
A Demand-Side Viewpoint to Software
Vulnerabilities in WordPress Plugins

Jukka Ruohonen
University of Turku, Finland

juanruo@utu.fi

ABSTRACT
WordPress has long been the most popular content management
system (CMS). This CMS powers millions and millions of websites.
Although WordPress has had a particularly bad track record in
terms of security, in recent years many of the well-known security
risks have transmuted from the core WordPress to the numerous
plugins and themes written for the CMS. Given this background,
the paper analyzes known software vulnerabilities discovered from
WordPress plugins. A demand-side viewpoint was used to moti-
vate the analysis; the basic hypothesis is that plugins with large
installation bases have been affected by multiple vulnerabilities. As
the hypothesis also holds according to the empirical results, the
paper contributes to the recent discussion about common security
folklore. A few general insights are also provided about the relation
between software vulnerabilities and software maintenance.

CCS CONCEPTS
• Security and privacy→ Web application security;

KEYWORDS
Web security; vulnerability; plug-in; add-on; CMS; PHP; WPVDB
ACM Reference Format:
Jukka Ruohonen. 2019. A Demand-Side Viewpoint to Software Vulnera-
bilities in WordPress Plugins. In Proceedings of Evaluation and Assessment
in Software Engineering (EASE ’19). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3319008.3319029

1 INTRODUCTION
The WordPress content management system is undoubtedly one of
the great success stories of open source software (OSS). This CMS
written in the PHP programming language has long been the most
popular CMS worldwide. In fact, it has been estimated that even
as much as one-third of all websites would be powered by Word-
Press [2]. But with great success comes great responsibility [12].
When it comes to security, WordPress has been a sorrowful rep-
resentative of OSS. Vulnerabilities are frequently discovered from
the CMS, and mass-scale compromises are commonly reported in
media [21]. By no means is WordPress alone making these head-
lines, however. Many websites use outdated and deprecated releases
of the PHP language [25, 26], for instance. All this said, in recent
years particularly the management of security issues has greatly

EASE ’19, April 15–17, 2019, Copenhagen, Denmark
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
Evaluation and Assessment in Software Engineering (EASE ’19), https://doi.org/10.1145/
3319008.3319029.

improved in the WordPress ecosystem [2]. The ecosystem concept
is also useful for framing this study against existing research.

Recent research has made good progress on understanding vul-
nerabilities in software ecosystems through analyzing “hard” library
dependencies [34, 40]. Despite of these advances, library dependen-
cies paint only a limited picture on whole software ecosystems. In
the WordPress ecosystem particularly important are the numerous
plugins and themes written for the CMS. It is presumably also these
complementary software elements that nowadays pose the greatest
security risks for WordPress deployments [21, 32]. Even though plu-
gins are reviewed by a WordPress team prior to submission into the
official hosting portal [2], new plugin vulnerabilities are discovered
on day-to-day basis. In fact, some practitioners have contemplated
that even ninety-nine out of a hundred WordPress plugins could
be vulnerable [12]. The already discovered and publicly disclosed
plugin vulnerabilities are the topic of this study. To motivate the
topic and the analysis, a specific demand-side viewpoint is pursued.

The background relates to counterintuitive findings about com-
mon security folklore. In particular, it has been observed that up-to-
date WordPress deployments with large user bases are a frequent
target for exploitation, although a common folk wisdom would tell
the opposite [15]. Though, it should be remarked that the exist-
ing empirical evidence is not entirely unequivocal. For instance,
the popularity of websites has been observed to correlate with
the adoption of basic web-related security features [35]. Likewise,
less popular websites that are known to have been vulnerable to
cross-site scripting (XSS) have been observed to use these security
features less frequently [27]. Despite of these observations, the
real contribution from the counterintuitive findings stems from the
ways to think about common security folklore and the subsequent
need for evidence-based research [15]. One way to think about
known vulnerabilities is to think about supply and demand.

If the supply-side factors include things like the availability of
static analysis tools [19] and the ease of searching and fingerprint-
ing WordPress deployments [42], popularity would be a notable
demand-side factor. Accordingly, there should be only a small incen-
tive to find new vulnerabilities from unpopular plugins. To examine
such an incentive indirectly, the research question (RQ) examined
is simple: do large installation amounts increase the amount of
WordPress plugin vulnerabilities discovered and disclosed? Given
this research question, the structure of the paper’s remainder is
straightforward: the dataset examined is elaborated in Section 2, the
empirical results are presented in Section 3, and a discussion about
the findings, limitations, and future directions follows in Section 4.

ar
X

iv
:1

81
2.

05
29

3v
3

 [
cs

.S
E

]
 1

3
M

ar
 2

01
9

https://doi.org/10.1145/3319008.3319029
https://doi.org/10.1145/3319008.3319029
https://doi.org/10.1145/3319008.3319029

2 DATA
The dataset was assembled from the following three sources:

(1) The primary data source is the so-called WPScan Vulner-
ability Database (WPVDB) [4]. In contrast to many other
vulnerability databases, WPVDB is a specialized database
exclusively targeting the core WordPress as well as the nu-
merous third-party plugins and themes written for the pop-
ular CMS. Furthermore, WPVDB is a rather unique in the
sense that the primary rationale for the database is to ex-
plicitly supply data for the associated WPScan, a black-box
vulnerability scanner for online WordPress deployments.

(2) The second data source is the official online portal for hosting
WordPress plugins [39]. This portal provides the necessities
for plugin development, including version control system
hosting and forums for user feedback. For each plugin listed
in WPVDB, the portal’s online interface was queried for
retrieving meta-data about the plugin. If a plugin could not
be mapped from WPVDB to the online portal, it is excluded
from the dataset and the forthcoming empirical analysis.

