | ®πj (k)|)2. And thus Var[®sL(j)] ≤ 1
(1−√c)4R ‖ ®πi ‖

2. This

suggest that by sampling according to ®πi (k)2, we reduce the
variance of the estimators by a factor ‖ ®πi ‖2. Recall that the
ExactSim algorithm computes the Personalized PageRank
vector ®πi before estimating D, we can obtain the value of
‖ ®πi ‖2 and scale R down by a factor of ‖ ®πi ‖2. This simple

modification will reduce the running time toO
(
‖ ®πi ‖2 logn

ε 2

)
.

One small technical issue is that the maximum of the

random variables
∑∞

ℓ=0 ®π ℓ

i (k)· ®π ℓ

j (k)
ρ (k) ·D̂r (k,k)may gets too large

as the fraction ρ(k) gets too small. However, by the facts that

ρ(k) =
⌈
R ®πi (k)2
‖ ®πi ‖2

⌉
/R and D̂r (k,k) ≤ 1, we have

∑∞
ℓ=0 ®π ℓ

i (k) · ®π ℓ
j (k)

ρ(k) · D̂r (k,k) ≤
®πi (k)
ρ(k) = R ®πi (k)/

⌈
R ®πi (k)2
‖ ®πi ‖2

⌉
.

If we view the right side of the above equality as a function

of ®πi (k), it takesmaximumwhen R ®πi (k)2
‖ ®πi ‖2 = 1, or equivalently

®πi (k) =
√

‖ ®πi ‖2
R

. Thus, the random variables in equation (20)

can be bounded by R

√
‖ ®πi ‖2
R

= ‖ ®πi ‖
√
R. Plugging b =

‖ ®πi ‖
√
R and Var[®sL(j)] ≤ 1

(1−√c)4R ‖ ®πi ‖
2 into bernstein

inequality, and the Lemma follows. �

B.5 Proof of Lemma 4

Proof. Note that
(√
c
)ℓ (

P⊤
)ℓ (k,q) is the probability that

a
√
c-walk from vk visits vq at its ℓ-th step. Consequently,

cℓ
(
P⊤

)ℓ (k,q)2 is the probability that two
√
c-walks from

node vk visit node vq at their ℓ-th step simultaneously. To

ensure this is the first time that the two
√
c-walks meet,

we subtract the probability mass that the two
√
c-walks

have met before. In particular, recall that Zℓ′(k,q′) is the
probability that two

√
c-walks from node vk first meet at

vq′ in exactly ℓ′ steps. Due to the memoryless property of

the
√
c-walk, the two

√
c-walks will behave as two new

√
c-

walks from vq′ after their ℓ
′-th step. The probability that

these two new
√
c-walks visitis vq in exact ℓ − ℓ′ steps is

cℓ−ℓ
′ (
P⊤

)ℓ−ℓ′ (q′,q)2. Summing upq′ from 1 ton and ℓ′ from
1 to ℓ − 1, and the Lemma follows. �

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Other Related Work
	2.2 Limitations of Existing Methods

	3 The ExactSim Algorithm
	3.1 Basic ExactSim Algorithm
	3.2 Optimizations

	4 Experiments
	4.1 Experiments on small graphs
	4.2 Experiments on large graphs
	4.3 Ablation study.

	5 Conclusions
	6 ACKNOWLEDGEMENTS
	References
	A Inequalities
	A.1 Bernstein Inequality

	B Proofs
	B.1 Proof of Lemma ??
	B.2 Proof of Theorem ??
	B.3 Proof of Lemma ??
	B.4 Proof of Lemma ??
	B.5 Proof of Lemma ??