(3) The third and final source is the conventional National Vul-
nerability Database (NVD) [18]. If a given plugin vulnerabil-
ity archived to WPVDB was accompanied with an identifier
for Common Vulnerabilities and Exposures (CVEs), this iden-
tifier was used to retrieve further data from NVD. Although
WPVDB provides additional meta-data for some vulnera-
bilities, the scope of this data is limited and not all plugin
vulnerabilities are covered. Therefore, the auxiliary data from
NVD provides a more robust basis for a few descriptive but
important insights about the plugin vulnerabilities.

A further point should be made about abstractions. Each plugin
in WPVDB may be affected by multiple vulnerabilities, a single vul-
nerability entry in WPVDB may reference multiple distinct CVEs,
and a single unique CVE may reference multiple entries in WPVDB.
These abstraction inconsistencies are typical to practical tracking
and archiving of software vulnerabilities [5]. For instance, vendors
oftentimes aggregate fixes for multiple CVE-referenced vulnerabili-
ties into a unified patch set, which is typically further abstracted
into a single security advisory delivered to users and system ad-
ministrators. While there is thus no single right way to abstract
and count vulnerabilities, the abstraction choices have direct conse-
quences for empirical analysis. Because in this paper the amount of
installations is the primary independent metric of interest, the only
sensible way is to perform the empirical analysis at the plugin-level.
Thus, the units of analysis are WordPress plugins that have been
affected by one or more vulnerabilities, as counted in WPVDB. In
addition, a few descriptive observations are delivered through the
CVE-level by using NVD’s abstraction for counting vulnerabilities.

3 RESULTS
3.1 Overview

3.1.1 Sample characteristics. The empirical dataset assembled
contains 1, 657 plugins that were affected by 2, 629 vulnerabilities
according to WPVDB’s abstraction for counting. These numbers
are sufficient for a couple of preliminary points about the folk
wisdom examined. The first point is that not many plugins have

been vulnerable—according to the online portal [39], there were
over fifty-five thousand WordPress plugins available for download
at the time of data collection. Thus, according to the dataset, roughly
only about five percent of these plugins have been vulnerable at
some point in time. Of course, it is difficult to assess the reliability
of this observation; many of the plugins have presumably never
been audited, and, hence, numerous existing vulnerabilities likely
remain undiscovered and undisclosed. Nevertheless, ∼ 5% is such a
small value that it seems reasonable to recommend avoiding words
such as “most” or “majority” when discussing about vulnerable
WordPress plugins. The second point is that only about 26% of the
plugins observed have been affected by multiple vulnerabilities. As
has been observed also previously [10, 38], the distribution across
the plugins is highly skewed, however. A few plugins have been
affected by many vulnerabilities (see Fig. 1). The cases with multiple
vulnerabilities are the main interest in the forthcoming regression
analysis. Before continuing to formal statistical analysis, the CVE-
level counting can be used for a few interesting observations.

0 500 1000 1500

Plugin (index, sorted)

~ 26%
> 1

Vu
lne

ra
bil

itie
s

5

10

15 Mean = 2
Median = 1
Standard deviation = 2

Figure 1: Vulnerability Counts (WPVDB’s abstraction)

3.1.2 CVEs. Only about 28% of the plugin vulnerabilities in the
sample are accompanied with one or more CVEs that have valid en-
tries in NVD. Although this amount is quite small, it is fairly typical
for specialized vulnerability databases targeting small open source
projects for which CVEs may not be always allocated [24]. It seems
also reasonable to assume that the few forthcoming CVE-based
descriptive observations generalize to all plugin vulnerabilities in
the database due to the rather generic nature of these observations.

3.1.3 NVD. The first observation can bemade from Fig. 2, which
visualizes the time delays between the CVE-referenced publication
dates in WPVDB and NVD, using the earliest dates (the smallest
timestamps) for the former in case multiple CVEs are present. Be-
cause most of the values are zero, the two databases appear to be
implicitly synchronized with each other; a plugin vulnerability ap-
pearing in NVD tends to appear during the same day in WPVDB,
or the other way around. That said, there is also a sizable amount
of positive values, meaning that many of the plugin vulnerabili-
ties were archived to NVD before these appeared in WPVDB. The
slightly smaller amount of negative values is also interesting be-
cause these cases implicitly justify the use of WPVDB’s data for
monitoring online deployments. The reason why NVD is sometimes
slower may relate to the online sources monitored by WPVDB’s
maintainers for gaining information about plugin vulnerabilities.

0 100 200 300 400 500 600 700

CVE (index, sorted)

De
la

y
(d

ay
s)

-1000

0

1000

2000

Synchronized WPVDB is slower

NVD is slower N = 694

Mean = 34 days, median = 2 days

Figure 2: Publication Delays Between NVD and WPVDB

3.1.4 Information sources. Like many [28, 40], but not all [24],
vulnerability databases, WPVDB provides hyperlinks to the original
information sources. To illustrate the main sources, Fig. 3 visualizes
the second-level (2LD) and top-level (TLD) domain names extracted
from the uniform resource locators (URLs) present in the hyper-
links, using the so-called public suffix list for the comparisons [16].
Although social media has been suspected to play an increasingly
important role [31, 44], the illustration clearly indicates that plugin
vulnerabilities are commonly disseminated through very traditional
channels for communicating security issues in the OSS context. In
fact, social media is hardly even present. The most frequent domain
name (2LD-TLD) is wordpress.org, which hosts the plugin portal
itself, including the wikis, version control systems, and bug trackers
often used for WordPress plugin development. The second most
frequent domain name is seclists.org, which hosts and archives
a number of security mailing lists. A closer look reveals also nu-
merous diverse information sources. The examples include hosting
services, blogs, company websites, bug trackers, bug bounty plat-
forms, so-called pastebins, other databases, media outlets, online
archives, and personal homepages. Taken together, these diverse
sources are a good example on the practical challenges for current
vulnerability tracking [28]. Such practical challenges also trans-
late into research challenges: mining a single software repository
(or a few repositories, for that matter) is assuredly inadequate for
empirically observing most known software (plugin) vulnerabilities.

3.1.5 Severity and weaknesses. In addition to reliability and va-
lidity compared to WPVDB, the benefits of NVD include additional
information about vulnerabilities. In particular, the Common Vul-
nerability Scoring System (CVSS) and the Common Weakness Enu-
meration (CWE) framework provide information about the severity
of the vulnerabilities and the typical weaknesses behind these. As
is well-known [24, 30, 43], it should be remarked that not all of
the CVEs observed have CVSS and CWE entries in NVD due to
delays and other database maintenance issues. In any case, the
results regarding these frameworks are summarized in Fig. 4. The
so-called base CVSS (v. 2) scores shown in the plot (a) indicate
only modest severity. The median base score is five. This average
score is largely explained by the substantial amount of XSS vul-
nerabilities. As can be seen from the plot (b), cross-site scripting,
structured query language (SQL) injection, and cross-site request
forgery (CSRF) account for over 80% of the weaknesses behind
the CVE-referenced vulnerabilities in the sample. This CWE-based

wordpress.org
seclists.org
cinu.pl
github.com

sumofpwn.nl

dxw.com

openwall.com

sucuri.net
vapidlabs.com

0day.today

g0blin.co.uk

jvn.jp

codevigilant.com

htbridge.com

dhs.org

szurek.pl

pluginvulnerabilities.com
lenonleite.com.br

codecanyon.net

wordpress.com

wordfence.com

pritect.net

www.de.com

www.us.com

archive.org
cxsecurity.com

homelab.it

vexatioustendencies.com

packetstormsecurity.org
hackerone.com

gmane.org

secupress.me

ceriksen.com

wptavern.com

rastating.com

klikki.fi

netsparker.com

twitter.com

youtube.com
vulnerability-lab.com

com.de.com

medium.com

dewhurstsecurity.com

dtsa.eu

gubello.me

packetstormsecurity.com

brindi.si

welcart.com

waraxe.us

yoast.com

wpallimport.com

limbenjamin.com

ripstech.com

pastebin.com

fortiguard.com

jetpack.me

threatpost.com
elegantthemes.com

hackpuntes.com

wpmudev.org

gravityforms.com

intelligentexploit.com

cminds.com

jetpack.com

nettitude.co.uk

semperfiwebdesign.com

snapcreek.com

mapsmarker.com
synacktiv.com

99robots.com

designmodo.com
cjc.im

wphutte.com

divinotes.com

wpscans.com

postmansmtp.com

calderaforms.com

rootlabs.com.br

barrykooij.com

davidsopas.com

quantika14.com

wpdatatables.com

acunetix.com

z9.io

websecurity.com.ua

videowhisper.com

firefart.at

buddypress.org

bbpress.org

besuperfly.com buddyboss.com

risataim.blogspot.com

userproplugin.com
woocommerce.com

formcraft-wp.com

wp-rocket.me campaign-archive.com

webappsec.org

diegoceldran.es

relevanssi.com

brafton.com

51cto.com

mukarramkhalid.com wpforo.com

templatic.com

ocimscripts.com
giribaz.com

www.cn.com

envato.com

dimsemenov.com

calendarscripts.info

digitalzoomstudio.net

anantshri.info
estatik.net

tumblr.com

debian.org

jgj212.blogspot.fr

information-security.fr

quanyang.github.io

vagmour.eu

dev4press.com
myphpmaster.com

cosine-security.blogspot.de

wp-picshield.com

appcheck-ng.com

com.us.com

seeweb.it

jsfiddle.net

bestwebsoft.com

syss.de

dumpco.re

realfavicongenerator.net

tripwire.com
threatpress.com

peerlyst.com

stallion-theme.co.uk

nintechnet.com

dwbooster.com

akismet.com

openwall.net

pods.io

imgur.com

h4x0resec.blogspot.fr

checkpoint.com

joedolson.com

wp-cli.org

wp-api.org
exploit-db.com

blogvault.net
antoine-cervoise.fr

kreaturamedia.com

k3dsec.blogspot.com

incolumitas.com

dfcode.org

contactform7.com

connections-pro.com

quick-plugins.com

com.ar.com

ratiosec.com

lifeinthegrid.com

inventropy.us

slashdot.org

fortinet.com

arstechnica.com

mazinahmed1.blogspot.com

zerial.org

wpecommerce.org

nealpoole.com

cert.org

trustwave.com

security-sh3ll.blogspot.com

secureworks.com

ait-pro.com

ithemes.com

pentestpartners.com

wpdownloadmanager.com

lorexxar.cn

techdefencelabs.com

wpml.org

scribu.net

kevinsubileau.fr

Figure 3: Domain Names (2LD-TLDs) of the Reference URLs

(a)

0 2 4 6 8 10

N = 691 Mean = 5.4

0
175
350

CV
Es

CVSS (v. 2) base score

CWE-254
CWE-552
CWE-611
CWE-255
CWE-532
CWE-78

CWE-284
CWE-601
CWE-434
CWE-77

CWE-287
CWE-74
CWE-94
CWE-20

CWE-200
CWE-264
CWE-22

CWE-352
CWE-89
CWE-79

(b)

0 50 100 150 200 250 300 350

CVEs

Thus, XSS (CWE-79) accounts
 for about 49%, SQL injection

 (CWE-89) 18%, CSRF (CWE-352)
 about 14%, and path traversal

 (CWE-22) about 7% of the sampled
 CVE-referenced vulnerabilities
 that have CWE entries in NVD.

N = 666

Figure 4: Severity (CVSS) and Weaknesses (CWE)

ranking conforms with existing results [13]. These observations
also agree with existing results about typical weaknesses in typi-
cal PHP applications [9, 37]. In general, the plugin vulnerabilities
observed are supposedly not that different from the vulnerabilities
that have affected the core WordPress itself [38]. Another point
is that only CWE-434 (unrestricted file uploads) seems specific
to PHP [14]. Thus, all in all, it could be also said that the plugin
vulnerabilities observed are typical to web applications in general.

3.2 Meta-Data
3.2.1 Installations. The few remaining descriptive observations

are based on the meta-data scraped from the WordPress online
portal. The first observation relates to the approximate installation
amounts. Although WordPress has received attention in Internet
measurement research [35, 36], there is no good understanding on
how many websites are actually powered by the CMS, let alone on
how many of these online deployments are running with plugins.
While keeping this point in mind, the outer plot in Fig. 5 displays
the approximations given by the maintainers of the online portal
(the 159 missing observations refer to deprecated plugins for which
meta-data is not necessarily provided). The range is wide: there are
many plugins with approximately less than ten online installations
and a few plugins that have been installed in over one hundred
thousand WordPress deployments. The crudeness of these meta-
data approximations is reflected in the spikes around the powers
of ten. Re-coding is therefore justified—the inner plot in the figure
shows the re-coded 5-fold variable used in the regression analysis.

< 10
> 20
> 30
> 40
> 50
> 60
> 70
> 80
> 90

> 100
> 200
> 300
> 400
> 500
> 600
> 700
> 800
> 900

> 1000
> 2000
> 3000
> 4000
> 5000
> 6000
> 7000
> 8000
> 9000

> 10000
> 20000
> 30000
> 40000
> 50000
> 60000
> 70000
> 80000
> 90000

> 100000
> 200000
> 300000
> 400000
> 500000
> 600000
> 700000
> 800000
> 900000

> 1000000
> 2000000
> 4000000
> 5000000

Ins
tal

lat
ion

s

Plugins

0 50 100 150 200

N = 1498

Plugins0 350

[0, 100)

[100, 1000)

[1000, 10000)

[10000, 100000)

[100000, ∞)

Installations:

Figure 5: Approximate Number of Installations

3.2.2 Updates. The online portal provides also calendar time
meta-data on the last updates made to the plugins. Although no
documentation is provided on how the values are computed, these
provide a good proxy for evaluating general maintenance effort [8].
Thus: as can be seen from the plot (a) in Fig. 6, most of the plugins
have seen updates during the past two years or so. The observation
is welcome because all of the plugins observed have been affected
by at least one vulnerability at some point in time. However, the
distribution is extremely skewed; some outlying plugins have not

(a)

0 1000 2000 3000 4000 5000

N = 1498
Median = 730 days

0
175
350
525
700

Pl
ug

ins

Last updated (days)

0 2 4 6 8 10 12

(b)

Su
rv

iva
l p

ro
ba

bil
ity

Last updated (years)

0.0
0.2
0.4
0.6
0.8
1.0

Single vulnerability
Multiple vulnerabilities

Figure 6: The Most Recent Updates

been updated even in a decade. These cases are sufficient to conclude
that some of the plugins have been abandoned. The observation is
fairly typical to large software ecosystems [34]. Furthermore, the
Kaplan-Meier survival curves (see, e.g., [1]) shown in the plot (b)
indicate that the plugins affected by only one vulnerability have
been updated less frequently. The observation is logical: there is a
negative correlation; when the vulnerability counts increase, the
times of last updates decrease. The explanation is likely simple: bug
fixes imply updates, and fixing many bugs imply frequent updates.

3.2.3 Ratings. Like many software portals, the WordPress plu-
gin portal contains the common “five-star” rating functionality
augmented with free-form comments. According to the quantita-
tive star-ratings, most of the plugins have been reviewed positively
(see Table 1). The standard deviation across the plugins is large,
however, and there is a small tendency toward a bimodal distribu-
tion often seen with the 5-fold star-ratings [33]. For the forthcoming
regression analysis, a basic hypothesis is that the plugins reviewed
favorably have not been affected by multiple vulnerabilities.

Table 1: Review Ratings Across Plugins

Stars
One Two Three Four Five

Mean 7 2 2 5 95
Median 1 0 0 0 4
Standard deviation 27 6 7 25 641

3.2.4 Authors. Finally, the online portal provides data about
the developers of the WordPress plugins. A noteworthy observa-
tion is that only about 8% of the plugin developers have authored
multiple plugins. Consequently, a basic hypothesis is that multiple
vulnerabilities have been more common for the one-shot majority.

3.3 Regression Analysis
3.3.1 Setup. The setup for the regression analysis is simple: the

vulnerability counts are regressed against the meta-data variables
outlined in the previous Subsection 3.2. Two regression models
are used for the setup. By definition, the plain vulnerability counts
(see Fig. 1) are count data. Therefore, the first model estimated is
a so-called “quasi-Poisson” regression that accounts for potential
over-dispersion (that is, the variance of counts exceeds their mean).
In essence, this model yields the same coefficient estimates as the
standard Poisson regression model, but a dispersion parameter ϕ
is estimated from data and used to adjust the standard errors of
the regression coefficients [41]. The second model estimated is a
standard logistic regression for which the counts are truncated into
dichotomous categories; the predicted values are probabilities for
the plugins to be affected by multiple vulnerabilities.

Table 2: Correlations (Pearson) Between Review Ratings

Stars
One Two Three Four Five

One 1.00 0.94 0.92 0.85 0.68
Two 0.94 1.00 0.94 0.85 0.70
Three 0.92 0.94 1.00 0.92 0.71
Four 0.85 0.85 0.92 1.00 0.79
Five 0.68 0.70 0.71 0.79 1.00

The only notable prior statistical concern with this simple regres-
sion modeling setup is about multicollinearity. Namely: the review
ratings are highly correlated (see Table 2). As a simple solution,
only the five-star ratings are included in the two models estimated.
Due to the uniformly positive correlations, any of the star-ratings
would suffice, however—all these yield regression coefficients with
the same sign and comparable magnitudes. Hence, the statistical
effect of the 5-star ratings should be rather interpreted as an effect
about whether a plugin has received any reviews to begin with.

3.3.2 Estimates. The results from the two regression models are
summarized in Table 3. To ease the interpretation, the estimates
from the logistic regression model are accompanied with the so-
called marginal effects (MEs). These give the approximate effects
directly upon the probabilities estimated (see, e.g., [25] for details).

In general, the two models agree well with each other; the signs
of the coefficients are consistent, for instance. The estimated dis-
persion parameter for the quasi-Poisson model indicates no par-
ticular concern about over-dispersion. For unpacking the effects
of the individual variables, it can be started by noting that depre-
cated plugins tend to increase vulnerability counts. The observation
seems logical. The maintainers of the online portal may deprecate
plugins with many unfixed vulnerabilities, for instance. As was
expected, increasing lags in the update times tend to decrease the
vulnerability counts; fixing multiple vulnerabilities requires more
frequent updates. The effect of the 5-star review ratings is positive
but negligible in magnitude. This observation supports earlier re-
sults [10]. Likewise, the effect of one-shot plugin authors is also
positive but small. In contrast, the magnitudes are large for all of the
re-coded dummy variables approximating the installation amounts.

Table 3: Regression Estimates

Quasi-Poisson Logistic Regression

Coefficient Coefficient ME
(Intercept) 0.069 -2.357∗∗∗ –
Deprecated 0.170∗∗ 0.560∗∗ 0.100
LastUpdated -0.036∗∗ -0.092∗ -0.016
FiveStars <0.001∗∗∗ <0.001 <0.001
OneShotAuthor 0.184∗ 0.341 0.057
[100, 1000) 0.074 0.644∗∗ 0.117
[1000, 10000) 0.203∗∗ 1.118∗∗∗ 0.205
[10000, 100000) 0.369∗∗∗ 1.610∗∗∗ 0.313
[100000,∞) 0.849∗∗∗ 2.131∗∗∗ 0.445
N = 1498, ϕ̂ = 0.98, ∗∗∗ for p < 0.001, ∗∗ for p < 0.01, ∗ for p < 0.05.

For instance: when compared to plugins with less than a hundred
installations (cf. Fig. 5), the plugins with more than one hundred
thousand online deployments have about 0.445 higher probability
of being affected by multiple vulnerabilities, all other things being
constant. Consequently, the demand-side viewpoint seems to hold.

3.3.3 Diagnostics. The logistic regression model can be taken
under a brief further inspection. To begin with, it should be re-
marked that the overall performance is modest. For instance, the
so-called area under the curve (AUC) in a receiver operating charac-
teristic curve is 0.711. Most of the performance is attributable to the
installation amounts. When only these are included, AUC = 0.694.

0.00 0.02 0.04 0.06 0.08 0.10

Hat values

Pe
ar

so
n

re
si

du
al

s

-2

0

2

Figure 7: Influence Plot (Fox-Weisberg)

When the so-called Pearson residuals are examined, it is evident
that there are large residuals in the logistic regression model esti-
mated. However, Fox’s test for outliers [6], as implemented in the
outlierTest function for the car package [7], indicates only one
outlier, and no outliers when a Bonferonni correction is applied.
This test result does not rule out the potential for particularly influ-
ential observations that may change the coefficient estimates. To
examine such influential observations, a so-called influence plot
provides a good graphical diagnostic tool. It plots the Pearson resid-
uals against the so-called hat values, and further scales the areas of
the plotted observations according to Cook’s distance [7]. Without
delving into the statistical details (see [29] for a good take on the
mathematical background), the resulting influence plot is shown
in Fig. 7. If the thirteen observations on the right-hand side of the
dotted vertical line are removed and the logistic regression model is
re-estimated with the reduced dataset, the coefficient estimates are

highly similar to those in Table 3. The marginal effects of the instal-
lation amounts are 0.121, 0.209, 0.320, and 0.440. For any practical
purposes, the estimates are equal. The same conclusion is reached
with analogous omissions according to the large Pearson residuals.

3.3.4 Confounding factors. A more fundamental question is
whether there are confounding factors or omitted variables that
should be taken into account. While it is clear that XSS in particular
is statistically associated with the vulnerability counts, it may also
be that some particular weakness types interfere with the inde-
pendent metrics used for modeling. For instance, the last updates
made to the plugins (see Fig. 6) might be assumed to vary according
to the CWEs in Fig. 4. Such assumptions are not easy to examine,
however. As was discussed in Section 2, the regression analysis
operates at the plugin-level, which makes it difficult to incorpo-
rate vulnerability-level metrics. The abstraction inconsistencies
between WPVDB and NVD cause additional problems. External
validity issues would be also introduced due to the small amount of
CVE-referenced vulnerabilities in the sample. A further question
is whether inference with CWEs is theoretically sensible in the
present context. For instance, previous results indicate that most se-
curity bug fixes for WordPress plugins require changing only a few
lines of code, although even such small changes take a long time
to implement by the plugin developers [13]. The reasons for such
results may not necessarily relate to the technical details about
the vulnerabilities themselves, but perhaps more to the general
code quality and effort devoted to maintaining WordPress plugins.
Against this backdrop, it may be that more plausible confound-
ing factors would be available by examining code-level and other
metrics traditionally used in empirical software engineering.

4 DISCUSSION
4.1 Conclusion
This paper examined a so-called demand-side viewpoint to vulner-
abilities in WordPress plugins. The underlying rationale behind
the viewpoint seems sensible according to the empirical results. In
other words, the answer to the RQ is positive: widespread adoption
and large installation bases are statistically associated with larger
vulnerability amounts. If installation bases provide an important
incentive on the black-hat side [15], these seem to provide an in-
centive also on the white-hat side. In other words, there is only a
small incentive to devote time and effort to discover, document, and
disclose vulnerabilities from a “Joe’s basketball plugin”. Needless
to say, incentives and the associated supply and demand factors do
not necessarily tell anything about actual security. Given the abun-
dance of static analysis tools for PHP code [10, 19, 20, 30], a more
rigorous code-level validation of the demand-side viewpoint would
also offer one plausible approach for further empirical research.
Static analysis and more generally code-level assays would allow
to also better understand the apparent maintenance issues.

4.2 Limitations
A notable limitation relates to the reliability of the dataset assem-
bled. In particular, the reliability of WPVDB’s vulnerability data
has been debated [23]. Even though no research has been done to
examine these debates in detail, empirical reliability issues should

be still acknowledged as a potential limitation. After all, even NVD
has been shown to occasionally contain some inaccuracies [17].
An analogous concern applies to the meta-data scraped from the
WordPress plugin portal. That said, these potential reliability prob-
lems should not be exaggerated. Some assurance is available by
noting that WPVDB’s vulnerability data has been used in previous
research [19, 20]. The same goes for the meta-data from the online
WordPress plugin portal [8, 10]. Because the demand-side viewpoint
pursued does not relate to security per se, some inaccuracies can be
also accepted. In a similar vein: vulnerability counts should not be
used to judge the security of a software product [24, 37], but these
are appropriate for analyzing incentives to find vulnerabilities.

4.3 Related Work
Different software ecosystems have received a great deal of atten-
tion in recent years. While there are many reasons for the attention,
one fundamental reason is the recent explosion of dependencies
between libraries and related artifacts. This dependency explosion
has also intensified the age-old relation between maintenance and
security. From a practical maintenance viewpoint, it “sounds in-
credibly unsafe” to trust code downloaded from “a stranger on the
internet”—why “would anyone do this?” [3]. While the answers to
the question are still unclear, good progress has been made to better
understand vulnerabilities within software ecosystems [24, 40]. Re-
cently, the issues examined have been further extended toward the
security of ecosystems themselves [34]. Although the dependency
mechanisms are different, also the WordPress plugins examined
can be placed into this ecosystem context. In terms of WordPress
plugins, previous work has been done to address the dependency
mechanisms [8], the known vulnerabilities [13, 38], the testing of
these [20], and the exploits for these [32]. There is also at least
one study that has addressed the meta-data aspects such as user
reviews [10]. However, neither these previous works nor this paper
explicitly address a question about whether anything can be done
to help those downloading code from strangers on the Internet.

4.4 Toward Recommendation Systems
The empirical results presented can be further portrayed from a dif-
ferent angle. There has been an increasing interest to examine and
develop different recommendation systems for OSS libraries [11].
Security is one aspect to consider when choosing a library, plugin,
or other complementary artifact for a software project. To this end,
also vulnerability-based metrics have been proposed. For instance,
some have defined metrics with the goal of providing tools for
“selecting better versions of OSS, where definition of better is fewer
vulnerabilities” [43]. If the installation amounts implicitly reflect
quality and better software in general, a practical recommendation
might in fact be exactly the opposite: it may be preferable to pick
a WordPress plugin with a large installation base, which tends to
result in more vulnerabilities. If also CVEs are allocated for the
vulnerabilities, there is a good chance that the given plugin is rela-
tively well-maintained. Given the background of security folklore,
also this tentative recommendation can be seen as counterintuitive.
Further security-related considerations include vulnerability den-
sity in terms of software size [9, 10], the availability of security
documentation and associated resources [37], and many related

commonsense aspects [3]. Of course, it may also be that security is
not a factor in adoption decisions, as hinted by a recent industry
study [22]. Though, many of the decision factors reported in the
noted study kind of rob Peter to pay Paul: code complexity, size
of an open source community and its responsiveness, and many
related factors presumably correlate with vulnerability counts.

REFERENCES
[1] O. O. Aalen, Ø. Borgan, and H. K. Gjessing. Survival and Event History Analysis:

A Process Point of View. Springer, Berlin, 2008.
[2] J. Cabot. WordPress: A Content Management System to Democratize Publishing.

IEEE Software, 35(3):89–92, 2018.
[3] R. Cox. Our Software Dependency Problem. Unpublished essay, available online

in January: https://research.swtch.com/deps.pdf, 2019.
[4] R. Dewhurst, C. Mehlmauer, and Erwan. WPScan Vulnerability Database. Data

scraped in November from the online website at https://wpvulndb.com/, 2018.
[5] M. Doyle and J. Walden. An Empirical Study of the Evolution of PHP Web

Application Security. In Proceedings of the Third International Workshop on
Security Measurements and Metrics (Metrisec 2011), pages 11–20, Banff, 2011.
IEEE.

[6] J. Fox. Applied Regression Analysis and Generalized Linear Models. Sage, Thousand
Oaks, third edition, 2016.

[7] J. Fox and S. Weisberg. An R Companion to Applied Regression. Sage, Thousand
Oaks, 2011.

[8] M. Hills. Navigating the WordPress Plugin Landscape. In Proceedings of the IEEE
24th International Conference on Program Comprehension (ICPC 2016), pages 1–10,
Austin, 2016. IEEE.

[9] T. Huynh and J. Miller. An Empirical Investigation Into Open Source Web
Applications’ Implementation Vulnerabilities. Empirical Software Engineering,
15(5):556–576, 2010.

[10] T. Koskinen, P. Ihantola, and V. Karavirta. Quality of WordPress Plug-Ins: An
Overview of Security and User Ratings. In Proceedings of the International Con-
ference on Privacy, Security, Risk and Trust and International Conference on Social
Computing (SocialCom/PASSAT 2012), pages 834–837, Amsterdam, 2012. IEEE.

[11] R. G. Kula, C. De Roover, D. M. German, T. Ishio, and K. Inoue. A Generalized
Model for Visualizing Library Popularity, Adoption, and Diffusion Within a
Software Ecosystem. In Proceedings of the IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER 2018), pages 288–299,
Campobasso, 2018. IEEE.

[12] S. Mansfield-Devine. Taking Responsibility for Security. Computer Fraud &
Security, (12):15–18, 2015.

[13] O. Mesa, R. Vieira, M. Viana, V. H. S. Durelli, E. Cirilo, M. Kalinowski, and
C. Lucena. Understanding Vulnerabilities in Plugin-Based Web Systems: An
Exploratory Study of WordPress. In Proceedings of the 22nd International Systems
and Software Product Line Conference (SPLC 2018), pages 149–159, Gothenburg,
2018. ACM.

[14] MITRE. CWE VIEW: Weaknesses in Software Written in PHP. Available online
in March 2019: http://cwe.mitre.org/data/definitions/661.html, 2019.

[15] T. Moore. The Dangers of Cyber Security Folk Wisdom. International Journal of
Critical Infrastructure Protection, 12:27–28, 2016.

[16] Mozilla Foundation et al. Public Suffix List. Available online in March 2019:
https://publicsuffix.org/, 2019.

[17] V. H. Nguyen, S. Dashevskyi, and F. Massacci. An Automatic Method for As-
sessing the Versions Affected by a Vulnerability. Empirical Software Engineering,
21(6):2268–2297, 2015.

[18] NIST. NVD Data Feeds. National Institute of Standards and Technology (NIST).
Data retrieved in November from: https://nvd.nist.gov/vuln/data-feeds, 2018.

[19] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira. Bench-
marking Static Analysis Tools for Web Security. IEEE Transactions on Reliability,
67(3):1159–1175, 2018.

[20] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira. An
Empirical Study on Combining Diverse Static Analysis Tools for Web Security
Vulnerabilities Based on Development Scenarios. Computing, 101(2):161–185,
2019.

[21] L. O’Donnell. ThreatList: WordPress Vulnerabilities Up 30 Percent in
2018. Threatpost. Available online in January: https://threatpost.com/
threatlist-wordpress-vulnerabilities/140690/, 2019.

[22] A. Pano, D. Graziotin, and P. Abrahamsson. Factors and Actors Leading to the
Adoption of a JavaScript Framework. Empirical Software Engineering, 23(6):3503–
3534, 2018.

[23] Plugin Vulnerabilities. How Our Data on WordPress Plugin Vulnerabilities Com-
pares to theWPScan Vulnerability Database. Available online in November: https:
//www.pluginvulnerabilities.com/wpscan-vulnerability-database-comparison/,
2018.

[24] J. Ruohonen. An Empirical Analysis of Vulnerabilities in Python Packages for
Web Applications. In Proceedings of the 9th International Workshop on Empirical
Software Engineering in Practice (IWESEP 2018), pages 25–30, Nara, 2018. IEEE.

[25] J. Ruohonen, S. Hyrynsalmi, and V. Leppänen. Exploring the Use of Deprecated
PHP Releases in the Wild Internet: Still a LAMP Issue? In Proceedings of the 6th
International Conference on Web Intelligence, Mining and Semantics (WIMS 2016),
pages 26:1–26:12, Nîmes, 2016. ACM.

[26] J. Ruohonen and V. Leppänen. How PHP Releases Are Adopted in the Wild? In
Proceedings of the 24th Asia-Pacific Software Engineering Conference (APSEC 2017),
pages 71–80, Nanjing, 2017. IEEE.

[27] J. Ruohonen and V. Leppänen. A Case-Control Study on the Server-Side Bandages
Against XSS. In Proceedings of the 7th Workshop on Software Quality Analysis,
Monitoring, Improvement, and Applications (SQAMIA 2018), pages 1–8, Novi Sad,
2018. CEUR-WS. Available online in December 2018: http://ceur-ws.org/Vol-2217/
paper-ruo.pdf.

[28] J. Ruohonen, S. Rauti, S. Hyrynsalmi, and V. Leppänen. A Case Study on Software
Vulnerability Coordination. Information and Software Technology, 103:239–257,
2018.

[29] T. J. Santner and D. E. Duffy. The Statistical Analysis of Discrete Data. Springer,
New York, 1989.

[30] J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galstery, J. V. Vidal, and A. Sejfia.
Understanding Software Vulnerabilities Related to Architectural Security Tactics:
An Empirical Investigation of Chromium, PHP and Thunderbird. In Proceedings
of the IEEE International Conference on Software Architecture (ICSA 2017), pages
69–78, Gothenburg, 2017. IEEE.

[31] C. Sauerwein, C. Sillaber, M. M. Huber, A. Mussmann, and R. Breu. The Tweet
Advantage: An Empirical Analysis of 0-Day Vulnerability Information Shared on
Twitter. In Proceedings of the 33rd International Conference on Information Security
and Privacy Protection (IFIP SEC 2018), pages 201–215, Poznań, 2018. Springer.

[32] H. Trunde and E. Weippl. WordPress Security: An Analysis Based on Publicly
Available Exploits. In Proceedings of the 17th International Conference on Infor-
mation Integration and Web-based Applications & Services (iiWAS 2015), pages
81:1–81:7, Brussels, 2015. ACM.

[33] R. Ullah, N. Amblee,W. Kim, and H. Lee. FromValence to Emotions: Exploring the
Distribution of Emotions in Online Product Reviews. Decision Support Systems,
81:41–53, 2016.

[34] R. K. Vaidya, L. De Carli, D. Davidson, and V. Rastogi. Security Issues in Language-
Based Sofware Ecosystems. 2019. Archived manuscript, available online in March
2019: https://arxiv.org/abs/1903.02613.

[35] T. van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen. Large-
Scale Security Analysis of the Web: Challenges and Findings. In T. Holz and
S. Ioannidis, editors, Proceedings of the International Conference on Trust and
Trustworthy Computing (Trust 2014), Lecture Notes in Computer Science (Volume
8564), pages 110–126, Heraklion, 2014. Springer.

[36] M. Vasek and T. Moore. Identifying Risk Factors for Webserver Compromise. In
N. Christin and R. Safavi-Naini, editors, Proceedings of the International Conference
on Financial Cryptography and Data Security (FC 2014), Lecture Notes in Computer
Science (Volume 8437), pages 326–345, Christ Church, Barbados, 2014. Springer.

[37] J. Walden, M. Doyle, R. Lenhof, and J. Murray. Idea: Java vs. PHP: Security
Implications of Language Choice for Web Applications. In F. Massacci, D. Wal-
lach, and N. Zannone, editors, Proceedings of the International Symposium on
Engineering Secure Software and Systems (ESSoS 2010), Lecture Notes in Computer
Science (Volume 5965), pages 61–69, Pisa, 2010. Springer.

[38] J. Walden, M. Doyle, J. M. Rob Lenhof, and A. Plunkett. Impact of Plugins on the
Security of Web Applications. In Proceedings of the 6th International Workshop on
Security Measurements and Metrics (MetriSec 2010), pages 1:1–1:8, Bolzano, 2010.
ACM.

[39] WordPress. Plugins: Extend Your WordPress Experience with 55,802 Plugins.
Data scraped in November from: https://wordpress.org/plugins/, 2018.

[40] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and A. Ihara.
Towards Smoother Library Migrations: A Look at Vulnerable Dependency Migra-
tions at Function Level for npm JavaScript Packages. In Proceedings of the IEEE
International Conference on Software Maintenance and Evolution (ICSME 2018),
pages 559–563, Madrid, 2018. IEEE.

[41] A. Zeileis, C. Kleiber, and S. Jackman. Regression Models for Count Data in R.
Journal of Statistical Software, 27(8):1–25, 2008.

[42] J. Zhang, C. Yang, Z. Xu, and G. Gu. PoisonAmplifier: A Guided Approach
of Discovering Compromised Websites through Reversing Search Poisoning
Attacks. In D. Balzarotti, S. J. Stolfo, and M. Cova, editors, Proceedings of the
International Workshop on Recent Advances in Intrusion Detection (RAID 2012),
Lecture Notes in Computer Science (Volume 7462), pages 230–253, Amsterdam,
2012. Springer.

[43] Y. Zhang, B. Malhotra, and C. Chen. Industry-Wide Analysis of Open Source
Security. In Proceedings of the 16th Annual Conference on Privacy, Security and
Trust (PST 2018), pages 1–10, Belfast, 2018. IEEE.

[44] S. Zong, A. Ritter, G. Mueller, and E. Wright. Analyzing the Perceived Severity
of Cybersecurity Threats Reported on Social Media. 2019. Archived manuscript,
available online in February: https://arxiv.org/abs/1902.10680.

https://research.swtch.com/deps.pdf
https://wpvulndb.com/
http://cwe.mitre.org/data/definitions/661.html
https://publicsuffix.org/
https://nvd.nist.gov/vuln/data-feeds
https://threatpost.com/threatlist-wordpress-vulnerabilities/140690/
https://threatpost.com/threatlist-wordpress-vulnerabilities/140690/
https://www.pluginvulnerabilities.com/wpscan-vulnerability-database-comparison/
https://www.pluginvulnerabilities.com/wpscan-vulnerability-database-comparison/
http://ceur-ws.org/Vol-2217/paper-ruo.pdf
http://ceur-ws.org/Vol-2217/paper-ruo.pdf
https://arxiv.org/abs/1903.02613
https://wordpress.org/plugins/
https://arxiv.org/abs/1902.10680

	Abstract
	1 Introduction
	2 Data
	3 Results
	3.1 Overview
	3.2 Meta-Data
	3.3 Regression Analysis

	4 Discussion
	4.1 Conclusion
	4.2 Limitations
	4.3 Related Work
	4.4 Toward Recommendation Systems

	References

